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Abstract: Cytochrome P450 3A5 (CYP3A5) is one of the crucial CYP family members and has
already proven to be an important drug target for cardiovascular diseases. In the current study,
the PubChem database was screened through molecular docking and high-affinity molecules were
adopted for further assessment. A negative image-based (NIB) model was used for a similarity search
by considering the complementary shape and electrostatics of the target and small molecules. Further,
the molecules were segregated into active and inactive groups through six machine learning (ML)
matrices. The active molecules found in each ML model were used for in silico pharmacokinetics
and toxicity assessments. A total of five molecules followed the acceptable pharmacokinetics and
toxicity profiles. Several potential binding interactions between the proposed molecules and CYP3A5
were observed. The dynamic behavior of the selected molecules in the CYP3A5 was explored
through a molecular dynamics (MD) simulation study. Several parameters obtained from the MD
simulation trajectory explained the stability of the protein–ligand complexes in dynamic states.
The high binding affinity of each molecule was revealed by the binding free energy calculation
through the MM-GBSA methods. Therefore, it can be concluded that the proposed molecules might
be potential CYP3A5 molecules for therapeutic application in cardiovascular diseases subjected to
in vitro/in vivo validations.

Keywords: cytochrome P450 3A5; cardiovascular diseases; virtual screening; molecular docking;
negative image-based screening; machine learning

1. Introduction

Over the last few decades, the screening of molecular databases has become a fascinat-
ing drug-discovery strategy in academia and industry [1,2]. The screening of large chemical
databases is an effective and pioneering methodology for finding potential molecules or
molecular scaffolds for any specific disease target. The computational screening i.e., or
virtual screening (VS) of small molecules has gained extreme popularity due to its high effi-
ciency and accuracy along with its low expense and fewer required animal sacrifices [3,4].
Moreover, obtaining effective, potent, and safer drug-like molecules is a cost-intensive,
extremely difficult, complex, and extensive trial-and-error process [5]. The VS method
incorporates the help of excellent computational power and storage capacity and it can
predict and identify potential lead-like molecules within a shorter time span and at an ex-
ceedingly low cost [6]. The beauty of the VS method is that it can screen the smaller dataset
to ultra-large chemical libraries through any computational model. In the execution of VS,
there is no required physical presence of chemical compounds, and it can be evaluated
computationally until it enters the synthesis phase. VS can be categorized into ligand- and
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structure-based methods. In the ligand-based VS (LBVS) method, statistically robust and
accurately predictive models are generated from a known set of small molecules together
with their biological activities followed by the screening of chemical databases through
a set of well-defined criteria [7]. In particular, LBVS identifies and optimizes the small
molecules based on the information available in the known active molecules irrespective
of the receptor molecule. On the other hand, the structure-based VS (SBVS) method [8]
uses the target cavity information and predicts the best interactions between the receptor
and ligands followed by the ranking of the molecules according to their binding affinities.
The SBVS method requires the three-dimensional (3D) coordinates of the target molecule
along with small molecular datasets from public or commercially available databases.
Molecular docking has become the routine prototypic methodology of SBVS due to its
lower computational expense and effective results [9]. The optimal choice is molecular
docking-based screening due to its better understanding of the binding modes of the small
molecules inside the receptor cavity of the protein along with its prediction of binding affin-
ity depending upon conformational analyses. A number of well explored commercial and
public molecular docking engines are available, which include Glide [10], LigandFit [11],
FlexX [12], Gold [13], MOE [14], Dock [11], Autodock (AD) [15], Autodock vina (ADV) [16],
etc. The quality and trustworthiness of any docking program are mainly decided by the
efficiency of the conformational searching algorithm and the quality of its scoring function
(SF) [17]. Without any doubt, the ADV is the most widely used publicly available docking
engine for the scientific community worldwide for its speed and reliability [18]. Negative
image-based (NIB) [19] screening is a another crucial approach to screening large chemical
datasets. This method comprises the 3D structure of the target molecule bound with a
ligand in the receptor cavity. The NIB model uses the shape and electrostatic complemen-
tarity of the receptors to the ligands to screen more potential molecules. The application of
machine learning (ML) methods in drug-discovery research opens up a wider window to
identify active chemical compounds with less effort and within a shorter amount of time.
Hence, the application of the above computational methodologies to any certain target will
be an effective and efficient approach to finding promising chemical entities.

Cytochrome P450 (CYP) is a well-known and well-studied hemeprotein that functions
in the metabolism of drugs and foreign substances [20]. It plays the roles of inhibitors, in-
ducers, or substrates for the different enzymatic pathways and for modifying the metabolic
pathways of the co-administered drugs [21]. About three-quarters of marketed drugs are
metabolized by CYP enzymes, and the CYP3A family alone metabolizes one-half of those
drugs [22,23]. In particular, from 2013 to 2017, it was estimated that more than 65% of Food
and Drug Administration- (FDA) approved drugs were CYP3A substrates [21]. Out of the
four members of the CYP3A family, namely, CYP3A4, CYP3A5, CYP3A7, and CYP3A43,
only CYP3A4 and CYP3A5 are abundantly expressed in adults [24]. A vast amount of
research has illustrated that CYP3A5 shows metabolic activity towards many drugs, in-
cluding tacrolimus, vincristine, and maraviroc [25–27]. Moreover, regarding tacrolimus, an
approved drug used for heart and liver transplants, it was shown that CYP3A5 clears the
drug faster than CYP3A4 [28,29]. A polymorphism of CYP3A5 showed different reactiv-
ity towards several hypertensive drugs, thus affecting the blood pressure in the studied
individuals [30]. Several studies have already used CYP3A5 as a potential target for the
in silico assessment of potential molecules [31–34]. Hence, the above data and research
findings substantiated that CYP3A5 is a crucial and validated drug target for cardiovascular
and other diseases [35]. Overall, the main objective of the current study was to screen the
large chemical database against the CYP3A5 target for cardiovascular diseases through
molecular docking, NIB screening, ML-based screening followed by pharmacokinetics and
a toxicity assessment, molecular dynamics (MD) simulation, and molecular mechanics
generalized Born surface area- (MM-GBSA) based binding free energy calculation. The
validity of the work was substantiated via the identification of five high-affinity promising
inhibitor molecules targeting CYP3A5.
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2. Results and Discussion
2.1. Virtual Screening

The entire PubChem database was curated with several screening criteria and nar-
rowed down to about 44 million molecules. The curated PubChem database was screened
through a number of advances and conventional cheminformatics approaches such as
molecular docking, NIB screening, ML method, in silico pharmacokinetics, and toxicity
evaluation to identify promising and potential CYP3A5 compounds. The stepwise flow
diagram of the entire work scheme employed is given in Figure 1.
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Figure 1. The workflow of screening the PubChem database against CYP3A5.

2.1.1. Molecular Docking

Molecular docking is an excellent computational method for screening a vast chemical
library dataset to identify prospective chemical entities that could be used to explore the
binding potentiality for a specific target. In the last two decades, molecular docking has
become the prototype of structure-based screening of various in-house created chemical
libraries or virtually available chemical databases [9]. In a similar fashion, in the present
study, molecular docking was performed for the curated PubChem database against the
CYP3A5 protein. However, before the docking was carried out for the entire curated
PubChem database, the employed molecular docking methodology was validated using
the self-docking approach. Therefore, the co-crystallized small molecule (RIT) was drawn
and re-docked at the same location where the co-crystal ligand was originally bound
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with CYP3A5. After re-docking, the best binding pose was superimposed on the original
co-crystal ligand and the root-mean square deviation (RMSD) was found to be 1.913 Å
after superimposition, indicating the successful validation of the docking protocol. The
superimposed orientation of the re-docked and original co-crystal conformer is given in
Figure S1 (Supplementary Data). The active site coordinates and grid box size utilized in
the validated self-docking approach were further considered for the molecular docking
of the PubChem molecules. The ADV [16] program, a publicly available docking tool,
was used to execute the molecular docking study of all the compounds under study. On
the default parameter setting, this freely available tool provides the nine best dock poses,
and they are ranked according to their binding affinity scores. A higher negative binding
affinity suggested the better binding potentiality of any small molecule towards the target
molecule. After successful docking, the binding affinity or energy score (in kcal/mol) of
the best-docked pose of each molecule was explored. The binding affinity of all the docked
molecules was found to be within the range of −1.04 to −15.23 kcal/mol. Further, to narrow
down the chemical space, the user-defined binding energy threshold was −12.00 kcal/mol,
i.e., molecules with a binding energy equal to or less than the threshold were selected for
further assessment. It was observed that more than 23.5 million compounds were found to
have a binding energy less than or equal to −12.00 kcal/mol toward the CYP3A5. All these
molecules were further screened through the NIB screening approach.

2.1.2. Negative Image-Based (NIB) Screening

The NIB model was created by considering the geometry and electrostatic properties
of the ligand-binding receptor cavity of CYP3A5. This model mainly focuses on the major
components of the shape features that are crucial for the successful binding of the ligand to
CYP3A5’s key amino acid residues at the active site. The final NIB model obtained for the
CYP3A5 is given in Figure 2A. The final model was found to have several important cavity
points represented by negative (red), positive (blue), and neutral (grey) charge/features
for the effective binding of the potential ligand. The co-crystal ligand (RIT) was fitted to
the NIB model, and it is portrayed in Figure 2B. The ShaEP score of RIT was found to be
0.600 and it was considered the threshold score for the further screening of the docked
PubChem molecules.
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Figure 2. Negative-image based (NIB) model developed from CYP3A5 receptor cavity (A), and RIT
model mapped with NIB model (B).

The ShaEP [36] score is the similarity score that extends from 0 to 1, indicating a range
from a dissimilar to an exactly similar molecular structure. The molecules retained after
the binding energy-based screening were further screened using the ShaEP tool followed
by calculating the ShaEP score. The workflow of the ShaEP-based screening is given in
Figure 3. The ShaEP score was found to be in the range of 0.255 to 0.771. The threshold
ShaEP value (≥0.6) was used to screen the molecules and a total of 1025413 molecules were
retained in this step. The abovementioned compounds were further taken into account for
an ML-based chemical space reduction.
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2.1.3. Machine Learning-(ML) Based Screening

The ML approach is extensively used in drug discovery to explore potential lead-like
molecules for any specific target. The molecules retained after NIB screening are considered
to segregate into active and inactive by using several ML metrics. In particular, the ML
models were utilized to classify the active and inactive molecules from the unknown dataset
based on the information from known active and inactive molecular datasets. Initially, a
set of known CYP3A5 active molecules with a total of 16 molecules was collected from
BindingDB [37]. The low inhibitory activity (IC50 < 10 nM) was used to identify the active
molecules. By considering the above set of active molecules, a set of decoy molecules
(6341) was generated using the DUD-E decoy generator [38]. The amalgamated active
and decoy sets were considered as the training set, and the molecules found in the NIB
screening were taken as the test set. Both the training and test sets were used to generate
the 2D and 3D PaDEL [39] descriptors. In the training set descriptors, a total of 492 features
were found significant out of the 1144 PaDEL descriptors using Wilcoxon’s rank-sum
test with the significance of p < 0.05. The above features were further used in the scikit-
learn package in Python 3.6 for the ML models’ development. A total of six different ML
models, including decision trees (DT) [40], logistic regression (LR) [41], k-nearest neighbor
(k-NN) [42], random forest (RF) [43], support vector machines (SVM) [44], and gradient-
boosting machines (GBM) [45] were generated. Prior to the use of ML models in the test
set, each model was validated by McNemer’s test, which found no significant difference
between the training set and the ML models. Several model performance measures were
calculated, including precision, recall, F-score, accuracy, and specificity from the confusion
matrix (CM) for all the six ML models, and these measures are given in Table 1. The
fivefold cross-validation results for all the six models explain the statistical robustness of
the models.

The best hyperparameter classifiers for SVM were determined to be C = 1.0, ker-
nel = ‘linear’, gamma = 0.002, and class_weight = ‘balanced’. In the case of the best
RF hyperparameters, the classifiers were noted as n_estimators = 100, criterion = ‘gini’,
min_samples_split = 2, min_samples_leaf = 1, class_weight = ‘balanced’, and min_ weight_
fraction_leaf = 0.0. For the GBM, the revealed classifiers were loss = ‘log_loss’, learning_rate = 0.2,
n_estimators = 100, criterion = ‘friedman_mse’, min_samples_split = 2, and min_samples_leaf = 1.
The DT classifiers were found to be criterion = ‘gini’, min_samples_split = 2, min_samples_leaf = 1,
min_weight_ fraction_leaf = 0.0, and class_weight = ‘balanced’. The LR classifiers were
found to be penalty= ‘l2’, dual = False, C = 1.0, fit_intercept = True, intercept_scaling = 1,
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solver = ‘lbfgs’, max_iter = 100, and class_weight = ‘balanced’. Finally, the KNN classifiers
were found to be n_neighbors = 3 and weights = ‘distance’. Further, the quality of each
model was checked through the receiver operating characteristic (ROC) plot, which repre-
sents the false positive rate (x-axis) and the true positive rate (y-axis) for all the samples
with a threshold between 0 and 1. The ROC curve of each model was plotted and are given
in Figure 4. The area under curve (AUC) value of GBM, SVM, RF, LR, DT, and k-NN was
found to be 0.830, 0.827, 0.667, 0.665, 0.659, and 0.500, respectively. The above obtained
data certainly suggest the potential of each ML model.

Table 1. Performance indices for 5-fold CV using different ML classifiers.

Classifier Precision Recall F-Score Accuracy Specificity

SVM 0.83 ± 0.01 0.80 ± 0.02 0.78 ± 0.02 0.82 ± 0.01 0.81 ± 0.01

RF 0.74 ± 0.01 0.61 ± 0.01 0.57 ± 0.01 0.67 ± 0.01 0.74 ± 0.01

KNN 0.54 ± 0.01 0.51 ± 0.02 0.48 ± 0.02 0.52 ± 0.01 0.54 ± 0.01

GBM 0.84 ± 0.02 0.81 ± 0.02 0.76 ± 0.01 0.82 ± 0.01 0.83 ± 0.02

DT 0.73 ± 0.01 0.61 ± 0.01 0.54 ± 0.01 0.67 ± 0.01 0.71 ± 0.01

LR 0.69 ± 0.01 0.62 ± 0.02 0.52 ± 0.01 0.66 ± 0.01 0.68 ± 0.01
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The test set molecules were considered for segregation into active and inactive com-
pounds using the developed six ML models. Based on their significant features, each ML
model identifies the active and inactive compounds from the given input test set. After
the successful screening of the test set, active molecules from each model were retained
for further assessment. The duplicate molecules from the amalgamated active compounds
were deleted. Finally, a total of 2212 unique active compounds remained in the dataset for
further assessment.

2.1.4. In Silico Pharmacokinetics and Toxicity-Based Screening

The molecules retained after the ML-based screening were considered for the in sil-
ico pharmacokinetics and toxicity assessments. Various pharmacokinetics and toxicity
parameters were calculated using two well-known ADMET prediction programs: Swis-
sADME [46] and pKCSM [47], respectively. Several pharmacokinetic profiles, including
hydrophobicity (logP), solubility, GI and BBB absorption, and synthetic accessibility, were
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considered as the filtration criteria to reduce the chemical space. Particularly, the accepted
parameters were defined as logP ≤ 5, a degree of solubility that was either very soluble
or soluble, GI absorption = yes, BBB absorption = no, and synthetic accessibility ≤ 6 to
screen the potential drug-like candidate molecules. With respect to the above criteria,
543 molecules were retained. Further, the molecules that fulfilled the pharmacokinetic
assessment were further evaluated for the toxicity prediction. Several toxicity parameters
were calculated for all retained molecules. Herein, the molecules were screened based on
AMES toxicity = no, maximum tolerated dose (human) < 4, oral rat toxicity (LD50) < 3.2,
and skin sensitivity = no. After implementing the abovementioned screening criterion,
a total of five of the highest potential drug-like candidate molecules were retained. A
two-dimensional (2D) chemical representation of the finally retained molecules is given in
Figure 5.
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Overall, the exhaustive and systematic approaches—such as employing molecu-
lar docking, NIB based screening, advanced ML model-based segregation into active
and inactive, and pharmacokinetic and ADMET assessments—applied to the abovemen-
tioned five molecules (PubChem_16408217, PubChem_16261597, PubChem_16375114, Pub-
Chem_16487672, and PubChem_16322973) were found to be crucial for the successful
inhibition of CYP3A5. Upon close observation, it was revealed that several functional
groups, including oxo, amine, imine, halogen, non-aromatic and aromatic rings, sulfanyl,
etc., are present in the finalized molecules. These critical functional groups might be very
important components for binding interactions with key amino acids of CYP3A5 at the
active site to hold the proposed molecules in an active conformation to trigger desirable
biological effects. The docking-based binding energy of the standard compound RIT was
found to be −9.90 kcal/mol, whereas for the proposed molecules the binding energies
were observed between −12.10 to −13.60 kcal/mol. In particular, during docking the
binding energies of PubChem_16408217, PubChem_16261597, PubChem_16375114, Pub-
Chem_16487672, and PubChem_16322973 were found to be −13.00, −12.20, 12.50, 13.60,
and −12.70 kcal/mol, respectively. A high negative binding energy in comparison to
RIT was the substantiated evidence in favor of the high binding affinity of the proposed
molecules toward CYP3A5.

2.2. Binding Interaction Analysis

CYP3A5 is a HEME-containing transmembrane protein and its presence plays a crucial
role in binding small molecules in the active site. The retrieved CYP3A5 crystal structure
was used to obtain the original binding interactions between the various amino acids and
the HEME molecule. The binding interaction profile of a HEME molecule is given in Figure
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S2 (Supplementary Data). It is evident that the metal iron (Fe) atom present at the center of
the HEME formed a metallic bond with Cys441. Several HB and hydrophobic interactions,
as well as salt bridges, were seen to develop between the HEME and CYP3A5 amino acid
residues. The only amino acid residue, Thr436 of CYP3A5, established a HB with HEME.
Ile118, Ile184, Ile301, Phe302, Ala305, Val313, Leu364, Val369, Ala370, Phe434, Ile442, and
Phe446 were found to be critical for establishing hydrophobic contacts with HEME. Arg105,
Arg130, Arg375, and Arg439 were revealed as important amino acids for forming salt
bridges with HEME. Since in the molecular docking the position and binding interaction
profile of HEME was intact, in the subsequent section, only the binding interaction profile
of the final molecules with the amino acid residues of CYP3A5 are discussed.

The binding interaction profile of the final five best molecules for the CYP3A5 was
explored and it is given in Figure 6. The binding interactions between RIT and CYP3A5
were explored, and it was found that the Ile371 and Arg372 of CYP3A5 established HB
interactions with RIT. Each of the residues Leu108, Phe220, Leu240, Phe241, and Ile301
formed two hydrophobic contacts with RIT. Beyond the above, Phe201, Phe213, Phe304,
Thr309, Val369, Ala370, and Leu481 formed a single hydrophobic contact with the RIT.
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The final proposed hit molecules were found to interact with CYP3A5 through several
crucial HBs and hydrophobic contacts. The terminal phenyl ring of the PubChem_16408217
was found to be very important for forming two hydrophobic contacts with Ile301 and
Ala305 of CYP3A5. The presence of a pyridinone ring in PubChem_16408217 was revealed
to be crucial for the creation of hydrophobic interactions with Phe213, Phe220, and Leu240.
Leu108 of CYP3A5 also formed hydrophobic contact with the octagonal ring of the Pub-
Chem_16408217. Another proposed molecule, PubChem_16261597, formed intermolecular
interactions at the active site cavity of CYP3A5 by means of hydrophobic contacts between
amino acid residues Ile301 and Ala305 of CYP3A5 and the di-fluro phenyl ring of Pub-
Chem_16261597. The cyclohexene ring present in PubChem_16261597 was found to be
important for imparting the hydrophobicity of the molecule and this was corroborated by
the formation of a number of hydrophobic contacts with different amino acids of CYP3A5.
Each of the Ile301 and Phe304 amino acids formed two hydrophobic contacts with cy-
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clohexene of PubChem_16261597. Moreover, other amino acid residues, such as Phe210
and Phe241 of CYP3A, also generated one hydrophobic contact with the same group of
PubChem_1626159, observed in the molecular docking analysis.

The 2-benzimidazolinone moiety present in PubChem_16375114 was found to be
crucial for forming HBs and hydrophobic and π-stacking interactions with several amino
acid residues of CYP3A5. Particularly, the nitrogen atom and -oxo group present in ben-
zimidazolinone formed critical HB interactions with Phe215 and Gly480, respectively.
Another -oxo group present in the connection between the two piperidine rings in Pub-
Chem_16375114 was found to establish the HB interaction with residue Arg106. Three
amino acids of CYP3A5, namely, Leu108, Phe213 and Leu240, were successfully connected
separately with PubChem_16375114 through a single hydrophobic interaction. Both rings
of benzimidazolinone also established π-stacking interactions with residues Phe215 and
Phe220. PubChem_16487672 was found to interact through two types of molecular inter-
actions with CYP3A5: hydrophobic and π-stacking. The separate phenyl ring present in
PubChem_16487672 was critically stacked with one hydrophobic contact with each of the
residues Phe213 and Leu240, along with π-stacking interactions with residue Phe220 of
CYP3A5. It was observed that the ethyl group attached to the phenyl ring interacted with
two amino acids, namely, Phe210 and Phe241 of CYP3A5. The six-membered ring of the
phthalimide in PubChem_16487672 was crucially revealed as important for hydrophobicity
and established hydrophobic contacts with residues Ile301 and Ala305. Beyond that, the
pyrrolidone also formed hydrophobic contact with Leu481. The presence of a phenyl ring
in PubChem_16322973 accounted for a number of hydrophobic and π-stacking interactions.
The abovementioned phenyl ring was also involved in the creation of hydrophobic inter-
actions with each of the residues Leu108, Phe213, and Leu240, along with a π-stacking
interaction with Phe241. It was observed that the fluro-benzene ring of PubChem_16322973
formed hydrophobic contact with Ile301. Moreover, the alkene part of the molecule was
also found to be crucial for forming two hydrophobic interactions with Phe304 and Leu481.

The best-docked conformer of each proposed compound was explored in the 3D
representation to obtain a better insight into the binding orientation at the active site cavity
of the CYP3A5 protein; therefore, the surface view was obtained and depicted in Figure 7.
Interestingly, it is evident that all the proposed molecules and the standard compound RIT
were perfectly fitted into the same position on the active site of CYP3A5. A number of
studies reported the molecular docking of small molecules at the active site of CYP3A5.
Wu et al. [31] performed the molecular docking of 12 small molecules to CYP3A5, and
Phe210 was found to be a critical amino acid for the binding interaction. In the current
study, both PubChem_16261597 and PubChem_16487672 along with RIT were found to
interact with Phe210. In another study, Saba et al. [48] explored the comparative MD
simulation and binding interaction analyses of vincristine in CYP3A4 and CYP3A5. They
have reported several ligand-binding amino acids. Among them, Arg106, Leu108, Phe213,
Gly214, Phe304, and Gly480 were found to be important ligand-binding amino acids, as
in the current study. Dai et al. [34] explored the binding interaction analysis of bufotalin
with CYP3A5 and found Arg105, Arg106, and Glu374 to be important amino acids. In the
current work, Arg106 was found to be critical for forming the binding interactions with
the proposed CYP3A5 molecules. Consequently, it was undoubtedly clear that the binding
interactions of the proposed molecules with CYP3A5 were substantiated by the previously
published literature. Hence, the analyses and presentation of the binding interactions of the
molecules inside the receptor cavity certainly explained the potentiality of the molecules.
Most of the binding interactions were observed between the functional groups of the
proposed molecules and the ligand-binding amino acids of CYP3A5. Hydrophobic, HB,
and π-stacking interactions were found to be key molecular interactions for almost all the
molecules. The abovementioned molecular interactions between the CYP3A5 and proposed
molecules may be a critical factor for maintaining the protein–ligand complex’s stability.
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2.3. Mapping of Proposed Molecules on NIB Model

To confirm the mapping orientation in the cavity locations or points, each of the
proposed molecules was mapped in the NIB model. The molecules mapped in the NIB
model are given in Figure 8. All the molecules were correctly aligned or mapped with
the relevant cavity sites of the NIB model, as shown in Figure 8. The ShaEP scores of
PubChem_16408217, PubChem_16261597, PubChem_16375114, PubChem_16487672, and
PubChem_16322973 were found to be 0.721, 0.695, 0.749, 0.731, and 0.715, respectively. It is
worth noting that not a single molecule was found outside the cavity or beyond the cavity
points. Hence, the above observations certainly illustrate that the orientation of the final
molecules may be an active conformer for the successful inhibition of CYP3A5.
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2.4. In Silico Pharmacokinetic and Drug-Likeness Assessment

A number of pharmacokinetic and drug-likeness parameters of the final proposed
molecules were calculated and estimated; the results are given in Table 2. All the molecules
were found to be soluble in nature and highly absorbable in the GI tract. Moreover, not a
single molecule was found to penetrate through the brain, i.e., they were non-absorbent
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through the BBB. The synthetic accessibility explains the ease of the molecule’s synthesis.
The synthetic accessibility value of less than six clearly explained that all the molecules
were easily synthesizable. It is reported that for a drug-like molecule, the number of heavy
atoms (HA) should be between 20 to 70 [49]. The obtained results indicate that the number
of HA in all the molecules were within the accepted range. The presence of aromatic rings
in any molecule is also crucial to its ability to behave as a lead-like molecule [50]. The
presence of at least six aromatic heavy atoms (AHA) in the molecules clearly explains the
lead-like behavior of the proposed molecules. The rotatable bonds (RB) of any molecule
explain its rigidity or flexibility. None of the molecules were found to have more than
eight RB, which shows that these molecules are not very flexible in nature. To form the
HB interactions with the amino acid residues of the target molecule, the presence of an HB
acceptor (HBA) and an HB donor (HBD) in any small molecule is essential. From Table 2,
it can be observed that at least four HBAs and one HBD are present in all the molecules
except PubChem_16322973. The molar refractivity (MR) value of all the molecules was
found to be less than 134, which also suggests their drug-like characteristics [49]. The total
polar surface area (TPSA) within the range of 140 also reflects the lead similarity of the
proposed molecule. Hence, from the above discussion and the obtained calculated data, it
is quite clear that the proposed molecules were pharmacokinetically sound and possess a
good drug similarity profile.

Table 2. Pharmacokinetic and drug similarity parameters of proposed CYP3A5 molecules.

Mols. Sol GI BBB SA HA AHA RB HBA HBD MR TPSA

PubChem_16408217 Soluble High No 4.46 34 12 7 4 1 133.24 91.72
PubChem_16261597 Soluble High No 5.40 31 6 8 6 3 112.01 107.61
PubChem_16375114 Soluble High No 4.11 32 14 5 4 1 130.87 132.10
PubChem_16487672 Soluble High No 3.83 34 17 7 6 1 133.76 140.81
PubChem_16322973 Soluble High No 4.12 33 17 7 6 0 128.04 96.78

Sol—Solubility; GI—Gastrointestinal absorption; BBB—Blood-brain barrier absorption; SA—Synthetic accessibil-
ity; HA—Number of heavy atoms; AHA—Number of aromatic heavy atoms; RB: Number of rotatable bonds;
HBA—Number of hydrogen bond acceptor; HBD—Number of hydrogen bond donors; MR—Molar refractivity;
TPSA—Total polar surface area.

2.5. Toxicity Assessment

The toxicity of the proposed molecules was explored, and the results are given in
Table 3. The mutagenicity of any molecule can be predicted through the AMES toxicity pa-
rameter. Not a single proposed compound was found to have a positive AMES toxicity. This
suggests that all the final proposed molecules were non-mutagenic and non-carcinogenic.
The lethal dose at the 50% level was explored using the oral rat acute toxicity (ORAT)
property. The low ORAT value (<0.4) undoubtedly explained the low acute toxicity of
the proposed compounds. The minnow toxicity is another important toxicity-assessment
parameter that represents the concentration of a molecule necessary to cause the death of
50% of Flathead minnows. It is reported that a value of the minnow toxicity of less than 0.3
is highly toxic.

Table 3. Toxicity assessment of proposed CYP3A5 molecules.

Mols AMES
Toxicity

MTD
(Human)

ORAT
(LD50)

Minnow
Toxicity SS

PubChem_16408217 No −0.695 2.758 3.037 No
PubChem_16261597 No 0.139 2.501 3.995 No
PubChem_16375114 No −0.065 2.739 1.961 No
PubChem_16487672 No −0.138 2.13 0.889 No
PubChem_16322973 No 0.375 2.622 −0.227 No

MTD—Maximum tolerated dose; ORAT—Oral rat acute toxicity; SS—Skin sensitization.
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The data in Table 3 suggest that none of the proposed molecules are acutely toxic in
nature. The maximum tolerated dose (MTD) is a prediction of the toxic dose threshold of
any chemical substance in a human being. This parameter is important to help predict the
maximum recommended starting dose for the pharmaceuticals in clinical trial phase I. If
the MTD is less than or equal to 0.477 then it is a lowly toxic compound. The MTD value
of all the proposed CYP3A5 inhibitor molecules was found to be less than 0.376, which
certainly suggests that all the molecules possess a toxic dose within the threshold. The skin
sensitization (SS) of any pharmaceutical product indicates the adverse effect it will have
on the skin after its use. This parameter evaluates any skin allergy after consumption of
the molecules. Table 3 clearly shows that none of the molecules contained any kind of SS-
positive effects on the human skin. Overall, from the above data, there is no space for any
doubt about whether the proposed molecules may be toxic in nature after administration
to the human body.

2.6. Molecular Dynamics Simulation

MD simulation is a pivotal computational technique for exploring the mobility of the
macro-molecules in a user-defined aqueous medium. Five finally proposed CYP3A5 in-
hibitor molecules and RIT bound with CYP3A5 were considered for a 100ns MD simulation
study. After the successful completion of the MD simulation, several parameters—including
the protein backbone RMSD, ligand RMSD, root-mean square fluctuation (RMSF), radius
of gyration (RoG), and the number of hydrogen bonds between protein and ligand—were
evaluated and recorded. The maximum, minimum, and average values of the protein
backbone RMSD, ligand RMSD, RMSF, and RoG are given in Table 4.

Table 4. Statistical parameters of CYP3A5 molecules obtained from MD simulation trajectories.

Ritonavir M1 M2 M3 M4 M5

Backbone
RMSD (nm)

Min. 0.000 0.000 0.000 0.000 0.000 0.000
Max. 0.376 0.338 0.321 0.322 0.297 0.430

Average 0.269 0.258 0.247 0.256 0.227 0.288

RMSF (nm)
Min. 0.051 0.136 0.054 0.052 0.050 0.003
Max. 0.895 0.498 0.563 0.473 0.598 0.398

Average 0.150 0.266 0.146 0.137 0.133 0.208

Ligand
RMSD (nm)

Min. 0.000 0.000 0.000 0.000 0.000 0.000
Max. 0.489 0.248 0.304 0.190 0.234 0.267

Average 0.423 0.151 0.211 0.094 0.162 0.191

RoG (nm)
Min. 2.256 2.300 2.254 2.205 2.245 2.300
Max. 2.357 2.363 2.374 2.316 2.328 2.360

Average 2.322 2.323 2.327 2.291 2.297 2.325

M1—PubChem_16408217; M2—PubChem_16261597; M3—PubChem_16375114; M4—PubChem_16487672; M5—
PubChem_16322973; Min.—Minimum; Max.—Maximum.

2.6.1. Root-Mean-Square Deviation (RMSD)
Protein Backbone RMSD

The protein backbone RMSDs of CYP3A5 bound with the proposed molecules and
RIT were calculated and plotted against the time of simulation, and the plot is depicted in
Figure 9. It was observed that all the protein–ligand systems remained consistent and were
equilibrated very quickly from the initiation of the simulation to the end of the simulation.
No significant deviation of the CYP3A5 backbone was observed in the dynamic states.
In the case of the CYP3A5 backbone bound with PubChem_16322973, it was found to
deviate slightly from 35 ns to 50ns. Afterward, the backbone remained consistent, similar
to the other complexes, and maintained the same state until the end of the simulation.
The potential deviation above might have been due to the higher fluctuation of the small
molecules inside the active site. The average CYP3A5 backbone RMSD was found to be
0.269, 0.258, 0.247, 0.256, 0.227, and 0.288 nm when bound with RIT, PubChem_16408217,
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PubChem_16261597, PubChem_16375114, PubChem_16487672, and PubChem_16322973,
respectively. Hence, the low average RMSD along with the consistent deviation of the
CYP3A5 backbone clearly suggested the stability of the protein–ligand complexes in the
dynamic state.
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Ligand RMSD

The ligand RMSD of each frame was plotted against the time of simulation, and this
is given in Figure 10. All the molecules were found to deviate in a similar fashion almost
from the beginning to the end of the simulation. PubChem_16375114 was found to be
equilibrated with the lowest RMSD values. The rest of the proposed molecules were found
to oscillate with almost similar RMSD values. It is important to note that not a single frame
of all the molecules was found to deviate more than 0.304 nm. From Figure 10, it can be
observed that the standard compound RIT was equilibrated at higher RMSD values in
comparison to the proposed molecules. In the beginning, the RMSD of RIT was increased;
at around 0.42 ns, it became consistent until the end of the simulation. Overall, from Table 4
and Figure 10, it is evident that all the small molecules oscillated inside the receptor cavity
of CYP3A5 with smaller RMSD values.
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2.6.2. Root-Mean-Square Fluctuation (RMSF)

Fluctuations in the backbone of an individual amino acid residue play a critical role
in maintaining the stability of the protein–ligand complex in the dynamic state. To check
the fluctuation of every amino acid of CYP3A5 bound with the proposed molecules and
RIT, the RMSF value was calculated, and it is displayed in Figure 11. Except for the
amino acids of CYP3A5 bound with PubChem_16322973, the protein RMSF values bound
with other molecules were found to fluctuate in an almost similar manner. Although the
CYP3A5 amino residues bound with PubChem_16322973 fluctuate slight differently, not a
single amino residue was found to deviate more than 0.400 nm. The differences between
the maximum and average RMSF were found to be 0.742, 0.232, 0.417, 0.336, 0.465, and
0.190 nm when bound with the compounds RIT, PubChem_16408217, PubChem_16261597,
PubChem_16375114, PubChem_16487672, and PubChem_16322973, respectively. The low
RMSF values and fewer fluctuations in the RMSF values undoubtedly explain that the
amino acids of CYP3A5 successfully held their native conformational state and held all the
proposed small molecules tightly during the span of the MD simulation.
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2.6.3. Radius of Gyration (RoG)

The rigidity of the molecular systems in dynamic states can be assessed through
the RoG parameter. In the MD simulation, the folding of the protein molecule can be
substantiated by an almost intact RoG variation. Frequent deviations of the RoG value
indicate the unfolding nature of any protein molecule under study. In the present study,
the RoG value of the CYP3A5 protein backbone with respect to the time of simulation
was calculated and it is given in Figure 12. From the RoG values, it can be observed that
mostly all the studied systems remained intact throughout the simulation’s duration. No
significant deviation was observed in the RoG values. It is also important to note that
the maximum value of RoG was found to be 2.374 nm for PubChem_16261597, and the
minimum value was observed to be 2.205 nm for PubChem_16375114. The above data
explained that for all the complexes, the RoG was found to vary within 0.169 nm. The
average RoG values were found to be 2.322, 2.323, 2.327, 2.291, 2.297, and 2.235 nm for
RIT, PubChem_16408217, PubChem_16261597, PubChem_16375114, PubChem_16487672,
and PubChem_16322973, respectively. The close average values of all the complexes also
corroborates the intactness of the system.
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2.6.4. Hydrogen Bond Analysis

Hydrogen bonding kinetics are critical for measuring the protein–ligand interaction’s
stability in the simulation state. During the dynamic simulation, due to the rearrangement
of the conformational integrity either in the protein or ligand atoms, there may be a potential
for the breaking down and re-forming of HBs. Therefore, along with other non-binding
interactions, the presence of HB interaction networks was evaluated for all the studied
protein–ligand systems and was plotted against the simulation’ duration (Figure 13). A
close observation suggests that out of a total of 50,000 frames, most of the frames either
retained old HB(s) or formed new HB(s). It was found for all the molecules that very few
frames were found without any HBs. It can be assumed that non-binding interactions, such
as hydrophobic or van der Waals’ contacts, might have held the proposed molecules with
CYP3A5 in the absence of HB(s).
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2.7. Binding Free Energy Using MM-GBSA Approach

In comparison to the conventional binding energy derived in molecular docking
studies, the MM-GBSA-based binding free energy (∆Gbind) from MD simulation trajectories
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is believed to be more authenticated and reliable. The MM-GBSA method was used to
calculate the ∆Gbind by utilizing the information of the last 20 ns or last 10,000 frames
of each molecule bound with CYP3A5. Table 5 shows the average ∆Gbind and standard
deviation values calculated for each proposed CYP3A5 inhibitor molecule. Moreover, the
∆Gbind value of each frame is given in Figure 14.

Table 5. The binding free energy of CYP3A5 molecules through MM-GBSA approach.

Molecule Total
∆Gbind (kcal/mol) Standard Deviation

Ritonavir −33.015 ±1.578
PubChem_16408217 −27.165 ±2.840
PubChem_16261597 −31.826 ±2.437
PubChem_16375114 −25.557 ±2.617
PubChem_16487672 −35.386 ±2.633
PubChem_16322973 −31.378 ±3.918
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In particular, the ∆Gbind of RIT was found to be −33.015 (±1.578) kcal/mol. The
∆Gbind values of PubChem_16408217, PubChem_16261597, PubChem_16375114, Pub-
Chem_16487672, and PubChem_16322973 were found to be −27.165 (±2.840), −31.826
(±2.437), −25.557 (±2.617), −35.386 (±2.633), and −31.378 (±3.918) kcal/mol, respectively.
Indeed, it is interesting to observe that all the proposed molecules were found to have
higher or comparable ∆Gbind when tying the CYP3A5 as compared to RIT. It can be also
observed from Figure 14 that the binding free energy of all the molecules varied between
−40.700 to −16.028 kcal/mol. It is also important to note that not a single frame was found
to have a positive ∆Gbind value, which suggests the occurrence of spontaneous molecular
interactions during simulation. Hence, from the above observations, it can be postulated
that the final molecules possess strong affections towards the CYP3A5 for exhibiting the
necessary biological actions to inhibit the role of CYP3A5 in the cellular environment.

The energy contribution of the amino acids present around 5 Å of the bound ligand
was calculated through MM-GBSA approach. Likewise, for the ∆Gbind calculation, the
last 20 ns or last 10,000 frames were used to calculate the per-residue decomposition
energy, which is given in Figure 15. The high negative decomposition energy explained the
increased tendency of the amino acid to bind with the ligand. Several key amino acids were
found to have negative decomposition energy. It is expected that the ligand-binding amino
acids in molecular docking should have a negative decomposition that shows an affinity
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towards the ligand. On close observation, it was found that almost all the ligand-binding
amino acids possessed negative binding energies in the range of −7 to −66 kcal/mol.
Moreover, a number of amino acids were found to have negative decomposition energies,
but they failed to form any binding interactions in the molecular docking study. The above
observation indicated that the amino acids with negative decomposition energies might
have had the potential to interact with the ligands, but this failed due to the distance of the
bond formation groups, which were out of range. Hence, the above decomposition energy
from the MD simulation data undoubtedly explained the strong bonding between CYP3A5
and the ligands.
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3. Materials and Methods

Virtual screening is a pivotal and widely used approach for computational chemists
to explore the potential chemical agents that inhibit or activate macromolecular targets.
Application of both receptor- and ligand-based approaches in the VS have been proved
to be effective and successful strategies in drug-discovery research [51–54]. In the current
study, molecular docking, NIB screening, ML-based screening, in silico pharmacokinetics,
and toxicity assessments followed by MD simulation and binding free energy calculation
using the MM-GBSA method were used to explore the promising new chemical entities
as CYP3A5 modulators for therapeutic applications in cardiovascular diseases. All of the
above approaches have already been proven to be effective and pioneering methodologies
for the identification of lead-like molecules [4,9,55–62]. List of tools, approaches, and their
purposes used in the current study are given in Table S1 (Supplementary File).
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3.1. Ligand Preparation

The entire PubChem database [63], consisting of about 99 million compounds, was
collected in the month of October 2020. The database was curated by implementing several
criteria, including molecular weight (MW) of 160 to 500; molecular refractivity value of
40 to 300; hydrogen bond (HB) accepters and HB donors less than or equal to 10 and 5,
respectively; number of rotatable bonds and number of atoms that is not more than 10 and
150, respectively; and hydrophobicity (logP) less than or equal to 5. The above criteria were
implemented in the in-house python code to screen the molecules. After screening the entire
database through the above criteria, a total of about 43 million compounds remained. With
the help of the OpenBabel [64] tool, the above molecules were further considered to convert
into a 3D format at the physiological pH (7.4) [65]. Further, the Gasteiger charge [66] was
added to each molecule and converted into .pdbqt for the molecular docking in ADV [16].

3.2. Protein Preparation

The RCSB-Protein Databank (PDB) [67] is the largest repository for the 3D crystal
coordinates of macromolecules. More than 186000 3D structures of the macromolecules
generated by different experimental methods including x-ray, NMR, electron microscopy,
and multi-methods are available (https://www.rcsb.org/stats, accessed on 20 December
2021). The 3D crystal structure of CYP3A5 with PDB ID: 5VEU [68] was collected from
the RCSB-PDB. In order to consider the particular PDB ID, a number of criteria were
considered, including atomic resolution, R-value, and date of deposition. The resolution
and R-value of the selected CYP3A5 crystal structure were found to be 2.910 Å and 0.258 Å,
respectively. A total of 480 amino acids were found in CYP3A5. Ritonavir (RIT), a human
immunodeficiency virus type I protease inhibitor, was co-crystallized with CYP3A5. Before
its use in the molecular docking procedure, the crystal CYP3A5 was prepared using the
Autodock Tools (ADT) [15]. The missing atoms and amino acids were repaired followed by
the crystal water molecules’ deletion and the addition of polar hydrogen. The Gasteiger
charge [66] was added to the molecules. The atoms of the molecules were assigned the
AD4 (Autodock 4) type and finally saved using the .pdbqt format. It is important to note
that the transmembrane part of the CYP3A5 is reported as residue numbers 3 to 23 at the
N-terminal. During the crystallization, the transmembrane portion of the CYP3A5, residue
numbers 24–26, and five residues from the C-terminal were removed. Hence, the amino
acid sequences are numbered from 27 to 495 [68]. The HEME and RIT are numbered as 601
and 602, respectively [68].

3.3. Molecular Docking

Molecular docking is one of the fundamental techniques of SBVS and is widely applied
in the screening of large chemical databases within a shorter time span. This approach is
fit for small molecules in the active site of the macromolecule in their potentially active
conformation. The best pose (or conformation) of each molecule is identified through
conformational analysis. Moreover, on the docking of any small molecule in the target site,
along with the best pose, the binding energy is also estimated. Based on the binding energy,
the multiple docked molecules can be ranked to segregate active and inactive compounds.
In the current study, the essence of molecular docking was used to screen the curated
PubChem database through ADV [16]. ADT is a freely available ready-to-use molecular
docking program, and it is widely accepted and recommended by the scientific community.
This comprehensive, intuitive, and excellent molecular docking tool is based on a simple
scoring function and rapid-gradient-optimization conformational search.

The validation of the molecular docking protocol is required before it is used to
screen any chemical compounds dataset. Self-docking [69] is one of the crucial docking
protocol validation methods in which the co-crystal bound ligand is re-drawn and docked
at the same position where the co-crystal ligand is bound. The main objective of the self-
docking validation method is to check whether the molecular docking yields a comparable
molecular conformation to the x-ray crystalized orientation [70]. The same approach was
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used in the current study, i.e., the structure of RIT was drawn in MarvinSketch (https:
//chemaxon.com/products/marvin, accessed on 21 December 2021) and docked at the
active site of CYP3A5. The coordinate of co-crystal RIT was selected as an active site center.
The grid size was finalized by manually inspecting the entire co-crystal RIT embedded
inside the grid. Hence, the grid coordinates were selected as (−11.748, −49.503, and 24.963)
along the x-, y-, and z-axes, respectively. The grid size was selected as 50 × 50 × 50. It is
illustrated that the root-mean-square deviation (RMSD) ≤ 2 Å between co-crystal ligand
and its best-docked pose validates the molecular docking protocol. The Lamda function [71]
of AWS server was used to dock the entire dataset in the CYP3A5. It is an excellent, fast, and
powerful application of Amazon Web Services [72] that runs as an event-driven, serverless
platform. In general, it runs the code in response to events and automatically accomplishes
the computing resources required by that code. On completion of the docking of the entire
dataset, the binding energy of each molecule was explored. Initially, the binding energy
of RIT was considered as a threshold to screen the molecules, and it was found that about
90% of docked molecules satisfied the threshold. Hence, to reduce the chemical space
and achieve higher binding affinities of the molecules, the user-defined threshold value
was considered by reducing the binding free energy. Screening of the docked compounds
using the user defined threshold value has been performed in a number of recent studies,
including by our research group [73].

3.4. Negative Image-Based (NIB) Screening

The NIB model is the formation of a negative image from the receptor cavity of any
protein target. In this approach, the shape and electrostatic complementarity between
the small molecule and target cavity are considered. The PANTHER program [74] is the
program used to generate the NIB model by considering the shape and charge features of
the protein cavity. During the NIB model’s development, the PANTHER program takes into
account explicit water molecules, cofactors, and ions [19]. Without any prior knowledge
about target-specific active and inactive small molecules, it can generate the model solely
from the protein molecule. In the current study, the crystal structure of CYP3A5 (PDB ID:
5VEU) was used to generate the NIB model followed by the screening of molecules that
remained after molecular docking. The binding site coordinates used in molecular docking
were also considered in NIB model generation as the center of the site (-cent). Further,
the pocket center was generated around the co-crystal bound ligand, i.e., RIT, with the
-bmp option. Through the -ldlim option of PANTHER, the volume of the NIB model was
restricted at the active site cavity. The NIB model developed from the CYP3A5 was used to
screen the molecules retained after binding energy-based screening in molecular docking.
The ShaEP program [36] was used for a similarly based screening. Before the screening, the
charge was added to the ligands followed by the generation of 3D conformers. The shape
and electrostatic features of each of the ligands were compared with the template of the
NIB model of CYP3A5 by applying an equal amount of weight to both electrostatic and
shape values. RIT was also screened using a similar manner. The ShaEP score of RIT was
used as a threshold to screen out considered ligands.

3.5. Machine Learning-(ML) Based Screening

Molecules retained after NIB-based screening were further used to screen out ligands
using the six ML matrices including DT [40], LR [41], k-NN [42], RF [43], SVM [44], and
GBM [45]. A set of 16 active molecules targeting CYP3A5 was collected from BindingDB
and it was used to generate the decoy molecules through the Decoy generator in the DUD-E
server. A total of 6341 decoy molecules were found and amalgamated with an active set
of molecules to form the training set. The entire training set was used to generate the
molecular descriptors using the PaDEL software tool. Through the Wilcoxon’s rank sum
test (p < 0.05) test, out of more than 1144 descriptors, 492 were found to be significant for
the study. The training and validated class level models showed no significant differences
in McNemar’s test [75]. Five-fold cross-validation (CV) was performed, which optimized
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hyperparameters for all these models. Further, to predict whether the compounds were
active or inactive, the trained models were applied to the test dataset (compounds taken
from ChEMBL library). The confusion matrix (CM) considered the following parameters:
implicit active or true positive (TP), inactive or true negative (TN), predicted as active or
false positive (FP), and predicted as inactive or false negative (FN). Based on CM, various
performance indices were calculated, such as precision, recall (or sensitivity), F-score,
accuracy, and specificity using the following expressions.

Confusion matrix (CM) =

[
TP FP
FN TN

]
(1)

Precision =
TP

(FP + TP)
(2)

Recall (or Sensitivity) =
TP

(TP + FN)
(3)

F − score = 2 × TP
(2 × TP + FP + FN)

(4)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5)

Specificity =
TN

FP + TN
(6)

The receiver operating characteristics’ (ROC) area under the curve (AUC) values for
the six classifiers were also compared. Molecules carried forward after the ShaEP-based
screening were considered for segregation into active and inactive using all the ML models.
Molecules found active in each model were collected and merged. The final set of all active
molecules obtained from all six models was carefully checked and duplicates were deleted.
Retained molecules were used for in silico pharmacokinetics and toxicity assessments.

3.6. In Silico Pharmacokinetics and Toxicity Assessment

A number of pharmacokinetics and toxicity parameters of the retained molecules after
ML-based screening were calculated using the SwissADME [46] and pkCSM [47] tools.
Both are freely available online tools and accept the simplified molecular input line entry
system (SMILES) [76] format of the molecules. With the help of SwissADME, the solubility,
gastrointestinal (GI) absorption, blood brain barrier (BBB), synthetic accessibility, number
of heavy atoms (HA), number of aromatic heavy atoms (AHA), number of rotatable bonds
(RB), number of hydrogen bond (HB) acceptors (HBA) and donors (HBD), molar refractivity
(MR), and total polar surface area (TPSA) were calculated. The toxicity parameters included
AMES toxicity, maximum tolerated dose (MTD), oral rat acute toxicity (ORAT) minnow
toxicity, and skin sensitization (SS), which were obtained from the pkCSM. Each of the
above pharmacokinetics and toxicity parameters were checked for all the molecules found
after ML-based screening. Molecules that satisfied the acceptable value of each parameter
were considered for further assessments.

3.7. Molecular Dynamics (MD) Simulation

The MD simulation examines and determines the time-dependent dynamic behav-
ior of a molecular system. Each of the final proposed molecules and RIT bound with
CYP3A5 were considered for a 100 ns MD simulation. GROningen MAchine for Chemical
Simulations (GROMACS) v2021.2 [77,78] was used to perform the MD simulation. The
CHARMM-GUI [79], a web-based system generation tool for MD simulations, was used
to prepare the protein–ligand complex system in explicit water molecules. The topology
of CYP3A5 was generated using the CHARMM36 [80] forcefield. The general AMBER
force field2 (GAFF2) [81] forcefield was used to generate the topology of each of the small
molecules including RIT. The rectangular box was considered for the simulation and each
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complex was centered in it. The minimum distance was maintained as 10 Å between the
atoms of the protein–ligand complex and the box edge. The system was solvated using
the transferable intermolecular potential with 3 points (TIP3P) [82] water model. Each of
the systems was neutralized by the addition of the required number of Na+ and Cl− ions.
Further, the systems were minimized using the steepest-descent algorithm to address the
close contacts or overlaps between the atoms. To equally distribute the water molecules
and ions around the system, each of the systems were equilibrated through NVT (constant
number of particles, volume, and temperature). Finally, the production of the individual
system was conducted for a 100 ns time span with a 2 fs timestep. The MD simulation
trajectories were used to calculate several parameters, including CYP3A5 backbone RMSD,
ligand RMSD, root-mean-square fluctuation (RMSF), radius of gyration (RoG), and number
of HBs between CYP3A5 and ligands in each frame.

3.8. Molecular Mechanics Generalized Born Surface Area- (MM-GBSA) Based Binding
Energy Calculation

MM-GBSA is one of the most accurate and popular binding free energy (∆Gbind)
estimations of small molecules from the MD simulation trajectories. It is also computation-
ally efficient and considered to be a better estimation in comparison to the many scoring
functions. From the MD simulation trajectories, the (∆Gbind) of each of the final CYP3A5
molecules and RIT were calculated using the gmx_MMPBSA module [83]. The following
expressions were used to calculate the ∆Gbind.

∆Gbind =
〈

Gcomplex

〉
−
〈
Greceptor

〉
−
〈

Gligand

〉
(7)

where Gcomplex, Greceptor, and Gligand are the binding energies of protein–ligand complex,
receptor, and ligand, respectively.

The ∆Gbind can also be expressed as

∆Gbind = ∆H − T∆S (8)

∆H is the enthalpy of binding, whereas T∆S represents the conformational entropy
after ligand binding. On the removal of the entropic term, the estimated value represents
the effective free energy [84]. The effective free energy is sufficient to compare the relative
binding energies of any small molecule.

Further, the ∆H can be split into the following individual terms

∆H = ∆EMM + ∆Gsol (9)

where ∆EMM can be expressed as a summation of bonded and non-bonded terms as below.

∆EMM = ∆Ebonded + ∆Enonbonded (10)

Ebonded represents the combination of three terms such as bond stretching, angle
bending, and torsion angle. The ∆Enonbonded is a combination of electrostatic and van der
Waals’ terms. Both expressions are given below.

∆Ebonded = ∆Ebond_length + ∆Eangle + ∆Edihedral (11)

∆Enonbonded = ∆Eele + ∆EvdW (12)

The solvation energy (∆Gsol) for GB models can be calculated using only the polar
constituent. Whereas, the nonpolar (NP) constituent is mostly thought to be proportional to
the molecule’s total solvent accessible surface area (SASA), with a proportionality constant
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derived from experimental solvation energies of small nonpolar molecules [85,86]. Both
solvation and non-polar energy terms are expressed as given below.

∆Gsol = ∆Gpolar + ∆Gnon−polar = ∆GGB + ∆Gnon−polar (13)

∆Gnon−polar = NPTENSION + ∆SASA + NPOFFSET (14)

Upon successful calculation of the ∆Gbind of each molecule, they were documented
along with the standard deviation.

The amino acids present around the active site of any protein target play a significant
role by holding the ligand. The exploration of the potentiality of amino acids towards
the ligand can be explored through per-residue decomposition energy. The last 20 ns of
MD simulation trajectory was used to calculate the per-residue decomposition energy of
CYP3A5 amino acids around 5 Å from the final molecules [87].

4. Conclusions

To explore the potential CYP3A5-inhibitor molecules for use in cardiovascular diseases,
extensive and multiple levels of virtual screening were performed. About 99 million
compounds from the PubChem database were initially screened by molecular docking
followed by NIB screening as well as ML and in silico pharmacokinetics and toxicity
assessments. Finally, five potential molecules were found to have a strong binding affinity
towards CYP3A5. All the molecules consisted of a wide range of pharmacophoric features
that might be important for bonding interactions with the active site amino acids of CYP3A5.
The binding interaction profile was also explained by the comparable bond formation to
the co-crystal ligand RIT. The cavity features of the NIB model have also been found to
fit all the molecules, with their appropriate orientations corroborating the importance of
the complementary shape and electrostatic features of both the ligands and target site.
The acceptable pharmacokinetic profile and non-carcinogenic nature indicate that all the
molecules will be easy to deliver to the target site and safe for use. Several statistical
parameters calculated from the MD simulation have also explained the consistency and
rigidity of the combined CYP3A5 and the proposed molecular systems. The high negative
binding energies of each molecule obtained from the MD simulation trajectories have
also described the potentiality towards CYP3A5. The per-residue decomposition energy
of the ligand-binding amino acids showed strong affinity towards the ligand. Hence,
it is clear from the extensive computational studies and data that the final proposed
molecules possess all of the characteristics of potent and safer CYP3A5 molecules, which
was confirmed via experimental validation through a number of approaches including the
thermal shift assay, kinetic simulation study, fluorescence cross-correlation spectroscopy,
atomic force microscopy, etc.
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