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In cancer, non-synonymous DNA base changes alter protein sequence and produce
neoantigens that are detected by the immune system. For immune detection, neoantigens
must first be presented on class I or II human leukocyte antigens (HLA) followed by
recognition by peptide-specific receptors, exemplified by the T-cell receptor (TCR).
Detection of neoantigens represents a unique challenge to the immune system due to
their high similarity with endogenous ‘self’ proteins. Here, we review insights into how
TCRs detect neoantigens from structural studies and delineate two broad mechanistic
categories: 1) recognition of mutated ‘self’ peptides and 2) recognition of novel ‘non-self’
peptides generated through anchor residue modifications. While mutated ‘self’ peptides
differ only by a single amino acid from an existing ‘self’ epitope, mutations that form anchor
residues generate an entirely new epitope, hitherto unknown to the immune system. We
review recent structural studies that highlight these structurally distinct mechanisms and
discuss how they may lead to differential anti-tumor immune responses. We discuss how
T cells specific for neoantigens derived from anchor mutations can be of high affinity and
provide insights to their use in adoptive T cell transfer-based immunotherapy.

Keywords: T cell receptor, tumor neoantigen, binding affinity, TCR and neoantigen bound HLA complex, group I and
II neoantigens, adopt T-cell transfer immunotherapy, tumor infiltrating lymphocytes
INTRODUCTION

Immunotherapy is revolutionizing the treatment of cancer and understanding how the immune
system detects tumors will lead to improved and novel therapies (1, 2). Tumor transformation is
associated with a multitude of cellular and genetic changes including somatic mutations that alter
protein sequence (3–5). Unleashing T cells specific for these mutations is thought to be one
mechanism for the therapeutic effect of checkpoint blockade immunotherapy (CBI) (6, 7), and
maybe the ‘common pathway’ for many effective immunotherapies (8). Extensive tumor genome
and exome sequencing studies have revealed the landscape of tumor mutations to be broad, however
only a fraction of these appear immunogenic (9, 10). Generating tools that can identify
immunogenic neoantigens from sequence will greatly facilitate the deployment of neoantigen
based vaccines and other immunotherapies (11). However, the features that distinguish
immunogenic and non-immunogenic mutations are poorly defined. Structural biology has been
invaluable to understanding the immune system (12–14). By studying TCRs with demonstrated
clinical efficacy, structure-based approaches can provide insight into biochemical and structural
org February 2022 | Volume 13 | Article 8330171
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features associated with therapeutic success (15). Here, we review
recent structural studies of how TCRs detect immunogenic
neoantigens and discuss how some biochemical properties,
such as antigenic binding affinity, may influence clinical
outcome of adoptive T cell therapy.
BASICS OF T CELL RECOGNITION
AND ANTIGEN PRESENTATION

Antigen Presentation
T cell recognition is a multi-step process that includes two steps
where structural biology can provide unrivaled insight. The first is
Frontiers in Immunology | www.frontiersin.org 2
antigen presentation, where peptide antigens are presented on the
cell surface on class I or class II human leukocyte antigens (HLA)
(16). HLA-I is expressed on all nucleated cells, including tumors and
is the ligand for TCRs expressed on CD8+ cytotoxic T cells. Humans
carry three classical HLA-I genes, encoded by HLA-A, HLA-B and
HLA-C that encode the HLA-I heavy chain, which forms the HLA-I
molecule in complex with bound peptide and the invariant chain
beta-2-microglobulin (b2M) (Figure 1A). HLA-I bound peptides
are typically 8-11 amino acids long, due to a closed peptide binding
groove that prevents longer peptides from extending at either
termini. At homeostasis, HLA-I binds ‘self’ peptides, which are
derived from the proteasomal degradation of old proteins (retirees)
or the products of stalled ribosomal translation known as defective
A B

DC

FIGURE 1 | HLA-I, HLA-II and TCRs. (A) Structure of HLA I molecule. Contains HLA-I heavy chain, b2M and bound peptide. Peptide binding groove consists of a1
and a2 domains of HLA-I heavy chain (PDB entry 6ULI). (B) Structure of HLA-II molecule. Contains HLA-II alpha and beta chains and bound peptide. Peptide binding
groove is shared by alpha and beta domains (PDB entry 1AQD). (C) Examples of peptide motifs for 9mer peptides eluted from two different HLA-I molecules, HLA-
A*02:01 and HLA-C*08:02. Single letter amnio acid code is used. Size of letter indicates prominence of that residue. Anchor residues are defined by restricted amino
acid usage, commonly at p2, p3 and p9. (D) Structure of ab TCR showing constant (C) and variable (V) regions and six CDR loops (PDB entry 6ULN).
February 2022 | Volume 13 | Article 833017
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ribosomal products (DRiPs) (17, 18). These peptides are then
funneled into the ER by the transporter associated with antigen
presentation (TAP) (16, 18), where they are loaded onto HLA-I
molecules in a competitive manner facilitated by chaperone proteins
such as TAPASIN (19). In infections or cancer, pathogen derived
sequences or neoantigens enter the HLA-I presentation pathway the
same way as ‘self’ peptides in the form of ‘retirees’ and DRiPs
(17, 18, 20).

The ligand for TCRs expressed by CD4+ helper T cells is
HLA-II, which is expressed on professional antigen presenting
cells (APC) such as dendritic cells, monocyte/macrophages and
B cells. HLA-II consists of bound peptide and two chains alpha
and beta encoded by different polymorphic genes (Figure 1B).
HLA-II bound peptides are typically 15 amino acids in length,
longer than HLA-I due to its open-ended peptide binding groove
(PBG). There is some evidence that tumors can directly express
HLA-II (21) but generally, recognition of HLA-II restricted
neoantigens is thought to be through interactions with APCs
(22). HLA-II binds peptides in a late endosomal compartment
where it intercepts endocytosed proteins, which are degraded by
endosomal proteases (16). Chaperones such as HLA-DM
facilitate exchange for high affinity peptides (23). Neoantigens
can enter this pathway via endocytosis of apoptotic or necrotic
tumor cells bearing specific mutations.

The genes encoding classical HLA molecules are the most
polymorphic across human populations, with over 10,000 HLA-A,
-B, -C and 5,000 HLA-II protein variants (24, 25). The majority of
this polymorphism is located within the PBG, a specialist
structural fold that allows HLA proteins to bind peptides of
correct sequence via non-covalent interactions. As peptide
binding to HLA is highly competitive, only peptides that best
satisfy the biochemical requirements of the particular PBG will
escape quality control and be presented on the cell surface (19).
The PBG is made of pockets (A-F) that exhibit localized
preferences for specific biochemical characteristics, such as
charge, size, hydrophobicity, polarity and combinations of all
(26). The A-F pockets run from the peptide N to C termini,
with the A and F pockets coordinating the conserved amide and
carboxylic acid groups. For HLA-I binding, there are critical
residues at p2 or p3 and the C-terminus (pW) positions, known
as anchor residues. Amino acid substitutions at anchor residues
substantially alter peptide binding and HLA stability. The fraction
of the proteome bound by HLA molecules is known as the
immunopeptidome (27), and these peptides can be eluted, and
sequenced bymass spectrometry (28–31). Immunopeptidomes are
highly diverse consisting of hundreds to thousands of different
‘self’ peptides for each HLA allotype. Allotype-specific peptide
motifs are derived from immunopeptidomes of different HLA-I
and HLA-II molecules and demonstrate peptide sequence
restriction at anchor residues and variation at non-anchor
residues (Figure 1C). Crystal structures of HLA-I and HLA-II
molecules with specific peptides confirm these motifs by revealing
the number of interactions between the PBG and peptide anchor
side chains. It is possible to classify tumor mutations into three
categories; (1) mutation occurs at a non-anchor residue of an
existing ‘self’ peptide, (2) mutation occurs at anchor residue
Frontiers in Immunology | www.frontiersin.org 3
impacting antigen presentation, (3) mutation falls in a peptide
sequence not presented by host HLA allotype. Herein we use
nomenclature defined by Fritsch et al. (32); group 1 neoantigens
exhibit similar HLA binding affinities between mutant and ‘wild
type’ (WT) peptides and the mutation lies in a non-anchor residue
in an existing ‘self’ peptide. Group 2 neoantigens exhibit
significantly increased HLA binding affinity compared to WT
peptides due to mutations that form novel anchor residues.

T Cell Recognition
Once presented by HLA-I and HLA-II molecules, neoantigen
peptides can be detected by T cells via the alpha-beta T cell
receptor (abTCR). TCR a and b chains consist of constant (C)
and variable (V) regions, where the membrane distal V regions
engage peptide-bound HLA complexes (Figure 1D). From
structural studies of TCR : HLA complexes, general rules have
emerged (33, 34). The V regions contact peptide and HLA via
three complementarity determining regions (CDR1-3) that form
six flexible loops, generated through VDJ recombination (33, 34).
Germline encoded CDR1 and CDR2 engage the HLA protein,
while CDR3s interact with bound peptide. The TCR Va is
centered over the a2 helix of HLA-I (the b chain of HLA-II)
while the TCR Vb chain is centered over the a1 helix of HLA-I
(the a chain of HLA-II). The TCR docks diagonally, with the Va
angled towards the peptide N-terminus and the Vb angled
towards the peptide C-terminus. Substitutions that disrupt key
CDR interactions with peptide or HLA are sufficient to reduce or
eliminate binding and prevent T cell activation (33–35). During
T cell development in the thymus, Va and Vb chains are
generated by recombining single V(D)J gene segments from a
large repertoire of V, D and J segments (only V and J for a chain)
(36, 37). Single gene segments recombine to form each chain
allowing for considerable Va and Vb diversity, which when
combined to form ab pairs have a theoretical upper limit of over
1015 unique TCRs. V gene segments encode CDR1 and CDR2
sequences, while CDR3 is located at the V(D)J boundary and due to
base editing is the most variable region. During T cell development
the pre-selection TCR repertoire is pruned to eliminate TCRs with
the potential for autoreactivity, while also selecting for useful TCRs
with the ability to detect ‘self’HLA. Before leaving the thymus, each
TCR is selected for moderate affinity for ‘self’ peptide-bound HLA
complexes (positive selection), while TCRs with too high affinity for
‘self’ peptide-bound HLA are deleted (negative selection) (37, 38).
Consequently, many TCRs that recognize group 1 neoantigens may
be eliminated due to their high similarity with WT ‘self’ peptides.
TWO WAYS TO DETECT NEOANTIGENS

Insights from structural and functional studies have revealed that
neoantigens can be recognized in two fundamentally different
ways. Group 1 neoantigens are those where the mutation occurs
in a non-anchor residue of an existing ‘self’ peptide (Figure 2).
Group 2 neoantigens are where the mutation creates an anchor
residue converting a previously non-HLA binding sequence into
a novel non-self epitope (Figure 3). From the examples below,
February 2022 | Volume 13 | Article 833017
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we review how there are multiple ways for TCRs to solve the
problem of identifying single amino acid substitutions in pre-
existing ‘self’ peptides (group 1) (39–41). Next we review our
own work on the presentation and T cell recognition of two
group 2 neoantigens derived from the same G12D mutation in
the oncogene KRAS (15). To define neoantigens as group 1 or
group 2, researchers often utilize prediction algorithms such as
NetMHCPan to predict the HLA binding affinities of WT and
mutant peptides (42). For group 1 neoantigens the predicted
binding affinities will be similar, while for group 2 neoantigens
the mutant peptide has considerably higher binding affinity than
the WT sequence. For detailed studies of specific neoantigens, it
is important to validate whether neoantigens fall into group 1 or
2 using in vitro assays such as peptide loading on TAP-deficient
Frontiers in Immunology | www.frontiersin.org 4
cells or in vitro refolding assays with recombinant proteins (15,
43). Table 1 lists the HLA restrictions, neoantigen sequences and
TCR affinities for the TCRs we reviewed. A summary of
differences between TCR recognition of group 1 and group 2
neoantigens is shown in Figure 4.
GROUP 1 NEOANTIGENS: MUTATED
‘SELF’ EPITOPES

Recognition of a Shared Mutated p53-
R175H Neoantigen by C-Terminal Shift
TP53 is the most mutated gene across all cancers, highlighting its
critical role as a tumor suppressor (45). A significant number of
A

B

D

E
F

C

FIGURE 2 | Multiple strategies to detect mutated ‘self’ epitopes, group 1 neoantigens. (A) Docking of A6 TCR and 38-10 TCR on HLA-A2 displaying C-terminal
shift of 38-10 TCR specific for p53 R175H (PDB entry 1AO7, 6VRN). (B–D) Dominant TCR contacts with p8 of HMTEVVRHC, p53 R175H neoantigen presented by
HLA-A2 by 38-10 TCR (6VRN) (B), 12-6 TCR (6VRM) (C) and 1a2 TCR (6QVO) (D). (E) Peptide pre-organization confers structural dissimilarity. Peptide p8 in HHAT
L75F neoantigen KQWLVWLFL pre-organizes p6W into optimal TCR binding confirmation to allow effective tumor detection (6UK2,6UK4). (F) Direct recognition of
exposed mutation. Mutant p6I in GELIGILNAAKVPAD TPI neoantigen confers more TCR-E8 contacts that WT p6T (2IAM, 2IAN).
February 2022 | Volume 13 | Article 833017
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TP53 mutations occur in the same ‘hotspot’ locations. Studies by
the Rosenberg group at the National Cancer Institute (NCI) and
others, have identified TCRs specific for the p53-R175H
mutation, restricted by the common HLA-I allotype, HLA-
A*02:01 (HLA-A2) (46–49). Approximately 5% of p53
mutations are R175H, and the high frequency of HLA-A2
across populations makes this ‘shared’ neoantigen an attractive
therapeutic target (50). In a recent study by Wu et al, three p53-
R175H specific TCRs were studied, 12-6, 38-10 and 1a2 (39).
These TCRs displayed no binding to WT p53 peptide but a range
of affinities (KD, 1 - 40 mM) for the p53-R175H peptide
Frontiers in Immunology | www.frontiersin.org 5
(HMTEVVRHC). As this mutation occurred at a non-HLA-A2
anchor position, the authors were able to solve structures of
HLA-A2 with both WT and R175H p53 peptides. The peptide
conformations in these HLA-A2 alone structures were identical,
apart from the peptide position 8 (p8) side chain. The TCRs
shared no Va or Vb genes and their CDR3 sequences had no
obvious sequence homology, suggesting each TCR recognized
the p53-R175H mutation in a different way. By solving x-ray
crystal structures of all three TCR-A2-p53-175H complexes, Wu
et al. were able to answer this question directly. These TCRs
displayed a canonical diagonal docking orientation but were
A
B

D

E
F

C

FIGURE 3 | TCR recognition of group 2 neoantigens, novel ‘non-self’ epitopes generated by the KRAS-G12D mutation. (A) KRAS-G12D neoantigens G12D-9mer
(GADGVGKSA) and G12D-10mer (GADGVGKSAL) form a salt bridge mutant p3 Asp and HLA-C Arg 156 on a2 helix of HLA-C*08:02 (PDB entry 6ULI, 6ULK). (B-D)
TCR recognition of G12D-9mer by TCR9a and TCR9d. (B) Shared CDR2b contacts with p7 Lys (6ULN). (C) Shared CDR3a contacts with p5 Val and Gln 155, Arg 156
of HLA-C*08:02 (6ULN). (D) Position 95 CDR3b contact with Arg 69 of HLA-C*08:02 modifies TCR9 binding strength (6ULN,6ULR). (E, F) TCR10 recognition of G12D-
10mer. (E) TCR10 CDR3a and CDR3b contacts with G12D-10mer (6UON). (F) G12D-10mer conformation in TCR free and TCR10 bound forms (6ULK,6UON).
February 2022 | Volume 13 | Article 833017
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unusually shifted to peptide C-terminus, proximal to the
mutation site (Figure 2A). Indeed, TCR 38-10 was the most
C-terminal shifted TCR in the PDB database with a canonical
orientation, with TCR 12-6 and 1a2 also high on the list (39). By
shifting towards the C-terminus, these TCRs were able
Frontiers in Immunology | www.frontiersin.org 6
discriminate between WT and mutant p53 peptides as most
TCR-peptide contacts with p7-Arg and p8-His, while most TCRs
target the central residues p4-p6 (33). Each TCR had different
footprints, but 12-6 and 1a2 were more similar and utilize their
CDR3b to coordinate the R175H mutation, while 38-10 was
TABLE 1 | Neoantigen specific TCRs with crystal structures.

TCR HLA Peptide sequence Protein Mutation position TCR affinity (KD)

WT Mut WT Mut

12-6 A*02:01 HMTEVVRRC HMTEVVRHC p53 175 UD 1.1 mM
38-10 A*02:01 HMTEVVRRC HMTEVVRHC p53 175 UD 39.9 mM
1A2 A*02:01 HMTEVVRRC HMTEVVRHC p53 175 UD 16.2 mM
302TIL A*02:06 KQWLVWLLL KQWLVWLFL Hedgehog acyltransferase 75 200 mM 9 mM
E8 DR1 GELIGTLNAAKVPAD GELIGILNAAKVPAD Triosephosphate isomerase 28 ND ND
G4 DR1 GELIGTLNAAKVPAD GELIGILNAAKVPAD Triosephosphate isomerase 28 ND ND
TCR9a C*08:02 GAGGVGKSA GADGVGKSA KRAS 12 NA 16 nM
TCR9b C*08:02 GAGGVGKSA GADGVGKSA KRAS 12 NA 835 nM
TCR9c C*08:02 GAGGVGKSA GADGVGKSA KRAS 12 NA 90 nM
TCR9d C*08:02 GAGGVGKSA GADGVGKSA KRAS 12 NA 125 nM
TCR10 C*08:02 GAGGVGKSAL GADGVGKSAL KRAS 12 NA 6 mM
February 2022 | Volu
me 13 | Article
WT, wild type; MUT, mutant; UD, Undetectable; ND, Not determined; NA, Not applicable.
‘*’ is part of nomenclature for HLA alleles. Bold & underline indicate site of mutation.
A

B

FIGURE 4 | Two distinct structural mechanisms for detection of neoantigens. (A) Distinct features of antigen presentation and TCR recognition of group 1 and
group 2 neoantigens (B) Affinities of TCRs specific for tumor antigens, viruses, and group 1 and group 2 neoantigens. Data for viruses and tumor antigens are from
Aleksic et al. (44).
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dominated by its CDR3a. For TCR 38-10, CDR3a Tyr103 slides
between p7R and p8H to contact the peptide backbone, while
forming p−p stacking interactions with the imidazole ring of p8H
and van-der Waals contacts with p7R (Figure 2B). For TCR 12-6,
the p8H side chain is contacted by CDR3bGlu95 and Trp98, while
CDR3b Gln99 contacts the peptide backbone (Figure 2C). For
TCR 1a2, p7R is coordinated by CDR3b Asp100 and CDR1a
Tyr32, while p8H is contacted by CDR3b Gln96 and Gln97 with
further contacts from CDR3a Ser98 (Figure 2D). Further contacts
with the HLA-A2 heavy chain and modest conformational
changes were observed to fully accommodate TCR binding (39).
This study highlights how three different TCRs utilize different
contacts but the same broad strategy of C-terminal shift to
coordinate the same mutation.

Structural Dissimilarity via Peptide
Pre-Organization
In another recent study, a completely different structural solution
to neoantigen recognition was observed (40). This study focused
on an HLA-A*02:06 restricted TCR (302-TIL) specific for a L75F
mutation in hedgehog acyltransferase (HHAT) identified from a
patient with ovarian cancer (40). Similar to p53-R175H, the
mutation was located at p8 of a 9mer antigen with the sequence
KQWLVWLFL. However, unlike recognition of R175H, TCR
recognition was not dependent on a C-terminal shift. In fact, the
relatively conservative pL8F mutation, forces p6W into an optimal
TCR binding conformation due to proximity with the larger p8F
(Figure 2E). Crystal structures of 302-TIL TCR in complex with
both WT and mutant peptide, revealed that the p6W adopted the
same conformation in both complexes. However, 302-TIL TCR
had a much higher affinity for mutant peptide at 9 mM compared
to 200 mM with WT peptide and had an especially slower off rate
with mutant peptide. The best interpretation of these data are that
adopting the optimal p6W conformation is slow in the context of
WT peptide, but p8F ‘pre-organizes’ p6W into an optimal TCR
binding state, allowing rapid T cell activation and discrimination
of tumors from healthy cells.

Direct Recognition of Exposed Mutation
To date, there is one structural study of an HLA-II restricted
neoantigen specific TCR identified from a melanoma specific
CD4+ TIL cell line TIL1558 (41). TCR-E8 was identified as HLA-
DR1 restricted and specific for a Thr28Ile mutation in the
enzyme triosephosphate isomerase (TPI), with the peptide
GELIGILNAAKVPAD. TCR-E8 tetramers displayed binding
only to mutant TPI-T28I peptide but not WT peptide by
surface plasmon response (SPR), but the binding was too weak
to determine a KD using TCR monomers. The pT6I substitution
had no impact on peptide stability of HLA-DR1 and thus was
likely recognized due to novel TCR contacts. Complex structures
of TCR-E8 with HLA-DR1 bound to WT and mutant TPI
peptides were solved. In the complex with WT peptide, p6Thr
is buried and forms only one TCR contact. In contrast, the
mutant p6Ile is exposed and protrudes from the HLA-DR1
surface forming three TCR contacts, providing a higher buried
surface area and improving the shape complementarity between
TCR and HLA-DR1 (Figure 2F).
Frontiers in Immunology | www.frontiersin.org 7
GROUP 2 NEOANTIGENS: NOVEL
‘NON-SELF’ EPITOPES GENERATED BY
ANCHOR RESIDUE MUTATIONS

The examples above involve direct comparisons between WT
and mutant peptides as the mutations did not occur in anchor
residues and had minimal effects on HLA stability. Group 2
neoantigens are peptides for which mutations create an anchor
residue required for HLA binding and thus these epitopes
acquired HLA presentation through mutation. In these cases,
the WT peptides are generally not presented by HLA for exactly
the opposite reason that they lack the right anchor residues for
HLA binding. In theory, these epitopes appear as entirely ‘non-
self’ and completely novel to the immune system analogous to
pathogen derived peptides. They form specific interactions with
their cognate TCRs and generate robust T cell response (15, 51).
KRAS-G12D Mutation Creates Two
HLA-C*08:02 Restricted Neoantigens
Oncogenic mutations in the RAS family of small GTPases (K-,
N-, H-RAS) are second only in frequency to those in TP53 (20,
52, 53). These mutations occur in ‘hotspots’ at positions 12, 13
and 61 of RAS protein and lead to constitutive RAS activation
promoting tumor transformation (20, 54). The high frequency of
these mutations makes them attract ive targets for
immunotherapy. In 2016, a seminal study demonstrated that
adoptive transfer of expanded TILs specific for Gly 12 to Asp
mutation in KRAS (KRAS-G12D) lead to tumor regression in a
patient with metastatic colorectal cancer (51). Adoptive transfer
of expanded TILs specific for KRAS-G12D led to complete
regression of all but one metastatic lesion. The remaining
lesion lost HLA-C*08:02 from its genome demonstrating that
clinical efficacy in this case was most likely through HLA-
C*08:02 presentation of KRAS-G12D neoantigens (51). Four
HLA-C*08:02 restricted KRAS-G12D specific TCRs were
identified from this study in addition to one more identified in
a 2015 study (55). Of these five TCRs, four were KRAS-G12D
9mer specific (G12D-9mer; GADGVGKSA), while one was
KRAS-G12D 10mer specific (G12D-10mer; GADGVGKSAL).
The G12D-9mer specific TCRs are TCR9a, 9b, 9c & 9d, while
TCR10 is the G12D-10mer specific TCR. For both neoantigens,
the mutation occurred at Gly 12 of KRAS resulting in Aspartate
at peptide position three. The G12D-10mer differs from G12D-
9mer by having one additional Leu at the C-terminus, the next
residue in the KRAS sequence.

By solving crystal structures of HLA-C*08:02 with G12D-
9mer and G12D-10mer alone and in complex with cognate
TCRs, we were able to directly assess the impact of G12D
mutation on HLA-C binding and T cell recognition (15). Both
G12D-9mer and G12D-10mer bind HLA-C*08:02 via a salt-
bridge formed between p3 Aps and Arg156 of the a2 helix of
HLA-C*08:02 (Figure 3A). This salt-bridge is a critical anchor
interaction required for all HLA-C*08:02 binding peptides
as evidenced by the fact that 97.6% of peptides eluted from
HLA-C*08:02 had either Asp or Glu at p3 (28, 29). In contrast,
the WT peptide with p3 Gly cannot form a salt-bridge with the
February 2022 | Volume 13 | Article 833017
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HLA-C*08:02 and consequently only G12D KRAS peptides
stabilized HLA-C*08:02 on cells or as recombinant protein
(15). Thus, the G12D mutation generates a novel anchor
interaction endowing mutant but not WT KRAS peptides to
bind HLA-C*08:02 and be presented for immunosurveillance.

Class I HLA binding peptides contain a C-terminal anchor,
the side chain of which is orientated to toward the interior of
HLA peptide binding grove (F pocket) and is buried from solvent
(26, 56). The C-terminal residue is typically large, hydrophobic
or charged and interacts with a complementary hydrophobic or
charged F pocket (26, 28, 56). The G12D-9mer contains an
unusual C-terminal anchor (Ala), which does not fully occupy
the F-pocket (15). Despite this, G12D-9mer bound HLA-C*08:02
with canonical conformation with p9 Ala positioned into the
class I hydrophobic pocket (15). The most common C-terminal
residue for HLA-C*08:02 bound peptides is Leu, however Ala is
present in approximately 1% of peptides (57). Consistent with
Ala being sufficient but not an optimal C-terminal anchor,
substitution of G12D-9mer p9 Ala to Leu improved binding to
HLA-C*08:02 and T cell recognition by TCR9a (15, 57). In the
G12D-10mer, its canonical C-terminal anchor and the salt-
bridge with p3 Asp, forced the G12D-10mer to bulge peaking
at p7 Lys, adopting an entirely different conformation than
G12D-9mer (15). This resulted in two HLA-C*08:02 bound
G12D neoantigens, with distinct peptide conformations even
though their sequences differed by only one amino acid.

TCR recognition of KRAS-G12D peptides contained the
general features observed in many of TCR : HLA complexes
(33). However, the unique aspects of KRAS-G12D specific TCRs
provided insights to how tumor infiltrating T cells recognize
tumors and the potential beneficial traits for selecting
therapeutically effective TCRs (15). Consistent with their
distinct peptide conformations, the G12D-9mer and G12D-
10mer specific TCRs used different Va and Vb genes and
shared no CDR sequences (15, 51). The four G12D-9mer
specific TCRs (TCR9a, 9b, 9c and 9d) used the same Va and
Vb genes, with almost identical CDR3a sequences despite the
fact that TCR9d was identified from a different individual to the
other three TCRs, suggesting TCR9 is a public TCR (51, 55, 58).
The four G12D-9mer specific TCRs displayed a range of high
affinities, from 16 nM (TCR9a) to 835nM (TCR9b) (15). TCR9
docks onto peptide:HLA-C as a rigid body without significant
changes in peptide nor HLA-C conformation and most peptide
contacts are made through CDR3a and CDR2b residues,
conserved across TCR9a-d (Figures 3B, C). CDR3b is the only
segment with significant sequence variation among TCR9a-d.
Structures of TCR9a and TCR9d with HLA-C*08:02-G12D-
9mer revealed the same contact with CDR3b position 95 and
HLA-C Arg 69 on the a1 helix (15). The biochemical strength of
the CDR3b-HLA-C interaction correlated with TCR9 affinity,
with TCR9a Glu95 forming a salt-bridge and conferring the
strongest binding. TCR9c and 9d formed h-bonds with HLA-C
Arg 69 via Gln 95 and had intermediate affinities, while TCR9d
could not contact HLA-C Arg 69 via Arg 95 in its CDR3b and
consistently had the lowest affinity (15) (Table 1). Recognition of
the G12D-10mer by TCR10 was dependent on CDR3a and
Frontiers in Immunology | www.frontiersin.org 8
CDR3b interactions with the central core of peptide (Figure 3D).
Interestingly, TCR10 binding induced a conformational change
in G12D-10mer peptide that is different from the peptide
conformation presented by HLA-C*08:02 in the absence of the
receptor (15).

G12D-9mer and G12D-10mer share VGK (p5-p7) exposed to
TCR, however their discrete conformations resulted in distinct
TCR contacts without any detectable conservation between the
G12D-9mer and -10mer specific TCRs (15). For example, both
TCR9 and TCR10 formed charge interactions with the peptide
Lys at position 7, TCR9 used a Glu residue from CDR2b and
TCR10 used an Asp residue from its CDR3b, respectively, to
facilitate the charge contacts (15). TCR9a-c and TCR10 were
identified in the same individual and the lack of conservation in
V-gene and CDR3 sequences supports the conformational
uniqueness of these neoantigens. Indeed, there is limited cross
reactivity between the two classes of TCRs (15, 51). TCR10 is
solely G12D-10mer restricted, exemplifying the conformational
dependency of its interaction with G12D-10mer. TCR9a
displayed weak recognition of G12D-10mer and structural
modeling suggests TCR9a could interact with G12D-10mer in
its TCR unbound conformation (15). However, it is also possible
that G12D-10mer degrades during in vitro assays to confer weak
recognition by TCR9, as we did not observe any TCR9 binding to
G12D-10mer using recombinant protein (15). Together, our
study demonstrated that the G12D-9mer and G12D-10mer are
structurally distinct, prototypical group 2 neoantigens, which are
recognized by their cognate TCRs via discrete mechanisms.
DO T CELL RESPONSES DIFFER
BETWEEN MUTATED ‘SELF’ EPITOPES
AND NOVEL ‘NON-SELF’ EPITOPES?

Seminal studies indicated that clinical responses to check-point
blockade were associated with mutational burden (6, 59). Further
investigations have sought to identify classes of mutations that
best associate with clinical success, with a focus on neoantigen
quality not quantity (44, 60, 61). Multiple studies suggest that
neoantigens derived from anchor mutations (group 2) are more
likely to be immunogenic and higher loads of anchor mutation
neoantigens are associated with better prognosis than merely
high numbers of neoantigens (62–64). One explanation for this is
that group 2 neoantigens engender better T cell immunity than
group 1 neoantigens, however molecular mechanisms for this
effect are unclear. Group 2 neoantigens are more dissimilar to
‘self’ peptides compared to group 1 and there is evidence that T
cell responses to HIV are better to those peptides most dissimilar
to ‘self’ peptides (65). Similarly, neoantigens generated from
novel open reading frames derived from insertion-deletion
mutations (indels) are highly immunogenic and clearly
dissimilar for WT ‘self’ sequences (66). A potential mechanism
is that group 2 neoantigen specific TCRs are of higher affinity,
allowing stronger T cell responses. There are a limited number of
biophysical studies describing the affinities of neoantigen specific
February 2022 | Volume 13 | Article 833017
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TCRs making it difficult to draw broad conclusions. However,
neoantigen specific TCRs have similar affinities to viral specific
TCRs, all of which are much higher affinities than TCRs specific
to those tumor antigens, which are ‘self’ peptides with
dysregulated gene expressions in tumors (Figure 4B) (67).
TCRs specific for group 2 neoantigens were higher affinity
than those specific for group 1 (Table 1 and Figure 3B). One
explanation for this trend is that high-affinity TCRs for group 1
neoantigens are likely deleted in the thymus owing to cross
reactivity to ‘self’ antigens. In contrast, WT peptides from group
2 neoantigens are likely not to be presented in the thymus and
therefore high-affinity TCRs can survive negative selection,
exemplified by TCR9a with an affinity of 16 nM (15). It is
important to stress however that data on neoantigens specific
TCRs are limited and that the only group 2 neoantigen specific
TCRs studied to date are HLA-C restricted, while the group 1
neoantigen specific TCRs are HLA-A restricted, which may
impact their intrinsic affinities. Further studies of other
neoantigen specific TCRs are needed to determine if this trend
towards higher affinity in group 2 specific TCRs is maintained. It
appears that intermediate affinity TCRs with low micromolar to
high nanomolar affinities such as TCR10, 9b and 9c, are ideal for
effective TCR therapy (68–70).
INSIGHTS INTO SELECTING TCRS
FOR IMMUNOTHERAPY

Adoptive T cell transfer-based immunotherapy is a promising
new approach to eliminate metastatic cancers. It assumes that
many tumor infiltrating T cells (TIL) recognize tumor antigens
specifically, but their circulating numbers are low in patients,
thus natural TILs are insufficient to eradicate tumor cells. These
TILs, however, can be expanded in vitro to large numbers and
reinfused into cancer patients. The challenge is to know the right
type of T cells to choose to expand into therapeutic reagents.
Currently, the choice of T cells for expansion remains largely a
trial-and-error empirical approach. Similar unknowns apply to
‘off the shelf’ TCR based therapies that transduce T cells with
tumor specific TCRs. In principle, there are three main criteria
for the selection of anti-tumor T cells: affinity, antigenic breadth
and persistence. In the case of treating a metastatic colorectal
cancer with adoptive transfer of expanded TILs specific for
KRAS (KRAS-G12D) neoantigen presented by HLA-C*08:02,
the transferred CD8+ T cells consists of four clonotypes, bearing
TCR9a, 9b, 9c and TCR10, at abundance of 49.5%, 6.9%, 0.04%
and 19.1% of the total transferred T cells, respectively. The
treatment resulted in regression of all metastases that retained
HLA-C*08:02 expression (51). Intuitively, high affinity receptors
are more desirable in effective tumor killing, however high
affinity TCRs appear to have diminished antigen sensitivity
in vitro and in vivo (68–72). Another major concern of high
affinity engineered TCRs is the potential for cross-reactivity,
which can be lethal (73). However, this is unlikely to be a
problem for naturally occurring high affinity TCRs specific for
group 2 neoantigens such as TCR9a. Indeed, our data suggest
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that TCR9a and TCR10 have similar antigen sensitives with
TCR9a being slightly more sensitive than TCR10 (15, 51, 57).
The problem with clinical use of TCR9a is that despite an
abundant initial presence of the highest affinity receptor (50%
of the infusion), TCR9a was undetectable in the periphery on day
40 of post-transfer (15, 51). In contrast, the other three TCRs
engrafted, resulting in a near inverse correlation between TCR
affinity and their in vivo persistence (15, 51). In particular,
TCR10 had the lowest affinity (6 mM), made up 20% of the
infusion and was maintained in the periphery at 10% of the
repertoire 9 months post-transfer. The T cells with high affinity
receptors disappeared faster in circulation during the adoptive
transfer therapy (15), while lower affinity T cells persisted longer.
Given the vast number of TCR9a+ cells transferred (≈7×1010) it
seems highly unlikely that TCR9a+ cells disappeared by decay,
while the three other TCRs engrafted (51). A more likely scenario
is that higher affinity T cells engage more effectively to cognate
antigen (G12D-9mer) on the tumor resulting in higher tendency
of activation induced cell death (AICD) rather than proliferation
(68). It is not clear if all four TCR clonotypes were necessary for
effective therapy in this case. In particular, was tumor
recognition by the high affinity TCR, necessary for tumor
regression? It is possible that the infusion of multiple TCRs
specific for different antigens with a blend of characteristics
including high affinity and long-term persistence was essential
for effective tumor clearance. In this model, due to a ‘cold’
immune environment pre-infusion, a high affinity receptor like
TCR9a is required to initiate tumor clearance. Subsequently, the
other TCRs with lower affinities can engage the tumor and
maintain tumor clearance, while not suffering activation induced
cell death like the T cells bearing high affinity receptors. Namely, it
may be necessary to select oligoclonal T cells with varying tumor
affinities to balance the need for effective tumor killing and
persistence in circulation. An alternative interpretation is that
TCR9a was not necessary for clinical efficacy, and the therapeutic
effect was due to TCRs with lower affinities, namely TCR10 and
TCR9b&c. Indeed, it appears that intermediate affinity TCRs with
low micromolar to high nanomolar affinities such as TCR10, 9b
and 9c, are ideal for effective TCR therapy (68–70). Further
experiments will need to investigate the validity of this model,
specifically whether infusions of multiple TCRs with different
antigen specificities, affinities and capacities for in vivo
persistence are all necessary for effective adoptive T cell therapy.
It is worth noting that the literature on high affinity TCRs is
somewhat confused, in part due to the use of affinity by some
investigators in place of avidity and a lack of consistency regarding
what is meant by ‘high affinity’ (74). As an example, this 2012
study concluded that high affinity TCRs exhibited improved
cytotoxicity, survival and reduced expression of inhibitory
receptors (74). However, the affinity of the TCRs were not
defined, and merely compared two TCRs with differing avidity
measured by tetramer staining in a previous study (75). Both
studies use affinity, when avidity is appropriate as direct affinity
measurements were not made, and it is not clear where the
affinities of the two TCRs lie on a scale from high micromolar
to low nanomolar. For our part, we consider low affinity TCRs to
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have a KD > 10 mM, intermediate, KD = 100 nM – 10 mM, high,
KD = 1nM – 100 nM, and supraphysiological, KD < 1nM.

In addition to antigenic affinity, the persistent expansion of
TCR10 during adoptive transfer therapy highlights a potential need
to include T cells with broader breadth in neoantigen recognition. In
this case, TCR10 recognizes the KRAS-G12D 10mer peptide in a
conformation not cross-reactive to the other three TCRs. It showed
that the same oncogenic mutation may produce different
conformational neoantigens that require non-cross-reactive T cell
responses. Namely, the most potent T cell clones against one
neoantigen may not be effective against other conformational
variants of the same mutation-derived neoantigens and thus
risking tumor escape. When taking both neoantigen variation and
anti-tumor affinity into consideration, we propose a potentially
more effective rational approach to screen TIL for adoptive T cell
transfer therapy. Once the antigenic forms of a tumor antigen are
defined, a combined structural and biochemical approach can be
applied to select favorable therapeutic T cell clones with broad
antigen affinities and specificities against variant neoantigens, both
mutational and conformational.
CONCLUSIONS

Previous studies classified neoantigens into at least two classes, those
with mutations at anchor residues (group 2) and those with
mutations in existing ‘self’ epitopes (group1) (32, 62–64). Recent
structural studies have built on this work to provide unprecedented
Frontiers in Immunology | www.frontiersin.org 10
insight into how these structurally distinct classes of neoantigens are
detected by T cells (15, 39–41). Recognition of neoantigens by T
cells is an essential component of many successful immunotherapies
(8). However, the biochemical and structural features of
immunogenic neoantigens and effective therapeutic TCRs are still
under investigation. While data are limited, there is evidence that
TCRs specific for group 2 neoantigens can be of high affinity and
this may explain in part why group 2 neoantigens are more
immunogenic (62–64). The study of TCRs with demonstrated
clinical efficacy revealed several traits associated with clinical
success, such as a potential benefit of balancing between high
affinity and high persistence. This multifaced requirement is best
met with a rational approach in selecting TCRs with known
biophysical characteristics for therapeutic use.
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