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A B S T R A C T   

The recent investigation has started for evaluating the human respiratory sounds, like voice recorded, cough, and 
breathing from hospital confirmed Covid-19 tools, which differs from healthy person’s sound. The cough-based 
detection of Covid-19 also considered with non-respiratory and respiratory sounds data related with all declared 
situations. Covid-19 is respiratory disease, which is usually produced by Severe Acute Respiratory Syndrome 
Coronavirus-2 (SARS-CoV-2). However, it is more indispensable to detect the positive cases for reducing further 
spread of virus, and former treatment of affected patients. With constant rise in the COVID-19 cases, there has 
been a constant rise in the need of efficient and safe ways to detect an infected individual. With the cases 
multiplying constantly, the current detecting devices like RT-PCR and fast testing kits have become short in 
supply. An effectual Covid-19 detection model using devised hybrid Honey Badger Optimization-based Deep 
Neuro Fuzzy Network (HBO-DNFN) is developed in this paper. Here, the audio signal is considered as input for 
detecting Covid-19. The gaussian filter is applied to input signal for removing the noises and then feature 
extraction is performed. The substantial features, like spectral roll-off, spectral bandwidth, Mel frequency 
cepstral coefficients (MFCC), spectral flatness, zero crossing rate, spectral centroid, mean square energy and 
spectral contract are extracted for further processing. Finally, DNFN is applied for detecting Covid-19 and the 
deep leaning model is trained by designed hybrid HBO algorithm. Accordingly, the developed Hybrid HBO 
method is newly designed by incorporating Honey Badger optimization Algorithm (HBA) and Jaya algorithm. 
The performance of developed Covid-19 detection model is evaluated using three metrics, like testing accuracy, 
sensitivity and specificity. The developed Hybrid HBO-based DNFN is outpaced than other existing approaches in 
terms of testing accuracy, sensitivity and specificity of “0.9176, 0.9218 and 0. 9219”. All the test results are 
validated with the k-fold cross validation method in order to make an assessment of the generalizability of these 
results. When k-fold value is 9, sensitivity of existing techniques and developed JHBO-based DNFN is 0.8982, 
0.8816, 0.8938, and 0.9207. The sensitivity of developed approach is improved by means of gaussian filtering 
model. The specificity of DCNN is 0.9125, BI-AT-GRU is 0.8926, and XGBoost is 0.9014, while developed JHBO- 
based DNFN is 0.9219 in k-fold value 9.   

1. Introduction 

(SARS-CoV-2) Covid-19 is breathing ailment, which is frequently 
formed by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS- 
CoV-2). COVID-19 (also known as coronavirus) pandemic is an ongoing 
infectious disease caused by severe acute respiratory syndrome (SARS) 
coronavirus [3]. Initially, Covid-19 was identified in Wuhan, China in 

December 2019 and it spreads globally, thus it is leading to ongoing 
2020 coronavirus epidemic. It is reported that more than 4.18 million 
cases and 286,000 deaths in more than 2000 countries. The only effec-
tual mode of human protection against Covid-19 is to decrease disease 
spread through rapid evaluation of populace as well as isolation of 
diseased persons, since no vaccines are available in medical area [13]. 
The precise and fast detection of disease is progressively vibrant because 
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of fast spread and increasing amount of Covid-19 produced by 
SARS-CoV-2 for managing the infection source as well as it assists the 
patients for preventing progression of illness. Moreover, there are sub-
stantial challenges with regards to the utilization of nucleic acid 
assessment or clinical behaviours of affected patients as reference 
standard for making decisive detection of Covid-19 patients, since 2019. 
Since the early identification of Covid-19 is more essential for prevent-
ing and managing the Covid-19 pandemic. In addition, clinical behav-
iours cannot alone express the identification of Covid-19, specially for 
patients offering early-onset of indicators [14]. Furthermore, early 
identification of Covid-19 may assist for developing a suitable treatment 
purpose and disease containment decisions. The premature detection, 
isolation and treatment for patients are key approach for improved 
management of Covid-19 disease. The acquisition of adequately huge, 
publicly accessible quantity of medical image data for wholly trained 
deep learning techniques is challenging process for novel medical cir-
cumstances, namely Covid-19, since assortment and classification of 
images needs substantial period and resources to compile [15]. 

As of 13/May/2021, there are over 161.14 m confirmed cases and 
over 3.34 m deaths attributed to COVID-19. The cumulative deaths of 
the top 10 countries are shown in Fig. 1 [36]. The main symptoms of 
COVID-19 are a low fever, a new and ongoing cough, a loss or change to 
taste and smell. In UK, the vaccines approved were developed by Pfi-
zer/BioNTech, Oxford/AstraZeneca, and Moderna. The joint committee 
on vaccination and immunization (JCVI) [35] determines the order in 
which people will be offered the vaccine. Numerous countries have to 
take solemn containment measures such as nation-wide lockdowns and 
mounting up of the isolation facilities in hospitals. The lockdown is 
useful as it gives time for large scale testing of individuals. The gold 
standard for COVID-19 diagnosis is the reverse transcription polymerase 
chain reaction (RT-PCR) of infected secretions (from nasal or throat 
cavity). The results of a RT-PCR test are available in 2–48 h [1]. The 
limitations of the testing include: (i) violation of social distancing which 
increases the chance of infection spread, (ii) expenses involved in the 
chemical reagents and devices, (iii) testing time in hours and needs 
expertise, and (iv) difficulty in large scale deployment [1]. 

The recent investigation has started for evaluating the human res-
piratory sounds, like voice recorded, cough, and breathing from hospital 
confirmed Covid-19 tools, which differs from healthy person’s sound. 
The cough-based detection of Covid-19 also considered with non- 
respiratory and respiratory sounds data related with all declared situa-
tions. Moreover, data review of huge crowd sourced respiratory sounds 
or speech dataset are obtained for precise detection of Covid cases. Be-
sides, medical clinicians and researchers are utilized the audio recording 
generated by humans, namely respiratory sound, swallow breathing, 

pulmonary sounds, heart sound, breath, and pulse sound for detecting 
and tracking human illness. Generally, these symptoms are collected 
through physical auscultation before current patient visits. Various sci-
entists and researchers are utilized digital technologies for capturing 
sounds from human body by means of stethoscope and also operate 
automatic investigation on data for identifying illness [16]. Moreover, 
audio signals created by human body for example, breathing, digestion, 
sighs, vibration sounds, and heart have normally utilized by clinicians as 
indicators for detecting disease or progression. In recent days, various 
signals are gathered by manual auscultation at planned visits. Further-
more, several works demonstrate the capacity in detection indicative 
signals of Covid-19 from coughs and voices. The utilization of human 
engendered audio as biomarker for different illnesses affords massive 
possible for premature analysis [17]. 

The deep learning approach is widely utilized in various domains 
[26]. Moreover, Convolutional Neural network (CNN) obtained the 
identification of deep breathing in terms of respiratory pattern identi-
fication. Therefore, labelling of respiratory signals extracted by 
non-contract measurement systems with the service of deep learning 
approach is more significant. Every database needed for the process is 
acquired by assessing the respiratory events of test subject in deep 
learning approaches [27]. Various researchers normally designed clas-
sification methods, which adopts the general network structure in deep 
learning area without particular strategies for respiratory pattern clas-
sification [18]. Furthermore, machine learning techniques are also uti-
lized for classifying and detecting the respiratory diseases from sounds 
particularly coughs as well as it utilizes CNN for detecting cough in 
ambient audio. Moreover, machine learning schemes detect three po-
tential illnesses depends on the exclusive audio features [17]. There has 
been various modern research in digitizing respiratory sound acquisition 
based on electronic stethoscopes for improving the identification of 
abnormal lung sounds. After that, the obtained sounds are analysed by 
means of Artificial Intelligence (AI) techniques with deep learning 
schemes. An automatic architecture design method based on monarch 
butterfly optimization (MBO). Specifically, an expressive Neural Func-
tion Unit (NFU) based architecture representation is designed, which 
integrates promising architectures in GoogLeNet, ResNet and DenseNet 
to facilitate the joint search of macro-architecture and depth of CNNs 
[38]. Additionally, AI approaches has explored clear patterns in radio-
logical performance for Covid-19 produced by SARS-CoV-2 as well as 
some of preliminary indication on predictive measurements of respira-
tory sound is emergent because of the application of simple methods 
[19], namely Support Vector Machine (SVM) and logistic regression 
schemes. Furthermore, these methods are effective for identifying 
Covid-19 from cough and breath sounds [20]. A self-adaptive mecha-
nism is introduced into the ELM. Herein, a new variant of ELM, called 
self-adaptive extreme learning machine (SaELM), is proposed. SaELM is 
a self-adaptive learning algorithm that can always select the best neuron 
number in hidden layer to form the neural networks [37]. 

Traditional artificial intelligence (AI) and modern deep learning (DL) 
methods have achieved excellent results in analysing medical images. e. 
g., Lu [32] proposed a radial basis-function neural network (RBFNN) to 
detect pathological brains. A novel deep learning model that can di-
agnose COVID-19 on chest CT more accurately and swiftly. Based on 
traditional deep convolutional neural network (DCNN) model, is effec-
tive in detecting COVID-19 based on chest CT images [31]. A novel 
multiple input deep convolutional attention network (MIDCAN) model 
is proposed for diagnosis of COVID-19 [34]. One input of this model 
receives 3D chest CT image, and other input receives 2D X-ray image. 
There is a lot of detailed and essential information on chest radiographs, 
but manual processing is not as efficient or accurate. As a result, how 
efficiently analysing and processing chest radiography of COVID-19 
patients is an important research direction to promote COVID-19 diag-
nosis. To improve the processing efficiency of COVID-19 chest films, a 
multilevel thresholding image segmentation (MTIS) method based on an 
enhanced multiverse optimizer (CCMVO) is proposed [39]. CCMVO is 

Fig. 1. Top 10 countries in terms of cumulative deaths (13/May/2021).  
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improved from the original Multi-Verse Optimizer by introducing hor-
izontal and vertical search mechanisms. A new multilevel image seg-
mentation method based on the swarm intelligence algorithm (SIA) to 
enhance the image segmentation of COVID-19 X-rays is developed [40]. 
This paper first introduces an improved ant colony optimization algo-
rithm, and later details the directional crossover (DX) and directional 
mutation (DM) strategy, XMACO.. In order to solve such issues, an 
efficient Water Cycle Swarm Optimizer-based Hierarchical Attention 
Network (WCSO-based HAN) is developed for detecting the pulmonary 
abnormalities from the respiratory sound signals. However, the devel-
oped optimization technique named WCSO is devised by incorporating 
the Water Cycle Algorithm (WCA) with Competitive Swarm Optimizer 
(CSO) [35]. The major contribution of this research is to design an 
effectual Covid-19 detection model using devised JHBO-based DNFN. 
Here, the audio signal is considered as input for detecting Covid-19. The 
gaussian filter is applied to input signal for removing the noises and then 
feature extraction is performed. The substantial features, like spectral 
roll-off, spectral bandwidth, Mel frequency cepstral coefficients (MFCC) 
[21], spectral flatness, zero crossing rate, spectral centroid, mean square 
energy and spectral contract are extracted for further processing. 
Finally, DNFN [11] is applied for detecting Covid-19 and the deep 
leaning model is trained by designed JHBO algorithm. Accordingly, the 
developed hybrid JHBO method is newly designed by incorporating 
Honey Badger optimization Algorithm (HBA) [10] and Jaya algorithm 
[12]. 

2. Literature survey 

The traditional Covid-19 prediction techniques based on respiratory 
sounds are explicated as follows with advantages and limitations. 
Sharma, N et al. [1] presented Coswara tool for detecting Covid-19 from 
voice sounds. This approach obtained better detection accuracy for 
respiratory disorders. However, this approach was not effective for 
identifying sound-based biomarkers in Covid-19. 

To detect sound-based biomarkers, Lella, K.K. et al. A [2] introduced 
multi-channelled Deep CNN (DCNN) for Covid-19 detection using 
sounds. This method proficiently classifies the Covid-19 affected sounds 
to find the positive symptoms. Although, this technique was not able to 
manage huge-scale trials with additional labelled outcomes. 

For handling large scale trails, Andreu-Perez, J et al. [3] devised 
Empirical Mode Decomposition (EMD) mode for covid-19 detection 
process. This model highly increased the detection accuracy, but still 
failed to consider parameter tuning of sonograph depictions as well as 
balancing analysis of coughing characteristics. 

In order to perform parameter tuning, Wang, Y et al. [4] developed 
Bidirectional and Attentional mechanisms with Gated Recurrent Unit 
neural network (BI-AT-GRU) for Covid-19 recognition. This algorithm 
obtained enhanced accuracy, even though it is not appropriate in 
real-life stands. 

For considering real-life standards, Purnomo, A.T et al. [5] intro-
duced Xtreme Gradient Boosting (XGBoost) classification approach for 
detecting Covid-19. This technique permits observation of breathing 
waveform with improved accuracy. However, monitoring and also 
determining of breathing form in noisy atmosphere is more challenge 
process. 

To monitor and measure the breathing pattern even in noisy sur-
roundings, Tuncer, T et al. [6] devised Present-Substitution Box-Pattern 
for Covid-19 identification using lung breathing sounds. This technique 
was operated even on basic system with straightforward formations. 
Although, it failed to comprise feature selectors for choosing optimal 
quantity of features. 

For selecting better number of features, Lu, Q. et al. [7] presented 
Triboelectric nanogenerator for respiratory sensing (RS-TENG) for res-
piratory monitoring. This method obtained self-powered respiratory 
sensing anytime and anyplace, but computational complexity was not 
decreased. 

In order to solve computational complexity issues, Takahashi, Y et al. 
[8] developed respiratory likelihood index for computing respiratory 
rate in Covid-19. The detection accuracy was increased, even though 
this approach was evaluated in actual emergency situations. 

The eight classical techniques for COVID-19 diagnosis using respi-
ratory sounds are listed along with its merits and demerits are also listed 
in Table 1. 

2.1. Challenges 

The challenges faced by classical techniques for COVID-19 diagnosis 
using respiratory sounds are listed.  

• The COVID-19 pandemic presents global challenges transcending 
boundaries of country, race, religion, and economy. The current gold 
standard method for COVID-19 detection is the reverse transcription 
polymerase chain reaction (RT-PCR) testing. However, this method 
is expensive, time-consuming, and violates social distancing [1].  

• In this regard, studies concurrent in time with ours have investigated 
different respiratory sounds, including cough, to recognise potential 
Covid-19 carriers. However, these studies lack clinical control and 
rely on Internet users confirming their test results in a web ques-
tionnaire or crowdsourcing and thus rendering their analysis inad-
equate [3]. 

• Several studies have been conducted to obtain an accurate respira-
tion rate from chest displacement information. However, patients 

Table 1 
Classical techniques for COVID-19 diagnosis using respiratory sounds.  

Authors Methods Advantages Disadvantages 

Sharma, N 
et al. [1] 

Coswara tool Shows good 
accuracy for 
detecting 
respiratory 
disorders. 

Not able to identify 
sound-based 
biomarkers for 
Covid-19. 

Lella, K.K. 
and Pja, A 
[2] 

Multi-channeled 
Deep Convolutional 
Neural Network 
(DCNN) 

Efficiently classifies 
COVID-19 sounds 
to detect COVID-19 
positive symptoms. 

Unable to deal with 
large-scale trials 
with more labelled 
results. 

Andreu- 
Perez, J 
et al. [3] 

Empirical Mode 
Decomposition 
(EMD) 

Facilitates rapid 
detection of the 
infection with 
enhanced accuracy. 

Did not consider 
parameter tuning of 
the sonograph 
representations and 
complementary 
analysis of coughing 
behaviours. 

Wang, Y 
et al. [4] 

Bidirectional and 
attentional 
mechanisms with 
gated recurrent unit 
neural network (BI- 
AT-GRU) 

Provides enhanced 
accuracy. 

Not suitable in real- 
life platforms. 

Purnomo, 
A.T et al. 
[5] 

Xtreme Gradient 
Boosting (XGBoost) 
classification model 

Allows monitoring 
the breathing 
waveform with 
enhanced accuracy. 

Monitoring and 
measuring the 
breathing pattern in 
a noisy environment 
is a challenge. 

Tuncer, T 
et al. [6] 

Present- 
Substitution Box- 
Pattern (present S- 
Box pattern) 

Can run on a basic 
system with 
straightforward 
configurations. 

Did not include 
feature selectors to 
select optimal 
number of features. 

Lu, Q. et al. 
[7] 

Triboelectric 
nanogenerator for 
respiratory sensing 
(RS-TENG) 

Can achieve self- 
powered 
respiratory sensing 
anytime and 
anywhere. 

Suffered from 
computation 
complexity. 

Takahashi, 
Y et al. 
[8] 

Respiratory Quality 
Index 

Provides good 
accuracy 

Measurement 
cannot be performed 
when body 
movements other 
than breathing 
occur.  
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with a respiration disorder or COVID-19 have an unusual respiration 
characteristic pattern that cannot be represented by using the 
respiration rate [5].  

• Although current technologies may detect illnesses symptoms, such 
as temperature, heart rate, and even stress and other physiological 
conditions, most of them suffer the declination of precision from a 
social distancing in performing the health screening on masked 
participants [7].  

• Most of the non-contact monitoring methods require the subject to 
remain stationary, making it difficult to apply them to ambulances, 
which are subject to shaking during transport. In addition, thermal 
imaging cameras do not provide accurate measurements when the 
nose and mouth regions are not visible in the image. 

3. Developed Covid-19 detection model based on hybrid 
optimization 

This section deliberates about the Covid-19 detection method using 
developed JHBO-based DNFN. The series of steps followed for intro-
duced Covid-19 diagnosis model are pre-processing, feature extraction, 
and classification. Originally, input audio signals are passed into the pre- 

processing module wherein the noise and artifacts contained in audio 
samples is discarded using gaussian filtering technique. Then, the pre- 
processed audio samples are passed into the feature extraction mod-
ule. Here, significant features, such as spectral contrast, MFCC [21], 
spectral roll-off, mean square energy, spectral centroid, zero-crossing 
rate, spectral bandwidth, and spectral flatness are extracted. Finally, 
classification is done using DNFN [11] wherein the training of DNFN is 
done using JHBO algorithm. The proposed JHBO algorithm is newly 
devised by combining Jaya algorithm [12] and HBA [10]. The block 
diagram of Covid-19 detection model using designed JHBO-based DNFN 
is exposed in Fig. 2(a). 

3.1. Covid-19 detection 

The covid-19 detection process using designed hybrid optimization- 
based DNFN is explicated in this section. The DNFN classifier is applied 
for detecting Covid-19, and the weights and bias of DNFN is trained by 
devised JHBO algorithm for improving the detection performance. 

Fig. 2. (a). Block diagram of devised covid-19 detection model using hybrid optimization. Fig. 2(b). Architecture of DNFN.  
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3.2. DNFN 

The DNFN [11] structure is hybridization of fuzzy logic system and 
Deep Neural Network (DNN). The validation error and training time is 
highly reduced, thereby DNFN is utilized for developed Covid-19 
detection method. In DNFN, major two procedures are done wherein 
initial process is executed with DNN, whereas second one is accom-
plished with fuzzy logic to evaluate system objective. Moreover, DNFN 
mainly encompasses three layers, such as input, hidden and output 
layer. The input layer is considered by means of various input parame-
ters as well as fuzzification system value. Moreover, three layers, namely 
normalization, rule and also defuzzification layers are employed in this 
classifier. Furthermore, output layer is also denoted as defuzzification 
layer. The essential parameter of DNN is premises and consequents in 
which premises are base of membership function in fuzzification layer, 
which is termed as occurrence level. Likewise, consequent is mostly 
depending on defuzzification process. The neuro fuzzy model comprises 
Fuzzy Interference System (FIS) for rule base evaluation and it is the 
essential process in neuro fuzzy scheme. The structural diagram of DNFN 
for Covid-19 detect is depicted in Fig. 2(b). 

Here, every input and output are mapped for defining the informa-
tion processing component in neuro fuzzy system. The degree of every 
input is assigned amongst 0 and 1, which is elucidated by fuzzy system. 
Moreover, all entities of first layer is followed by output. 

i) Input layer: Let us include two premises n and a with one conse-
quent O, which is illustrated as, 

N1,ϖ(d)= λJϖ(d) or N1,ϖ = λWϖ− 2(m),∀ϖ = 1, 2, 3 (9)  

where, d and m refers input to every ϖth entity, λ Jϖ and λWϖ− 2 sym-
bolizes precursor membership function, and N1,ϖ implies membership 
degree function. Additionally, membership function is designed as bell 
formed function, which is assigned with maximal 1 and minimal 0 
values, which is given by, 

λJϖ(d)=
1

1 +

⃒
⃒
⃒d=Bϖ

Cϖ

⃒
⃒
⃒

2Uϖ
(10)  

where, Uϖ , Cϖ and Bϖ symbolizes membership function of premise 
parameter, which is enhanced through training procedure.  

ii) Rule base layer: The second layer is named as rule base layer, which 
is utilized for explicating the rule groups. Every single entity in this 
layer is multiplied through linguistic variable in order to fulfil 
membership degree. Furthermore, multiplication of membership 
variable value indicates firing strength of rule. 

N2,ϖ = βϖ = λJϖ(d)λWϖ− 2(m) , ∀ϖ = 1, 2 (11)  

where, βϖ represents weight of generic network factor.  

iii) Normalization layer: Here, each entity estimates the firing 
strength ratio of ϖth rule associated to summation of firing 
strength of every rule. Therefore, outcome of each rule is 
normalized along with firing strength of rule, which is expressed 
as, 

N3,ϖ = βϖ =
βϖ

β1 + β2
,∀ϖ = 1, 2 (12)    

iv) Defuzzification layer: The consequent of each rule is computed 
for designating the overall output and output generated at this 
layer is denoted in below equation, 

N4,ϖ = βϖІϖ = βϖ(Xϖd + Lϖm+Fϖ) ,∀ϖ = 1, 2 (13)  

where, X, Land F depicts consequent parameter set.  

v) Output layer: The concluding layer is named as summation layer, 
where summation of prior layer results is estimated. The output of 
this layer is specified by, 

N5,ϖ =
∑

ϖ
βϖІϖ =

∑
ϖβϖCϖ
∑

ϖβϖ
(14) 

Furthermore, number of hidden layers is used for producing effectual 
training process even in large data. The output of DNFN classifier is 
represented as Gr, where the feature vector is classified as Covid-19 or 
non-Covid. Furthermore, the weights and bias of DNFN is trained by 
designed JHBO technique. 

3.3. Input audio sample 

Let us consider the dataset with different audio recordings for Covid- 
19 detection, which is specified as, 

Н =
{

S1, S2, ..., Sr, ..., Sq
}

(1)  

where, Sq denotes total amount of sound recordings, and Sr specifies rth 

records in a dataset, and it is used for further pre-processing stage. 

3.4. Pre-processing 

Here, input data Sr is considered and Gaussian filter is applied in 
order to remove the noises from input audio sample. Gaussian filter has 
better capacity to afford similar transition in frequency domain, thus it is 
used for Covid-19 detection process. Generally, Gaussian filter is effec-
tual since, it makes smother transition elimination of redundant data 
from audio sample. The Gaussian filter is specified as, 

В(Sr)=
1
̅̅̅̅̅̅̅̅̅̅̅
2πψ2

√ exp
(
S2

r

/
2ψ2) (2)  

where, ψ indicates standard deviation of distribution, Sr symbolizes 
input audio sample and output of pre-processing phase using gaussian 
filter is represented as Kr. 

3.5. Feature extraction 

The pre-processed audio sample Kr is further applied in feature 
extraction phase in which significant features, including spectral roll-off, 
spectral contrast, MFCC [21], spectral centroid, zero-crossing rate, 
spectral bandwidth, mean square energy and spectral flatness are 
extracted. 

3.5.1. MFCC 
MFCC [21] is a most employed spectral features in audio sample, 

which are group of coefficients and it affords significant information 
about the audio. This feature mainly includes, four phases namely 
pre-emphasis, windowing, and mel frequency wrapping and calculation 
of cepstral coefficients. The pre-emphasis process increases the 
high-frequency segments energy of audio sample. The discontinuities of 
edge effect are decreased through windowing process and the obtained 
frequency spectrum is passed to Mel filter, which finds the number of 
energy present in every frame. Mel spectrum is estimated through 
passing Fourier transformed signal with a group of band pass filters, 
termed Mel filter bank. The filter banks are executed in frequency 
domain for MFCC estimation. Finally, all the cepstral coefficients are 
attained through transforming logarithmic Mel Spectrum to time 
domain by means of Discrete Cosine Transform (DCT). The MFCC is 
computed by, 
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μg = 2595 log10

(
1+

g
700

)
(3)  

where, g represents physical frequency in hertz, and μg implies perceived 
frequency. The MFCC feature is denoted as d1. 

3.5.2. Spectral contract 
Spectral contract [22] is represented as decibel difference amongst 

valleys and peaks in a spectrum, which is denoted as d2. 

3.5.3. Spectral roll-off 
This feature is used for calculating spectral shape, like spectral 

centroid [23]. It affords coarse idea of high frequency as well as fre-
quency in which specific quantity of energy is limited. The spectral 
roll-off is estimated by, 

∑Κ

j=1

⃒
⃒Аf (j)

⃒
⃒= 0.85

∑Х/2

j=1

⃒
⃒Аf (j)

⃒
⃒ (4)  

where, Х implies frame length, j implies frequency coefficient of frame, 
Аf (j) refers Short Time Fourier Transform (STFT) of frame and Κ denotes 
highest value of j. The spectral roll-off feature is represented as d3. 

3.5.4. Spectral centroid 
Spectral centroid [23] displays the centre of mass or geometric 

centre of pre-processed signal. Moreover, centroid of every frame is 
specified by amplitude of frame multiplied by average frequency of 
signal divided by sum of frame amplitudes. The spectral centroid is 
given by, 

d4 =

∑В
b=0h(b)|n(b)|
∑В

b=0|n(b)|
(5)  

where, h(b) signifies amplitude of frame multiplied by average fre-
quency, n(b) is sum of frame amplitudes and spectral centroid feature is 
denoted as d4. 

3.5.5. Root mean square energy 
This feature [24] is referred as global energy of audio signal, which is 

estimated by, 

d5 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
z

∑z

j=1
U2

z

√
√
√
√ (6)  

where, Uz defines signal amplitude at zth amplitude, z symbolizes 
quantity of frames in sample length, and d5 specifies root mean square 
feature. 

3.5.6. Zero crossing rate 
This feature defines the ratio of quantity of times the audio sample 

alters the value from negative to positive or else positive to negative to 
frame dimension [24]. The zero-crossing rate feature is denoted as d6. 

3.5.7. Spectral bandwidth 
Spectral bandwidth [25] is utilized for signifying the difference 

among lower and upper cut-off frequencies, which is given by, 

d7 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑В− 1
b=0 (b − d4)

2
|y(m)|

∑В− 1
b=0 n(b)

√

(7)  

where, d4 represents spectral centroid and spectral bandwidth is signi-
fied as d7. 

3.5.8. Spectral flatness 
This feature [24] refers amount of uniformly distributed frequency in 

power spectrum, which is estimated by ratio of geometric and arithmetic 

mean of sub band. The spectral flatness feature is indicated as d8. 
Meanwhile, the extracted features from pre-processed output is 

combined together in order to generate feature vector, which is 
expressed as, 

Dr ={d1, d2, ..., d8} (8) 

The formulated feature vector Dr is further passed to DNFN for 
Covid-19 recognition process. 

3.6. Developed Jaya honey badger optimization algorithm for training 
process of DNFN 

The DNFN is trained by introduced optimization technique, named 
JHBO model for improving the detection performance. Accordingly, the 
devised JHBO approach is newly developed by incorporating HBA [10] 
with Jaya algorithm [12]. Jaya algorithm is devised based on the 
candidate solutions, which operates independent of any parameters. 
This method is functioned in single phase and the operation is simple. 
Alternatively, HBA is designed by means of intelligent foraging features 
of honey badger. The energetic search nature of honey badger along 
with honey and digging discovery methods are employed. The HBA 
effectively solves the optimization issues by means of search policy. 
Hence, the Jaya algorithm is combined with HBA for improving the 
performance with better convergence speed. The algorithmic process of 
devised JHBO model is illustrated as. 

3.6.1. Initialization 
Originally, amount of honey badger is initialized with population 

size Τ along with corresponding positions, which is specified as, 

Rr =Pr +w1 × (Qr − Pr) (15)  

where, Rr denotes rth honey badger location in total population, Pr refers 
lower bounds, Qr implies upper bound, and w1 represents random 
number among 0 and 1. 

3.6.2. Fitness function computation 
The fitness measure is estimated in order to find the ideal solution 

and the fitness value with least value is dented as best solution for Covid- 
19 detection. The fitness function is estimated by, 

δ=
1
r

∑r

σ=1

(
G∗

r − Gr
)2 (16)  

where, r indicates total amount of data, G∗
r specifies target output, Gr is 

classified output from DNFN, and δ denotes fitness function. 

3.6.3. Defining intensity 
Intensity is corresponding to concentration strength of prey as well as 

distance among rth honey badger and prey. The movement is fast if the 
smell is high and vice versa, which is expressed by means of inverse 
square law. The intensity is defined as, 

Tr =w2 ×
E

4πv2
r

(17)  

where, w2 denotes random value amongst 0 and 1, E implies concen-
tration strength, and vr implies distance amongst rth honey badger and 
prey. Moreover, the term E and vr is illustrated in following expression. 

E=(Rk − Rk+1)
2 (18)  

vr =Rprey − Rk (19)  

3.6.4. Update density factor 
The density factor handles the time fluctuating randomization for 

ensuring smooth transition from exploitation to exploration. The density 
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factor decreases along with iterations for reducing randomization with 
time by below equation. 

υ=V × exp
(
− y
ymax

)

(20)  

where, V denotes constant, and ymax is maximum amount of iterations. 

3.6.5. Escaping from local optimum 
This method utilizes flag N, which modifies search direction for 

rewarding high prospects for agents in order to scan search space 
severely. 

3.6.6. Updating position of agents 
The position updation process of HBA mainly includes two phases, 

namely digging and honey phase, which are explicated as follows.  

a) Digging stage: The honey badger executes the action similar to 
Cardioid shape and the Cardioid movement is motivated by, 

Rnew =Rprey +N × ε× T ×Rprey +N ×w3 × υ× vr

× |cos(2πw4)× [1 − cos(2πw5)]| (21)  

where, Rprey refers location of prey, ε ≥ 1, w3, w4 and w5 are random 
number among 0 and 1. Moreover N operates as flag, which varies 
search direction and it is identified by, 

N =

{
1 , if w6 ≤ 0.5
− 1 , else (22)  

where, w6 implies random integer among 0 and 1. A honey badger 

mainly depends on small intensity T of prey Rprey. Additionally, badger 
may obtain any trouble N in digging activity, which permits to identify 
optimal prey position.  

b) Honey stage: The source while a honey badger follows honey guide 
bird for reaching beehive can be stimulated by, 

Rnew =Rprey + N × w7 × υ × vr (23) 

The standard expression of Jaya algorithm is given by, 

R′

t,u,r =Rt,u,r +w1,t,r
(
Rt,best,r −

⃒
⃒Rt,u,r

⃒
⃒
)
− w2,t,r

(
Rt,worst,r −

⃒
⃒Rt,u,r

⃒
⃒
)

(24)  

Let assume, Rt,u,r is positive, R′

t,u,r = Rnew, Rt,u,r = Rr, w1,t,r = w1, 
Rt,best,r = Rbest , Rt,worst = Rworst , w2,t,r = w2, thus above expression is re- 
written as, 

Rnew =Rr +w1(Rbest − Rr) − w2(Rworst − Rr) (25)  

Rnew =Rr(1 − w1 +w2)+w1Rbest − w2Rworst (26)  

Rr =
Rnew − w1Rbest + w2Rworst

1 − w1 + w2
(27) 

Substitute Rr on both sides in equation (23), 

Rnew − Rr = Rprey + N × w7 × υ × vr − Rr (28) 

Substitute equation (27) in RHS of (28), 

Rnew − Rr =Rprey +N ×w7 × υ× vr −

(
Rnew − w1Rbest + w2Rworst

1 − w1 + w2

)

(29)  

Rnew =Rprey +N ×w7 × υ× vr −

(
Rnew − w1Rbest + w2Rworst

1 − w1 + w2

)

+ Rr (30)  

Rnew +
Rnew

1 − w1 + w2
= Rprey + N × w7 × υ × vr +

w1Rbest − w2Rworst

1 − w1 + w2
+ Rr

(31)     

Rnew =

(
Rprey + N × w7 × υ × vr + Rr

)
(1 − w1 + w2) + w1Rbest − w2Rworst

2 − w1 + w2

(33)  

where, Rnew indicates new location of honey badger, and w7 defines 
random integer among 0 and 1. 

3.6.7. Evaluating feasibility of solution 
The best optimal solution is attained by means of fitness function, 

which defined in equation (16), and fitness function with minimal value 
is considered as optimum solution. 

3.6.8. Termination 
The directly above steps are executed continually until greatest so-

lution is achieved. The pseudo-code of introduced JHBO algorithm is 
specified in Table 2. 

Table 2 
Pseudo-code of introduced JHBO method.  

S.No. Pseudo-code 

1 Input: Total population 
2 Output: Best solution 
3 Set the parameters ymax, Τ ε, and E 
4 Compute the fitness measure using equation (16) 
5 while y ≤ ymax do 
6 Update the decreasing factor υ based on equation (20) 
7 for r = 1 to Τ do 
8 Estimate the intensity Tr by equation (17) 
9 if w < 0.5 then 
10 Update the location by means of expression (21) 
11 Else 
12 Update the location using equation (33) 
13 end if 
14 Estimate the new position and allocate to fnew 

15 if fnew ≤ fr then 
16 Set Rr = Rnew and fr = fnew 

17 end if 
18 if fnew ≤ fprey then 
19 Set Rprey = Rnew and fprey = fnew 

20 end if 
21 end for 
22 end while 
23 Check feasibility of solution 
24 Return best solution 

Thus, the DNFN structure effectively detects the Covid-19 disease with minimal 
time and error. In addition, developed JHBO scheme is employed for training 
process of DNFN in order increase the detection performance. 

Rnew(1 − w1 + w2 + 1)
1 − w1 + w2

=

(
Rprey + N × w7 × υ × vr + Rr

)
(1 − w1 + w2) + w1Rbest − w2Rworst

1 − w1 + w2
(32)   

J.A. Dar et al.                                                                                                                                                                                                                                   



Computers in Biology and Medicine 150 (2022) 106123

8

Fig. 3. Experimental results of developed Covid-19 detection method a) Input signal-1,2, and 3, (b) Pre-processing signal-1,2, and 3, (c) MKFCC for signal-1,2, and 3, 
(d) Spectral centroid for signal-1,2, and 3, (e) Spectral flatness for signal-1,2 and 3, (f) Spectral roll-off for signal-1,2 and 3. 
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4. Results and discussion 

This section exposes results and discussion of devised JHBO driven 
DNFN for Covid-19 detection. Furthermore, experimental results, data-
set description, experimental setup, performance metrics, comparative 
techniques as well as various analysis, including algorithm, performance 
and comparative analysis is shown in this section. 

4.1. Experimental setup 

The devised Covid-19 detection method using JHBO-based DNFN is 
executed in MATLAB with Windows 10 OS having Intel i3 processor and 
8 GB RAM. 

4.2. Dataset description 

The database employed for detecting Covid-19 using designed JHBO- 
based DNFN is Coswara-data [9]. The data is utilized for Covid19 
detection process along with various audio recordings like cough, 
breathing, and speech sounds of an individual. Moreover, this data is 
introduced by Indian Institute of Science (IISc) Bangalore. The voice 
samples are gathered, like phonation of sustained vowels, cough sounds, 
breathing sounds, and counting numbers at fast and slow pace. In 
addition, the metadata information includes participant’s gender, age, 
location, current health status and the presence of comorbidities. 

4.3. Performance metrics 

The performance of designed Covid-19 detection model using JHBO- 
based DNFN is evaluated based on three various metrics, including 
testing accuracy, specificity, and sensitivity.  

i) Testing accuracy: Accuracy is utilized for computing the true 
negative, and true positive proportions of all audio samples, which is 
specified as, 

Ac =
ρt + ρf

ρt + ρf + σt + σf
(34)    

ii) Sensitivity: Sensitivity is estimated to correctly categorize Covid-19 
disease, and it is represented by, 

Se =
ρf

ρf + σt
(35)    

iii) Specificity: Specificity is calculated for predicting the precise 
classification of Covid-19, and it is denoted by, 

Sp =
ρt

ρt + σf
(36)  

where, ρt indicates true positive, ρf specifies true negative, σt is a false 
positive, and σf denotes false negative. 

4.4. Experimental results 

This section exposes experimental outcomes of introduced JHBO 
enabled DNFN for Covid-19 prediction. Here, Fig. 3 a) depicts the 
original input signal-1,2 and, pre-processed signal-1, 2 and 3 is illus-
trated in Fig. 3 b). In addition, MFCC for input signal-1, 2 and 3 is 

Table 3 
Performance analysis of introduced JHBO-based DNFN (a) Training accuracy, 
(b) Sensitivity and (c) Specificity.  

Training Data/Iteration Accuracy Sensitivity Specificity 

90%/20 0.8747 0.875 0.8774 
90%/40 0.8783 0.8883 0.881 
90%/60 0.8871 0.9005 0.8898 
90%/80 0.904 0.9107 0.9067 
90%/100 0.9176 0.9207 0.9207  

Fig. 4. Performance analysis of introduced JHBO-based DNFN (a) Training accuracy, (b) Sensitivity and (c) Specificity.  
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deliberated in Fig. 3 c). Fig. 3 d) exposes the spectral centroid for input 
signal-1, 2 and 3. The spectral flatness and roll-off for input signal-1, 2 
and 3 is represented in Fig. 3 e) and f). 

4.5. Performance analysis 

Table 3 and Fig. 4 specifies the performance analysis of introduced 
hybrid JHBO-based DNFN based on various performance metrics by 
varying training data. Fig. 4 a) depicts analysis of devised JHBO-based 
DNFN for accuracy with various iterations. The testing accuracy of 
developed JHBO-based DNFN with iteration 20, 40, 60, 80 and 100 is 

0.8747, 0.8783, 0.8871, 0.904, and 0.9176, while training data is 90%. 
The analysis of devised JHBO-based DNFN for sensitivity with different 
iterations is plotted in Fig. 4 b). The sensitivity of introduced JHBO- 
based DNFN with iteration 20 is 0.875, 40 is 0.8883, 60 is 0.9005, 80 
is 0.9107, and 100 is 0.9207. Fig. 4 c) represents the performance 
analysis of designed JHBO-based DNFN for specificity with various it-
erations. When the training data is 90%, specificity of designed JHBO- 
based DNFN is 0.8774, 0.881, 0.8898, 0.9067, and 0.9207 for itera-
tion 20, 40, 60, 80, and 100. 

Fig. 5. Comparative analysis of introduced JHBO-based DNFN with k-fold value (a) Training accuracy, (b) Sensitivity and (c) Specificity.  

Fig. 6. Analysis of designed JHBO-based DNFN with training data (a) Training accuracy, (b) Sensitivity and (c) Specificity.  
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4.6. Comparative techniques 

The existing Covid-19 detection techniques, such as DCNN [2], 
BI-AT-GRU [4], and XGBoost [5] are considered for comparing the 
performance of developed approach. Moreover, several optimization 

methods, like Aquila Optimizer (AO) [28], SailFish Optimizer (SFO) 
[29], Horse herd Optimization (HHO) [30] algorithm, Jaya algorithm 
[12], HBA [10] and developed JHBO are considered with DNFN for 
algorithm analysis. 

4.7. Comparative analysis 

This section illustrates comparative analysis of devised JHBO driven 
DNFN using training data and k-fold value for various performance 

Fig. 7. Algorithm analysis of designed JHBO-based DNFN (a) Training accuracy, (b) Sensitivity and (c) Specificity.  

Table 4 
Comparative discussion for comparative analysis.  

Based on Metrics DCNN BI-AT- 
GRU 

XGBoost Proposed JHBO- 
based DNFN 

K-fold Testing 
accuracy 

0.9005 0.8806 0.8894 0.9176 

Sensitivity 0.8982 0.8816 0.8938 0.9207 
Specificity 0.9125 0.8926 0.9014 0.9219 

Training 
data 

Testing 
accuracy 

0.8989 0.8865 0.8901 0.9151 

Sensitivity 0.9123 0.8868 0.9001 0.9218 
Specificity 0.902 0.8896 0.8932 0.9182  

Fig. 8. Comparative discussion for comparative analysis.  

Table 5 
Comparative discussion for algorithm analysis.  

Metrics Aquila 
+

DNFN 

SFO +
DNFN 

HOA +
DNFN 

Jaya +
DNFN 

HBA +
DNFN 

Proposed 
JHBO +
DNFN 

Testing 
accuracy 

0.8823 0.8859 0.9021 0.8947 0.9110 0.9234 

Sensitivity 0.8826 0.8959 0.9044 0.9081 0.9177 0.9265 
Specificity 0.8854 0.8890 0.9032 0.8978 0.9141 0.9277  

Fig. 9. Comparative discussion for algorithm analysis.  
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metrics. 

4.7.1. Comparative analysis using k-fold value 
Fig. 5 represents comparative analysis of devised JHBO-based DNFN 

with performance metrics. The comparative analysis of introduced 
JHBO driven DNFN for testing accuracy by altering k-fold is exposed in 
Fig. 5 a). The testing accuracy of DCNN is 0.8925, BI-AT-GRU is 0.8725, 
and XGBoost is 0.887, while developed JHBO-based DNFN is 0.9054 in 
k-fold value 8. The performance improvement of designed JHBO-based 
DNFN is 1.42%, 3.63%, and 2.03%, while compared with existing 
techniques. Fig. 5 b) portrays the comparative analysis of JHBO-based 
DNFN for sensitivity with various k-fold value. The sensitivity of 
developed JHBO-based DNFN is 0.9085, whereas DCNN, BI-AT-GRU, 
and XGBoost is 0.8912, 0.878, and 0.8816 for k-fold value 8. The per-
formance improvement of developed JHBO-based DNFN with DCNN is 
1.90%, BI-AT-GRU is 3.35%, and XGBoost is 2.96%. Fig. 5 c) explicates 
comparative analysis of JHBO-based DNFN for specificity by changing k- 
fold. When the k-fold is 8, specificity of existing methods and developed 
JHBO-based DNFN is 0.9045, 0.8845, 0.899, and 0.9097. The perfor-
mance improvement of introduced JHBO-based DNFN is 0.57%, 2.77%, 
and 1.17%, while compared with existing Covid-19 detection methods. 

4.7.2. Comparative analysis by means of training data 
The analysis of introduced JHBO driven DNFN with various 

performance metrics is exposed in Fig. 6. Fig. 6 a) portrays analysis of 
JHBO-based DNFN for testing accuracy by altering training data. The 
testing accuracy of developed JHBO-based DNFN is 0.9071, whereas 
DCNN, BI-AT-GRU, and XGBoost is 0.8965, 0.8664, and 0.882 for 80% 
training data. The performance enhancement of designed JHBO-based 
DNFN with DCNN is 1.17%, BI-AT-GRU is 4.49%, and XGBoost is 
2.77%. Fig. 6 b) represents analysis of devised JHBO-based DNFN for 
sensitivity by changing training data. When training data is 80%, 
sensitivity of existing approaches and developed JHBO-based DNFN is 
0.9001, 0.8754, 0.8965, and 0.9148. The performance improvement of 
introduced JHBO-based DNFN is 1.61%, 4.31%, and 2%, while 
compared with existing Covid-19 detection methods. The analysis of 
devised JHBO-based DNFN for specificity by altering training data is 
exposed in Fig. 6 c). The specificity of DCNN is 0.8996, BI-AT-GRU is 
0.8695, and XGBoost is 0.8851, while developed JHBO-based DNFN is 
0.9102 in 80% of training data. The performance improvement of 
designed JHBO-based DNFN is 1.17%, 4.47%, and 2.76%, while 
compared with present schemes. 

4.8. Algorithm analysis 

Fig. 7 denotes the algorithm analysis for devised JHBO-based DNFN 
with performance metrics by varying population size. The algorithm 
analysis of devised JHBO-based DNFN for testing accuracy with various 

Fig. 10. “MKFCC for input signals during processing”.  
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population size is exposed in Fig. 7 a). The testing accuracy of Aquila +
DNFN is 0.8622, SFO + DNFN is 0.8778, HOA + DNFN is 0.8815, Jaya 
+ DNFN is 0.8923, and HBA + DNFN is 0.9030, while developed JHBO- 
based DNFN is 0.9098 in 80 population size. The performance 
improvement attained by devised approach is 5.22%, 3.51%, 3.11%, 
1.91%, and 0.74%, while compared with existing algorithm analysis 
techniques. Fig. 7 b) reveals algorithm analysis of JHBO driven DNFN 
for sensitivity with different population size. The sensitivity of devel-
oped JHBO-based DNFN is 0.9265, whereas Aquila + DNFN, SFO +
DNFN, HOA + DNFN, Jaya + DNFN, and HBA + DNFN is 0.8712, 
0.8923, 0.8838, 0.8959, 0.9107, and 0.9189 for 80 population size. The 
performance improvement of developed JHBO-based DNFN is 5.18%, 
2.88%, 3.81%, 2.49%, and 0.88% with other existing methods. Fig. 7 c) 
explicates algorithm analysis of JHBO-based DNFN for specificity by 
changing population size. When the population size is 80, specificity of 
Aquila + DNFN is 0.8653, SFO + DNFN is 0.8809, HOA + DNFN is 
0.8826, Jaya + DNFN is 0.8954, HBA + DNFN is 0.9061 and developed 
JHBO-based DNFN is 0.9141. The performance improvement of intro-
duced approach with Aquila + DNFN is 5.33%, SFO + DNFN is 3.62%, 
HOA + DNFN is 3.44%, Jaya + DNFN is 2.03%, HBA + DNFN is 0.87%. 

4.9. Comparative discussion 

This section explicates comparative discussion for comparative 
analysis and algorithm analysis with various performance metrics. 

4.9.1. Comparative discussion for comparative analysis 
Table 4 and Fig. 8 specifies comparative discussion of introduced 

JHBO driven DNFN based on training data and k-fold value for different 
performance metrics. The testing accuracy of developed JHBO-based 
DNFN is 0.9176, whereas DCNN, BI-AT-GRU, and XGBoost is 0.9005, 
0.8806, and 0.8894 for k-fold value 9. The testing accuracy of developed 

Covid-19 detection approach is highly increased because of the hybrid 
optimization model. When k-fold value is 9, sensitivity of existing 
techniques and developed JHBO-based DNFN is 0.8982, 0.8816, 0.8938, 
and 0.9207. The sensitivity of developed approach is improved by 
means of gaussian filtering model. The specificity of DCNN is 0.9125, BI- 
AT-GRU is 0.8926, and XGBoost is 0.9014, while developed JHBO-based 
DNFN is 0.9219 in k-fold value 9. Due to the extraction of spectral 
features, the specificity of developed method is highly increased. 

4.9.2. Comparative discussion for algorithm analysis 
The comparative discussion of developed JHBO-based DNFN for 

various performance metrics is illustrated in Table 5 and Fig. 9. The 
testing accuracy of Aquila + DNFN is 0.8823, SFO + DNFN is 0.8859, 
HOA + DNFN is 0.9021, Jaya + DNFN is 0.8947, and HBA + DNFN is 
0.9110, while developed JHBO-based DNFN is 0.9234 in 100 population 
size. The sensitivity of developed JHBO-based DNFN is 0.9265, whereas 
Aquila + DNFN, SFO + DNFN, HOA + DNFN, Jaya + DNFN, and HBA +
DNFN is 0.8826, 0.8959, 0.9044, 0.9081, and 0.9177 for 100 population 
size. When the population size is 100, specificity of Aquila + DNFN is 
0.8854, SFO + DNFN is 0.8890, HOA + DNFN is 0.9032, Jaya + DNFN is 
0.8978, HBA + DNFN is 0.9141 and developed JHBO-based DNFN is 
0.9277. 

4.9.3. Investigational conclusions 
Investigational conclusions of introduced Hybrid JHBO enabled 

DNFN for Covid-19 detection and Prediction are shown as in Fig. 10, 
Fig. 11, Fig. 12. 

4.9.4. Convergence assessment 
The convergence assessment of the developed technique for both 

testing and training phase for dataset 1 and dataset-2 are depicted in 
Fig. 13 given below. 

Fig. 11. “Spectral centroid for input signals”.  
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5. Conclusion 

This paper explicates the Covid-19 detection approach using 
designed JHBO-based DNFN with audio sample. The input audio sample 
is acquired from a Coswara dataset and gaussian filter is applied. The 
gaussian filter effectively reduces the salt and pepper noise with minimal 
duration. Feature extraction process is most significant for precise 
detection of Covid-19, where spectral bandwidth, spectral roll off, 
Spectral flatness, MFCC, spectral centroid, root mean square energy, 
spectral contract, and zero crossing rate are extracted. The Deep 
learning approach is effectual for disease detection and classification 
process in medical field. Here, DNFN is utilized for detecting the Covid- 
19 disease. Moreover, DNFN is trained by developed JHBO approach for 
obtaining better performance. The Jaya algorithm is incorporated with 

HBA for obtaining improved performance with better convergence 
speed. The performance of DNFN is estimated with three performance 
metrics, namely specificity, testing accuracy and sensitivity. The pro-
posed JHBO-based DNFN achieved improved performance testing ac-
curacy, sensitivity and specificity of 0.9176, 0.9218 and 0.9219. The 
developed approach can be extended by including other hybrid opti-
mization algorithms as well as other features can be extracted for further 
improving the detection performance. 
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Fig. 12. “Spectral roll-off for input signals”.  

Fig. 13. Convergence analysis of proposed method with a) dataset-1 and b) dataset-2.  
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