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Gamma oscillation (GAMMA) in the local field potential (LFP) is a synchronized activity commonly found inmany brain regions, and
it has been thought as a functional signature of network connectivity in the brain, which plays important roles in information
processing. Studies have shown that the response property of GAMMA is related to neural interaction through local recurrent
connections (RC), feed-forward (FF), and feedback (FB) connections. However, the relationship between GAMMA and long-range
horizontal connections (HC) in the brain remains unclear. Here, we aimed to understand this question in a large-scale network
model for the primary visual cortex (V1). We created a computational model composed of multiple excitatory and inhibitory units
with biologically plausible connectivity patterns for RC, FF, FB, and HC in V1; then, we quantitated GAMMA in network models
at different strength levels of HC and other connection types. Surprisingly, we found that HC and FB, the two types of large-scale
connections, play very different roles in generating and modulating GAMMA. While both FB and HC modulate a fast gamma
oscillation (around 50-60Hz) generated by FF and RC, HC generates a new GAMMA oscillating around 30Hz, whose power and
peak frequency can also be modulated by FB. Furthermore, response properties of the two GAMMAs in a network with both HC
and FB are different in a way that is highly consistent with a recent experimental finding for distinct GAMMAs in macaque V1.
The results suggest that distinct GAMMAs are signatures for neural connections in different spatial scales and they might be
related to different functions for information integration. Our study, for the first time, pinpoints the underlying circuits for distinct
GAMMAs in a mechanistic model for macaque V1, which might provide a new framework to study multiple gamma oscillations
in other cortical regions.

1. Introduction

Gamma oscillation in the LFP of the visual cortex is thought to
play important roles in synchronizing neurons’ response in the
local network [1, 2] of many brain regions [3–6]. Many recent
studies have been focusing on the cognitive functions [7–9],
neural mechanisms [10–15], and neural origins [16–22] of
gamma oscillation. However, how neural connectivity patterns

affect the property of gamma oscillation in the primary visual
cortex of macaque (V1) remains unclear.

Anatomical studies [23–28] have shown that V1 has rich
neural connection patterns, including feed-forward connec-
tion (FF), local recurrent connection (RC), long-distance
horizontal connection (HC), and feedback connection (FB).
These connection patterns have distinct characteristics and
together they form a complex dynamic system for V1. The
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local circuit (RC) of V1 is driven by lateral geniculate nucleus
(LGN) through FF connections and then sends FF projec-
tions to several higher-level extrastriate cortical areas. Within
V1, the processing of visual information is accomplished
through reciprocal local RC and long-range horizontal con-
nection (HC) between excitatory and inhibitory neurons
[20, 29, 30]. HC was thought to be implicated by several
perceptual phenomena like “filling in” [31] and “illusory con-
tours” [32, 33]. Besides, FB connections are assumed to serve
to modulate the neural response of V1 in a large spatial scale
with a retinotopic organization less precise than FF projec-
tions have [34–37]. These different connection patterns
provide a foundation for V1 diverse functional properties
[38, 39] including gamma oscillation [4].

Previous studies have shown that gamma oscillation
could be generated in a local RC circuit [10, 19, 40–45].
Furthermore, gamma oscillation in V1 was thought to be
modulated by FB connection from higher-level brain regions
[4, 46] and exert FF influence of gamma oscillation on these
downstream visual areas [5, 6, 40, 47–49]. Although
researchers have built models with long-range horizontal
connections to understand V1 functions [30, 50–52], the
relationship between gamma oscillation and HC was absent
in the previous literatures.

In this paper, we aimed to understand the functional role
of HC for gamma oscillation in a large-scale network model
for the primary visual cortex (V1). We created a computa-
tional model composed of multiple excitatory and inhibitory
units with biologically plausible connectivity patterns for FF,
RC, FB, and HC; then, we quantitated gamma oscillations in
network models with different strength levels of connection
types (HC and FB). In the end, we compared the relationship
between gamma oscillation and different types of neural
connectivity.

2. Methods

2.1. Basic Model with E-I Unit. To build a neural network
with different types of neural connections (feed-forward,
recurrent, horizontal, and feedback connections (Figure 1),
we firstly constructed a model unit with two local compo-
nents—local excitatory (E) and inhibitory (I) components
[53–56]. The local components E and I can be thought of
as a group of neurons recurrently connected within one cor-
tical hypercolumn or a few of such nearby columns in V1.

The dynamic interactions of E and I in local recurrent
connection (RC) are described by Equations (1)–(3). The
strengths of local interactions between E and I is denoted
by WRS, where R denotes the receiver and S denotes the
sender. The interaction type (excitatory or inhibitory) is
denoted by the sign of WRS (positive or negative).

τE
dE
dt

= −E +WRC
EEH Eð Þ +WRC

EI H Ið Þ +WELRLGN , ð1Þ

τI
dI
dt

= −I +WRC
IE H Eð Þ +WRC

II H Ið Þ +WILRLGN , ð2Þ

where

H xð Þ =
x, if x > 0
0, otherwise

:

(
ð3Þ

In the E-I unit, the local E component connects to the
local I component with the coupling strength WRC

IE and con-
nection strength within E components is denoted by WRC

EE .
Similarly, the local I component connects to E component
with strength WRC

EI and inhibitory connection within I com-
ponents is denoted by WRC

II . The τE and τI in Equations (1)
and (2) are the time constants for E and I, respectively. The
local field potential (LFP) is defined as the value of E compo-
nent in the central position (or in each local unit). “Spiking”
thresholds for E and I components are both set to 0 (function
H(x) in Equation (3)): only values of E and I that exceed the
threshold (i.e., that are greater than zero) will affect other
neurons (i.e., H(E)). This can also be viewed as the mean fir-
ing rate for a group of E or I neurons. Both E and I receive
independent inputs from LGN, the connection strengths
between LGN and E or I are denoted as WEL and WIL. We
assume that response from subcortical regions (LGN) as a
mean of Gaussian white noise [40], from which we drew a
random variable on each time step.

2.2. Models with Full Connections. In the network with all
connection types, we increased the number of the basic units
in the visual cortex horizontally. We added global excitatory
(G) component [4, 40, 46] and long-distance horizontal con-
nections (HC). The G component can be thought as higher
cortex like V2 or V4 providing feedback connections to V1
E-I units, and the feedback connections are denoted as
WEG and WIG. In this paper, we used 15 × 15 E-I units for
a large piece of V1. Beyond the local connection, the local E
and I components received the long-distance horizontal con-
nection (HC)WHC

EE andWHC
IE from the E component outside

of its unit (Equations (4)–(7)). We assumed the local inhibi-
tory component could not directly project with long-range
connections to E-I unit outside. The parameters for HC are
decayed as Gaussian function with distance (Equation (7)).
In the case to investigate the effect of horizontal connections
without feedback, we set WEG = 0, WIG = 0. In the case to
investigate the effect of feedback without horizontal connec-
tions, we set WHC

RE = 0 (R=E or I).

τE
dEi

dt
= −Ei +WRC

EEH Eið Þ +WRC
EI H Iið Þ +WEGH Gð Þ

+〠WHC
EE dð ÞH EHC� �

+WELRLGN ,
ð4Þ

τI
dIi
dt

= −Ii +WRC
IE H Iið Þ +WRC

II H Iið Þ +WIGH Gð Þ
+〠WHC

IE dð ÞH EHC� �
+WILRLGN ,

ð5Þ

τG
dG
dt

= −G+〠WGEH Eið Þ, ð6Þ

WHC
RE distð Þ =WHC

RE exp −dist2/2σ2
� �

/σ
� �

: ð7Þ
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Where dist denotes for distance between R (local E or I)
and global E outside of local E-I unit and i equals to
1,2,...225. We set σ equals 4. (Figure 1).

2.3. Visual Stimuli and Model Inputs. The visual stimuli we
used in the simulation throughout the work are considered
as the grating. A visual stimulus drives 225 neurons (15 by
15 in visual space same as geometric arrangement for cortical
E-I units) in the lateral geniculate nucleus (LGN) and then
each LGN neuron will activate its corresponding E-I unit in
a network (Figure 1) as described in Equations (1), (2), (4),
and (5). For visual stimuli at different size, if a LGN neuron’
receptive field is covered by the visual stimulus, its mean fir-
ing rate is 40Hz, and if a LGN neuron’s receptive field is out-
side the visual stimulus (covered by blank), its mean firing
rate is set at 0Hz. The dynamic responses of LGN neurons
driven by visual stimuli were modeled as Gaussian white
noise (standard deviation is 1) at each time point [40] with
its mean firing rate (0 or 40). Corresponding to the stimuli
with different sizes, the cortical E-I units within the activation
zone with multiple radiuses would receive strong inputs from
LGN, and E-I units outsides would receive weak inputs from
LGN. The number of E-I units is defined as units within the
activation zone, which is approximately proportional to the
area of visual stimulus.

2.4. Model Simulation. All simulation and data analyses were
implemented with custom software written in custom scripts
with MATLAB. We solved the equations numerically, with a
time resolution of 0.001 second using the Euler method [4,
56]. We ran the model for 1.3 s with 100 repeats for each con-
dition. We analyzed responses starting from 0.3 s after
response onset, to ensure the network had settled to a steady
state. We used the average half rectified value of E and G (i.e.,
H(E)) as the mean firing rate (multiunit activity (MUA)), and
the power and peak frequency in the power spectrum of E in
the central position of the network are defined as the power
and peak frequency of LFP, which is a traditional way to
model the LFP [4, 56]. The central position means the central

E-I unit in the network. The reason for selecting neural activ-
ity of central E component as LFP is because the LFP is a local
signal [57, 58] and cortical LFP is thought to mainly reflect
synaptic activity of excitatory neurons [59, 60].

The value of coupling strengths in all E-I units is identi-
cal. We further assumed that the local E has the fastest time
constant (6ms), and the time constant for local I and Global
G is slower (12 and 19ms, respectively). These parameters
were fixed for all simulations of stimulus manipulations.
The values of coupling strength and τs are provided in
Table 1.

2.5. Estimation of Gamma Oscillations.We detect the gamma
peaks in the LFP power spectrum as follows: firstly, we set a
frequency band (taking fast gamma as an example, 45-
70Hz) and find the peak frequency of the strongest power.
If its peak frequency is at either of two ends (45Hz or
70Hz), we think there is no peak in this band. In this work,
we set two frequency bands to search for the peak of slow
(25-40Hz) and fast gamma (45-70Hz). The method gamma
provides a quick way to detect gamma oscillations, and it was
also confirmed by eye inspections on all simulation condi-
tions. The value of gamma power is estimated by the subtrac-
tion of the maximum power in the frequency band and
average power at both ends of the frequency band. In the
end, we compared the strength of gamma power and its peak
frequency in different stimulus size. The suppression index
(SI) of gamma power is defined as the ratio of power under
large size to that under optimal size (stimulus size that elicits
maximum power). The frequency change index (FC) is
defined as the frequency change between the peak frequency
induced by the smallest stimulus size and that induced by the
largest stimulus size.

3. Results

To understand the relationship between gamma oscillation
and different types of connections (local recurrent connec-
tion: RC; long-distance horizontal connection: HC; feedback
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Figure 1: The network architecture of a large scale network model. Small grey circular patches in (a) represent 15 by 15 local components in
the network. These local components are placed horizontally on a plane parallel to cortical surface which mimic hypercolumns in V1. The
spatial range of activation zone, or the number of activated E-I units in the model, is dependent on the size of external visual stimulus.
Each local component in (b) consists of excitatory (E) and inhibitory (I) component connected with local connection WRC

EE , W
RC
EI , W

RC
IE ,

and WRC
II . In the cortical space, the E and I components receive feedforward input (WEL, WIL) from subcortical regions (LGN) that are

driven by visual stimuli, horizontal inputs (WHC
EE and WHC

IE ) from other E-I units and receives feedback (WEG, WIG) from higher visual
cortex (G). The higher visual cortex (G) receives feedforward (WGE) input from V1 as well.
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connection: FB), we constructed a basic large-scale network
with different combinations of local RC, HC, and FB. The
basic components in such a network are 225 (15 × 15) E-I
units (Figure 1(a)). Each of the E-I unit (Figure 1(b)) consists
of a local excitatory component (E) and a local inhibitory
component (I), which represents a group of excitatory and
inhibitory neurons connected to each other by RC in a local
region (one or a few nearby hypercolumns) in V1
(Figure 1(a)). All 225 E-I units are placed horizontally mim-
icking a piece of macaque V1 with many hypercolumns
(Figure 1(a)). Each E-I unit receives external feed-forward
(FF) inputs from LGN. When the different local E-I units
are connected through long-range horizontal connections
(HC), the weights for HC are decayed with distance between
two E-I units (Equation (7)). For a network with FB, the G
component represents a higher visual cortex, V2/V4, and
receives FF input from all E components of the 225 E-I units.
The G component forms the feedback connection (FB) to the
local E-I units in V1 (Figure 1(b)). The model architectures
for FF, RC, HC, and FB are based on existing models for
studying gamma oscillation or other functional properties
in V1 [17, 40, 61, 62].

3.1. HC and Local RC Generate Distinct Gamma Oscillations.
The first question we asked is how the three types of connec-
tions, RC, HC, and FB, modulate gamma oscillation. To
address this question, we formed four networks which contain
local RC only (Figure 2(a)), local RC+HC (Figure 2(b)), local
RC+FB (Figure 2(c)), and local RC+HC+FB (Figure 2(d)).
We drove each of the networks with a large visual stimulus
so that all E-I units and their connections can be fully acti-
vated. The oscillatory activity could be clearly seen in the
LFP from all four networks (local RC for Figure 2(e), local
RC+HC for Figure 2(f), local RC+FB for Figure 2(g), and
local RC+HC+FB for Figure 2(h)). The corresponding power
spectrums further confirm that the four networks can generate
gamma oscillations (Figures 2(i)–2(m)). Consistent with early
work [4, 40, 56], a single gamma oscillating at 59Hz could be
generated in network with only local RC circuits (Figure 2(i))
or with local RC and FB (Figure 2(k)). Surprisingly, when HC
was added into the network, even though RC and FF strength
were unchanged, a slow gamma oscillating at 41Hz emerges
(Figures 2(j) and 2(l)). It is notable that the slow gamma oscil-
lation is a new gamma oscillation, because its peak frequency
is not the harmonic of the fast gamma (73Hz) generated by

RC (Figure 2(j)). Interestingly, when we added FB to the net-
work and removed HC (Figure 2(c)), the slow gamma disap-
peared and only a single gamma exists (Figure 2(k)) but with
its peak frequency (53Hz) lower than that generated in the
network with only FF and RC (Figure 2(i)). When we added
both FB and HC (Figure 2(d)), the slow gamma emerges again
oscillating at 40Hz and fast gamma oscillates in 71Hz
(Figure 2(l)).

Model simulations in this section suggest that HC can
generate a slow gamma that is different from the fast gamma
generated by local RC. However, FB itself cannot generate a
new gamma. This conclusion from our simulation results
can be further proved mathematically.

3.2. Mathematic Evidence for Two Gamma Oscillations in a
Network with HC and RC. To understand the generation of
two distinct gamma oscillations in the network with HC
mathematically, let us first consider the network with FB
only, which can be described and abbreviated as Equations
(8)–(10).

τE
dEi

dt
= −Ei +WRC

EEH Eið Þ +WRC
EI H Iið Þ +WEGH Gð Þ +WELRLGN ,

ð8Þ

τI
dIi
dt

= −Ii +WRC
IE H Eið Þ +WRC

II H Iið Þ +WIGH Gð Þ +WILRLGN ,

ð9Þ

τG
dG
dt

= −G+〠WGEH Eið Þ, ð10Þ

where i equals to 1,2,...225. Equations (8) and (9) are an
abbreviation for 450 equations for 225 E-I units, and Equa-
tion (10) is for the G component.

Now, let us assume that E =∑Ei, I =∑Ii and HðxÞ = x.
Then, we can get Equations (11)–(13).

τE
dE
dt

= τE
d∑Ei

dt
= ∑τEdEi

dt
=〠 −Ei +WRC

EEH Eið Þ +WRC
EI H Iið Þ�

+WEGH Gð Þ +WELRLGNÞ = −E +WRC
EEE +WRC

EI I

+ nWEGG+〠WELRLGN ,
ð11Þ

τI
dI
dt

= τI
d∑Ii
dt

= ∑τIdIi
dt

=〠 −Ii +WRC
IE H Eið Þ +WRC

II H Iið Þ�
+WIGH Gð Þ +WILRLGNÞ = −I +WRC

IE E +WRC
II I

+ nWIGG+〠WILRLGN ,
ð12Þ

τG
dG
dt

= −G+〠WGEH Eið Þ = −G + nWGEE: ð13Þ

In this way, we compressed 451 equations into a three-
dimensional system. We can see that any solution for the
original 451 equations will also satisfy the three-dimensional
system. In other words, solutions for the three-dimensional
system should be exactly solutions for the original 451-

Table 1: Parameters in themodel.Row1shows the timeconstantsτs.
Rows 2-7 illustrates the values of coupling strength in the network.

ERC IRC G

τ (seconds) 0.006 0.012 0.019

Coupling from LGN to 1.75 1.25 N/A

Coupling from ERC to 1.5 3.5 0.1

Coupling from IRC to -3.25 -2.5 N/A

Coupling from EHC to 0~0.03 0~5 N/A

Coupling from IHC to N/A N/A N/A

Coupling from G to 0~0.3 0~0.5 N/A

N/A: not applicable.
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Figure 2: Gamma oscillations generated in networks with different connectivity patterns. Panels (a–d) show networks with different
connection patterns. The difference among (a–d) is that (a) shows a network with feedforward (FF) and local connections (local RC); (b)
shows a network with local RC and long-range horizontal connection (HC) but without any feedback connection (FB); (c) shows a
network with local RC and FB but without HC; and (d) shows a network with local RC, HC, and FB. The local field potentials (LFP) from
networks with the four different connection patterns are shown in panels (e–h) correspondingly. The power spectrums of the LFPs were
estimated and shown in (i–l) ((i) for the LFP in (e); (j) for that in (f); and (k) for that in (g); and (l) for that in (h)). The black curve shows
the power spectrum during the visual stimuli, while the black dashed line shows the power spectrum when networks were driven by a
visual stimulus with zero contrast. There is only one gamma in (i) and (k), but two gamma oscillations (slow and fast gamma as noted)
appeared in (j) and (l).
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dimensional system. Notice that this is true for a FB-only-
system with any number (n) of E-I units.

The weight matrixWFB could be written in Equation (14)
(n = 225):

WFB =

1
τE

WRC
EE − 1

� � 1
τE

WRC
EI

n
τE

WGE

1
τI
WRC

IE
1
τI

WRC
II − 1

� � n
τI
WGE

n
τG

WGE 0 −
1
τG

0
BBBBBBB@

1
CCCCCCCA
:

ð14Þ

The eigenvalues of the matrix WFB could be classified
into two types: (1) three real eigenvalues: it means this system
does not generate any oscillation. (2) One real and two com-
plex eigenvalues: it means this system could generate one
oscillation. From the simple mathematical derivation, we
found that the feedback connection in the brain system does
not have the mathematical basis to generate distinct gamma
oscillations.

Similarly, let us consider the network with HC only,
which could be written in the abbreviated form of Equations
(15) and (16) for 450 original equations.

τE
dEi

dt
= −Ei +WRC

EEH Eið Þ +WRC
EI H Iið Þ +〠

j≠i
WHC

EiEj
H Ej

� �
+WELRLGN ,

ð15Þ

τI
dIi
dt

= −Ii +WRC
IE H Eið Þ +WRC

II H Iið Þ +〠
j≠i
WHC

IiEj
H Ej

� �
+WILRLGN ,

ð16Þ
where i equals to 1,2,...225, WHC

EiEj
= αWHC

IiEj
, α is a constant.

Now, let us assume that EHC =∑j≠iW
HC
EiEj

Ej, ERC =∑N
i=1

Ei, IHC =∑j≠iW
HC
IiEj

I j, IRC =∑N
i=1Ii

and HðxÞ = x. Then, we got Equations (17)–(22)

τE
dERC

dt
= 〠

N

i=1
−Ei +WRC

EE Eið Þ +WRC
EI H Iið Þ +〠

j≠i
WHC

EiEj
H Ej

� �
+WELRLGN

 !

= −ERC +WRC
EEERC +WRC

EI IRC + 〠
N

i=1
〠
j≠i
WHC

EiEj
H Ej

� �
+ 〠

N

i=1
WELRLGN ,

ð17Þ

τE
dIRC
dt

= 〠
N

i=1
−Ii +WRC

IE Eið Þ +WRC
II H Iið Þ +〠

j≠i
WHC

IiEj
H Ej

� �
+WILRLGN

 !

= −IRC +WRC
IE ERC +WRC

II IRC + 〠
N

i=1
〠
j≠i
αWHC

EiEj
H Ej

� �
+ 〠

N

i=1
WILRLGN ,

ð18Þ

where ∑N
i=1∑j≠iW

HC
EiEj

HðEjÞ ≈NEHC , N = 225.

τE
dEHC

dt
= τE

∑j≠iW
HC
EiEj

dEj

dt
=〠

j≠i
WHC

EiEj
τE

dEj

dt

=〠
j≠i
WHC

EiE j
−Ej +WRC

EEH Ej

� �
+WRC

EI H I j
� ��

+〠
k≠j

WHC
EjEk

H Ekð Þ +WELRLGN

!

= −EHC +WRC
EEEHC +WRC

EI IHC +〠
j≠i
WHC

EiEj
〠
k≠j

WHC
EjEk

Ek

+WFF Eð ÞRLGN ,
ð19Þ

where WFFðEÞ =∑j≠iW
HC
EiEj

WEL

〠
j≠i
WHC

EiEj
〠
k≠j

WHC
EjEk

Ek =〠
j≠i
WHC

EiEj
WHC

EjE1
E1 +WHC

EjE2
E2+⋯+WHC

EjEN
EN

� �

〠
j≠i
WHC

EiEj
WHC

EjEk
Ek ≈

Ek∬WHC
EE

2e− xi−xjð Þ2+ yi−yjð Þ2+ xk−xjð Þ2+ yk−yjð Þ2/2σ2

σ2
d xj
� �

d yj
� �

= EkW
HC
EE

2∬e
−

x j− xk+xið Þ
σ

� �2

e
−

y j− yk+yið Þ
σ

� �2

P k, ið Þd xj
σ

� �
d

yj
σ

� �
,

ð20Þ

where Pðk, iÞ = e−ðx
2
k+y2k+x2i +y2i −2xkxi−2ykyiÞ/4σ2 = e−½ðxk−xiÞ

2+ðyk−yiÞ2�/

4σ2, ðxi, yiÞ is the coordination of Ei.

Hence, ∑j≠iW
HC
EiEj

WHC
EjEk

Ek = EkW
HC
EE

2Pðk, iÞπ

〠
j≠i
WHC

EiEj
〠
k≠ j

WHC
EjEk

Ek = 〠
N

k=1
EkW

HC
EE

2
P k, ið Þπ = 〠

N

k=1
EkW

HC
EE

2
e− xk−xið Þ2+ yk−yið Þ2½ �/4σ2

π

= WHC
EE

2
π∑N

k=1e
− xk−xið Þ2+ yk−yið Þ2½ �/4σ2 Ek ≈WHC

EE
2
π∑N

k=1e
− xk−xið Þ2+ yk−yið Þ2½ �/4σ2 ∑N

n=1 En

N

≈
WHC

EE
2
π

N
ELC∬e−

xk−xið Þ2+ yk−yið Þ2½ �
4σ2 dxkdyk =

4σ2WHC
EE

2
π2

N
ERC:

ð21Þ

Similarly,

τI
dIHC

dt
= τI

∑j≠iW
HC
EiEj

dI j
dt

=〠
j≠i
WHC

EiEj
τI
dI j
dt

=〠
j≠i
WHC

EiEj
−I j +WRC

IE H Ej

� �
+WRC

II H I j
� ��

+〠
k≠j

WHC
IiEj

H Ekð Þ +WILRLGN

!
= −IHC +WRC

EEEHC

+WRC
EI IHC + α〠

j≠i
WHC

EiEj
〠
k≠j

WHC
EjEk

H Ekð Þ +WFF Ið ÞRLGN ,

ð22Þ

where WFFðIÞ =∑j≠iW
HC
EiEj

WIL.

Notice that connection weights of HC (WHC
RiEj

) are related

to the distance between different E-I units (Equation (7)). If
the sigma parameter ðσÞ in Equation (7) is large enough,
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Equations (19) and (22) could be rewritten as Equations (23)
and (24).

τE
dEHC

dt
= −EHC + 4σ2WHC

EE
2
π2ERC +WRC

EEEHC +WRC
EI IHC

+WFF Eð ÞRLGN ,
ð23Þ

τI
dIHC

dt
= −IHC + 4ασ2WHC

EE
2
π2ERC +WRC

IE EHC +WRC
II IHC

+WFF Ið ÞRLGN :

ð24Þ
In this way, we compressed 450 equations for HC net-

work into a four-dimensional system. Again, we can see that
solutions for the four-dimensional system should be exactly
solutions for the original 450-dimensional system. Notice
that this is true for an HC-only-system with any number
(n) of E-I units, when spatial constant (σ) for HC connection
is large enough.

Then, the weight matrix WHC could be written in Equa-
tion (25):

WHC =

1
τE

WRC
EE − 1

� � 1
τE

WRC
EI

N
τE

0

1
τI
WRC

IE
1
τI

WRC
II − 1

� � αN
τI

0

4σ2WHC
EE

2
π2

N
0 1

τE
WRC

EE − 1
� � 1

τE
WRC

EI

α
4σ2WHC

EE
2
π2

N
0 1

τI
WRC

EE
1
τI

WRC
II − 1

� �

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

ð25Þ

The eigenvalues of the matrix WHC could be classified
into three types: (1) four real eigenvalues: it means this sys-
tem does not generate any oscillation; (2) two real and two
complex eigenvalues: it means this system could generate
one oscillation; (3) four complex eigenvalues: it means this
system could generate two different oscillations. The
conjugate complex eigenvalues could be written in the form
of λ = a ± bi, where a and b are the real and imaginary part
of the complex value. The peak frequency of the oscillation
generated by this system could be equaled to b/2π. When
the sigma parameter in Equation (7) is small, the system will
be more complex, and in theory, oscillations in the system
could be more than two. But as our simulation shows, within
our parameter space, we only observed one or two gamma
oscillations, which suggests that the spatial constant (σ) is large.

The above mathematical derivation provides a concep-
tual picture and fundamental evidence for why a network
with local RC+HC can generate two gamma oscillations
but local RC+FB cannot. However, the derivation, based
on simplified and linearized equations of the original nonlin-
ear dynamic systems, does not give us detailed parameter
regimes (WHC

EE or WHC
IE , the long-range horizontal connec-

tion from E to E and I, respectively) for the generation of
the slow gamma. We went back to model simulation to fur-

ther understand the functional roles of WHC
EE and WHC

IE in
the network with HC.

3.3. Inhibitory Strength in HC Determines the Number of
Gamma Oscillations. We went through parameter values
for WHC

EE and WHC
IE in a reasonable range (WHC

EE : 0-0.03,
WHC

IE : 0-4.5) and simulated network models with different
combinations of WRC

EE and WRC
IE . We found two states in the

parameter ranges for model simulation: (1) whenWHC
IE value

is small (0-0.75), there is only a single gamma, and HC cir-
cuitry does not generate the second gamma (Figures 3(a)
(left) and 3(b)); (2) whenWHC

IE value is in a range of medium
values (0.75-4.5), both fast gamma and slow gamma coexist
(Figures 3(a) (right) and 3(b)). The number of gamma oscil-
lations in a network is clearly dependent on the connection
strength of WHC

IE , but not WHC
EE (Figure 3(b)). In the current

study, we mainly focused on the two states for network
oscillations.

Next, we aimed to explore how these two gamma oscilla-
tions are modulated through HC. We defined two indexes:
peak power (the max power in the specific gamma frequency
band) and peak frequency (the frequency that achieves peak
power in the specific gamma frequency band) as shown in
Figure 3(a). The peak power for slow gamma increases with
WHC

IE (from 1 to 2.5) and then decreases with WHC
IE (from

2.5 to 4) (Figure 3(c)), and the power of fast gamma has a
similar relationship with WHC

IE but in different parameter
range (increasing with WHC

IE from 0 to 1.5 and decreasing
with WHC

IE from 1.5 to 4.5) (Figure 3(d) and (e)). While as
the increase of WHC

EE , peak powers of both slow and fast
gamma are increasing (Figure 3(c) and (d)). Interestingly,
the peak frequency for slow gamma increases with WHC

IE
(Figure 3(f)), but frequency of fast gamma decreases with
WHC

IE (from 0.5 to 4.5), except that there is a rapid rise of fre-
quency for small WHC

IE from 0 to 0.5, (Figure 3(g)). This
shows that HCmodulates the peak frequency of slow and fast
gamma oscillations in different ways (Figure 3(h)). It is also
noted that the range of WHC

EE is much smaller compared to
that of WHC

IE . This is because a large value of WHC
EE will lead

to instability of the network, and we could already see a quick
increase of gamma power in the very narrow range of WHC

EE
(Figures 3(c) and (d)).

3.4. Modulation of Gamma Oscillations by FB. The simula-
tion results (Figure 3) suggest that the generation of slow
gamma oscillation mainly depends on the HC connection
from excitatory neurons to inhibitory neurons (WHC

IE ), and
HC connection from excitatory neurons to excitatory neu-
rons (WHC

EE ) mainly modulates existing fast and slow gamma
oscillations. In the real brain, feedback connection (FB) is
also indispensable. To further understand how existing
gamma oscillations are modulated through FB, we fixed the
model parameters of HC (WHC

IE = 2:5,WHC
EE = 0:03) that can

generate two gamma oscillations and added connections
(WEG, WIG) from the global excitatory component (G) to
local excitatory (E) and inhibitory (I) component.
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As expected, the FB could modulate the response prop-
erty of gamma oscillations (Figure 4(a)). Interestingly, both
slow and fast gamma oscillations are modulated by FB in a
similar way, which is totally different from HC modulation
on gamma. Similar to Figures 3(c)–(h), we went through
parameter values for WEG and WIG in a reasonable range
(WEG: 0-0.27; WIG: 0-0.45), and simulated network model
with different combinations of WEG and WIG. The peak
power and frequency for both slow and fast gamma increase
as the WEG increases, but the two features decrease as WIG
increases (Figures 4(b)–4(g)). We further compared effect
difference in network with and without FB (Figure 5). We
found that change of peak power and frequency without FB
is both unbalanced and discontinuous (Figures 5(a) and
5(c)); however, FB had a more balanced and consistent effect

on the change of peak power and frequency in the HC net-
work with FB (Figures 5(b) and 5(d)).

3.5. Stimulus Size Dependence of Gamma Oscillations in the
Network with Both HC and FB. We have shown that how
response properties of gamma oscillations were affected by
the change of connection weights of HC and FB. In reality,
however, the connections between neurons are almost fixed
in the brain. A more realistic way to perturb the connection
weights of neural network is to change the network’s visual
stimuli. The experiment with different size of visual stimuli
is commonly used to activate neurons and their connections
in different spatial scales in visual cortex [30, 38, 63, 64].
Recently, an experimental work showed that large visual
stimuli could induce two distinct gamma oscillations [65]
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which is highly consistent with our model’s prediction
(Figure 6). We next explored how gamma oscillations are
modulated by stimulus size. A typical example shows that
the two gamma oscillations behave differently when stimulus
size changes from the simulation (Figure 6(a)). The fast
gamma oscillation appears in a much smaller size, while the
slow gamma emerges when stimulus size is around 6 (radius)
and above (Figure 6(a)). This is highly consistent with the
experimental result (Figures 6(b) and 6(c)). The tuning
curves for peak power and frequency change (frequency
change between the peak frequency induced by the smallest
stimulus size and that induced by the largest stimulus size)
are also very similar in quantity (Figures 6(d)–6(i)).

We have shown that our fully connected model could
replicate the size dependence of gamma oscillations in the

real experiment. The final question for us in this study is
whether FB is a required component for explaining experi-
mental results for size tuning curve [65]. We measured the
suppression index of gamma power by calculating the ratio
of power under large size to that under optimal size (stimulus
size that elicits maximum power) (Figure 7(a)), and fre-
quency change index by subtraction of the peak frequency
from the size could induce the gamma and largest size
(Figure 7(b)).

Then, we went through different values in a range for
parametersWHC

EE andWHC
IE for the network of RC+HC with-

out FB (Figure 7(c)) and created maps (Figure 7(d)) for sup-
pression index and frequency change for slow and fast
gamma as functions of HC parametersWHC

EE andWHC
IE . Next,

we added the feedback connection in the model (Figure 7(e))
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Figure 4: Modulation of gamma oscillations in HC network with FB. (a) shows the power spectrum of the LFPs from two example networks
(solid red curve is the power spectrum from the network with FB, and the dashed red curve is from the network without FB). (b–g) are similar
to Figures 3(c)–3(h). The powers of slow and fast gamma for different FB connection strength are shown in (b) and (c), respectively. (d) shows
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and kept the HC parameters the same as previous settings
(Figure 7(d) grey circle) that could generate two gamma oscil-
lations. Then, we also created maps (Figure 7(f)) for suppres-
sion index and frequency change for slow and fast gamma as
functions of FB parametersWEG andWIG. It is very clear that
FB has different modulatory effects on the size-dependent
behaviors of slow and fast gamma (Figures 7(d) and 7(f)).

To further illustrate how FB and HC affect gamma oscil-
lations differently as functions of stimulus sizes, scatter plots
were plotted for suppression index of slow and fast gamma in
the network without FB (Figure 8(a)) and in the network
with FB (Figure 8(b)). Similar scatter plots for frequency
change of slow and fast gamma were also shown in
Figures 8(c) and 8(d), respectively.

In the network without FB, suppression index for slow
and fast gamma is positively correlated (Figure 7(d), left
column; also see Figure 8(a)), but frequency changes of slow
and fast are negatively correlated (Figure 7(d), right column;
and Figure 8(d)). Different from the network without FB, we
found that FB has minor effect on suppression index of slow
gamma (Figure 7(f), left column; Figure 8(b)). Very interest-
ingly, the patterns of frequency change for slow and fast
gamma are positively correlated and highly consistent

(Figure 7(f), right column; Figure 8(d)), which is very differ-
ent from HC effects (Figure 7(d) and Figure 8(c)).

More importantly, we found that FB is a necessary com-
ponent for regulating size-dependent behaviors of gamma
oscillations. The relationship between fast and slow gamma
in experimental results were also plotted in Figure 8 (red
and orange dots in Figure 8). In the parameter space of fre-
quency change for the network without FB, the actual rela-
tionship between fast and slow gamma deviates from the
simulated relationship a lot (Figure 8(c)). But the simulated
relationship between fast and slow gamma covers the actual
relationship in experiments when FB was added in the net-
work (Figure 8(d)). In summary, the simulation results
without FB could not satisfy the behavior of real data (the
suppression index and frequency change for fast and slow
gamma oscillation). However, the simulation results with
FB could provide a possible solution for the behavior of
experimental results.

4. Discussion

This paper is the first study on the relationship between
horizontal connection (HC) and gamma oscillation in a
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Figure 5: Relationship between gamma oscillations in the HC network without and with FB. (a) shows the scatter plot of peak power for slow
(x-axis) and fast gamma (y-axis) in the network without FB. (b) shows the scatter plot of peak power for slow (x-axis) and fast gamma (y-axis)
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constructed large-scale model for monkey V1. Our work
points out the function of HC for generating a new gamma
oscillation that is different from the one generated by local
RC. More importantly, we also found that HC and FB, the
two types of large-scale connection patterns, have distinct
modulatory effects on the response properties of gamma
oscillations (Figure 9). Our results provided new insights into
how gamma-band activity reflects different types of neural
connection and give a theoretical prediction for distinguish-
ing HC and FB effects based on the behaviors of gamma

oscillations. Furthermore, the computational model, with
multiple types of connection patterns, in this work not only
reveals neural mechanisms for two distinct gamma oscilla-
tions in V1 of awake monkey but also can be used for study-
ing multiple gamma oscillations in other brain regions.

4.1. Comparison with Previous Theoretical and Experimental
Studies. It has been well studied for the generation of gamma
oscillation in local circuits by mean-field [40, 53, 56, 66] or
spiking neuron models [41–43, 67], and the modulation of
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gamma properties by FB connection was also well docu-
mented [4, 46]. Although some studies have built models
with horizontal connection [30, 50] to understand V1 func-

tions for information integration in visual space, to our best
knowledge, the current study is the first to investigate the
relationship between long-range horizontal connection and
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gamma oscillation. Model studies often created one global
connection pattern and assumed this global connection
included both FB and HC. However, our work indicates that
FB and HC have to be modeled separately, because FB
and HC have very different functional roles for gamma
oscillations.

Our model could generate two distinct narrowband
gamma oscillations in V1, which is highly consistent with a
recent experimental work on awaked monkey [65]. However,
several earlier studies only found one narrowband gamma
oscillation in primary visual cortex experimentally [5, 12,
19, 68–71] or computationally [4, 40–43, 56, 67]. The reason
for not finding prominent slow gamma oscillations in these
studies might be due to different states of anesthesia [4, 56,
68, 72] or due to a smaller stimulus size [56, 65].

4.2. Different Roles of HC and FB. The anatomical connection
for HC and FB is very different [24], but distinguishing and
understanding the functional roles of HC and FB in the brain
is still a challenging question [30]. The spike activity (neural

firing rates) could be suppressed by large stimulus size
through either HC or FB. It is hard for us to tell the different
signatures for the two types of connection solely based on the
response properties of spiking activity [14, 30, 38, 63, 73, 74].
However, our result clearly shows that gamma oscillations in
networks with only HC are very different from those in net-
works with only FB: the slow gamma oscillation (Figure 3) is
a signature of strong HC from Global E component to the
local I component, but the modulation of slow gamma and
fast gamma is a consequence of FB (Figure 4). This suggests
that the response properties of gamma oscillations are essen-
tial measurements to distinguish HC and FB.

Gamma oscillation has been thought to play a role in
information integration [1, 7–9]. But how to distinguish
functional roles for two gamma peaks becomes a new chal-
lenging question. Some visual information might be involved
with one gamma peak and others might be related to the
other gamma peak. Because the generation of slow gamma
requires a neural connection in a larger spatial scale and it
could be modulated by FB connection, we speculate that slow
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Figure 8: Gamma oscillations in V1 require both HC and FB. (a) shows the scatter plot of suppression index for slow (x-axis) and fast gamma
(y-axis) in the network without FB. (b) shows the scatter plot of suppression index for slow (x-axis) and fast gamma (y-axis) in the network
with FB. (c) shows the scatter plot of frequency change for slow (x-axis) and fast gamma (y-axis) in the network without FB. (d) shows the
scatter plot of frequency change for slow (x-axis) and fast gamma (y-axis) in the network with FB.
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gamma is related to information integration in a larger corti-
cal/visual space.

4.3. Limitation of the Current Study. In this study, we have
provided a large-scale neural network with many units mod-
eled by the mean-field method. The advantage of this method
is fast computation and easy to capture neural connections at
multiple cortical scales. However, we do admit that the
mean-field model does not describe local connection pre-
cisely, and it does not generate spike activity for individual
neurons. Instead of spiking neuron model, it is an important
tool more appropriate for modeling local circuitry and its
detailed relationship to global connectivity. In order to fur-
ther understand the neural mechanism of gamma oscilla-
tions, it will be ideal for applying a spiking neural network
in our studies in the future.

Although we built a model with FB (connections from
the high lever visual cortex such as V2 or V4) separated from
HC, the global G component is a simplified version for the
real high-level visual cortex. Connection pattern for FB and
configuration for high-level visual cortex (G) in this work
are based on the well-accepted concept as well as existing
model settings in early studies [4, 46]. In reality, within
higher level visual cortex, there are interactions between
excitatory and inhibitory neurons as well [40], which is in a
way similar to V1. In our opinion, it is reasonable to keep
higher visual cortex as a single component G, since the effect
of the feedback in our model is consistent with the model that
has excitatory and inhibitory components in high-level brain
regions [40]. Furthermore, the interaction of excitatory and
inhibitory components in recurrent connection of higher
level visual cortex remains unclear. The model for the higher
visual cortex is another challenging question. We need more
experimental results on the connection weights in high-level

visual cortex to guide the modeling for the higher visual
cortex.
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