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Abstract: In this work, we propose a novel approach for correcting multi-path interference (MPI) in
Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light.
MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel
receives information coming from different light paths which generally leads to an overestimation
of the depth. We introduce a novel deep learning approach, which estimates the structure of the
time-dependent scene impulse response and from it recovers a depth image with a reduced amount
of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded
representation of the backscattering vector from the noisy input data and a fixed backscattering model
which translates the encoded representation into the high dimensional light response. Experimental
results on real data show the effectiveness of the proposed approach, which reaches state-of-the-
art performances.

Keywords: Time-of-Flight; multi-path interference; depth estimation; transient imaging; denoising;
deep learning

1. Introduction

In the last decades, there has been a surge of interest regarding range imaging tech-
nologies. These devices typically provide depth images, showing the distance of each
scene point from the camera sensors. The applications of these systems and devices are
widespread, as they can be used for augmented reality, face identification, gesture recogni-
tion [1], simultaneous localization and mapping [2], 3D modeling and reconstruction [3–7],
autonomous driving [8,9] and even for navigation and landing on planetary bodies [10].

Some of the most common technologies comprehend stereo devices [11], that use
the point of view of two different cameras to recover depth images, structured light
scanners [12], that compute distance information relying on light patterns and LIDARs [13]
and other Time-of-Flight (ToF) technologies [14], which use the light travel time for the
recovery of depth information.

In this work, we will mostly focus on time-of-flight based devices—a Time-of-Flight
(ToF) camera is a range imaging device that captures depth information in real time.
The working principle of ToF cameras consists of illuminating the scene with a light source
and then computing the time it takes for the light to travel from the source to the scene
and back to the sensor. Recovering depth from time is then a straightforward operation.
If the time is measured directly, for example, with a time to digital converter (TDC), we
are working with direct ToF (dToF) cameras, while in the case the time is calculated from
intensity measurements through correlation of illumination and sensor modulation, we are
dealing with indirect ToF (iToF) cameras. We will focus on iToF cameras, which, compared
to dToF, can estimate the depth with a smaller maximum range but with a higher lateral
resolution. These aspects make them the better option for indoor acquisitions and the most
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adopted solution for ToF image sensors today. In the following section, we will give a
mathematical introduction to the iToF principles.

1.1. iToF Cameras

The main idea behind the retrieval of depth information in ToF imaging is to use
the fact that the speed of light is fixed. In direct ToF a very short light pulse is emitted
towards the scene, is reflected and is finally gathered by a sensor; the depth is then inferred
from the travel time. Indirect ToF makes use of the same idea, but with a different kind of
illumination signal. It uses a periodic light modulation and retrieves the depth information
from the phase displacement ϕ between the incoming light and an internal reference signal,
according to the following relation:

d =
cϕ

4π fm
, (1)

where fm is the modulation frequency and c is the speed of light.
In practice, the emitter sends a modulated signal i(t) with modulation frequency

fm towards the scene. At the sensor’s side, the reflected light r(t) is correlated with the
sensor sensitivity function s(t), that is, phase shifted by a factor θ for ToF measurements as
explained below; the raw measurements mθ of our camera are the result of these correlation
operations. In the case of i(t) being a sine wave, we can express the reflected light as an
attenuated and delayed version of the original signal r(t) = αi(t− ∆t) = αi(t− ϕ

2π fm
),

where we expressed the delay ∆t in terms of phase displacement. If we then consider a
sensor sensitivity of the form s(t) = 1(sin(2π fmt) > 0) and assume that the light bounces
a single time inside the scene (quite a strong assumption as we will see) it holds that:

mθ =
∫ Tint

0
r(t)s

(
t +

θ

2π fm

)
dt, (2)

with Tint the integration time and θ the phase displacement applied to the sensor sensitivity.
By assuming Tint � Tm = 1

fm
(that is usually the case), we get the following closed-

form solution of our integral [15]:

mθ = I + A · cos(ϕ + θ), (3)

where I is the intensity of ToF signal, A is its amplitude and ϕ is the phase offset due to the
scene depth by means of Equation (1).

From the raw measurement in (3), we want to recover A, I and ϕ. As shown in [15],
it is sufficient to sample mθ at 4 different known phase displacements θ of the sensor
sensitivity s(t + θ

2π fm
) in order to get the following relations:

A =
1
2

√
(m0 −mπ)2 + (m 3π

2
−m π

2
)2, (4)

ϕ = arctan2

(
m 3π

2
−m π

2

m0 −mπ

)
, (5)

I =
m0 + m π

2
+ mπ + m 3π

2

4
. (6)

As introduced by Gupta et al. [16], a quite convenient representation of the sinusoidal
correlation function in (3) is the phasor notation. In practice, we can express the raw
measurements in the following alternative way:

v = Xeiϕ = Xei2π fm∆t ∈ C, (7)

where X corresponds to the amplitude and ϕ the phase of the original sinusoidal function.
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We have considered the case in which the ToF signal is reflected only once inside the
scene. However, in real scenarios it is highly likely for the light to be reflected multiple
times, causing numerous light rays to arrive at the same pixel. This effect is called Multi-
Path Interference (MPI). In this case, it is possible to generalize the above description by
assuming that the resulting ToF signal is the summation of the different interfering signals,
each one described as a phasor. Recall that sinusoidal signals with the same frequency,
as well their phasor representation, are closed under summation [16]. As a consequence,
a ToF measurement originated by MPI can be described as

v =
∫ tmax

tmin

x(t)ei2π fmtdt, (8)

where tmax is the maximum time of flight of the considered interfering rays and x(t) is the
so called backscattering distribution function, describing the strength of the interfering
rays, given their times of flight. The MPI phenomenon described above is a non-zero mean
error in ToF depth measurements, usually leading to an overestimation of depth. A key
aspect of MPI distortion is its dependency on the geometry of the considered scene, which
heavily influences the backscattering distribution function x(t). While having been widely
studied [17–20], the problem is still challenging.

Other noise sources affecting iToF devices are photon shot noise, linked to the random
nature of light, thermal noise due to sensor electronics and signal distortion issues, which
are a consequence of non-idealities of the emitted light signals [12,21,22]. These errors,
while still relevant, are easier to be tackled, and can be alleviated using calibration and
filtering (e.g., bilateral filtering or total variation methods [23,24]).

As follows, we will introduce transient cameras, which are another range imaging
technology strictly related to iToF; we will describe the relationship between the two and
then continue by considering perks and limitations of transient sensors.

1.2. Transient Cameras

As previously remarked, the MPI effect is due to the multiple paths that single light
rays follow after a reflection inside the scene. The integration done by an iToF sensor
hides these multiple contributions and leads to an overestimation. As a matter of fact,
if we were able to avoid such integration and instead capture the intensity of light arriving
at the sensor at each time instant, we would be able to isolate the contributions due to
different time of arrival of the incoming light reflections and therefore quickly understand
what is the relevant information (the direct component) and what instead is noise (the
global component).

Transient cameras are relatively new devices that do exactly this. In practice, transient
sensors are able to capture the incoming intensity of light at extremely high temporal
resolutions. As we are working with the speed of light, current sensors need a temporal
resolution in the order of the tens of picoseconds [25] for millimeter distance resolution.
What we are getting in this way is the behavior of light through time. For each of the
sensor pixels, we record the backscattering vector, which makes it easy to avoid any
interference-related issue and provides additional insights regarding scene geometry,
reflective properties of the captured objects and in theory could even allow to retrieve
information of elements out of line of sight [26]. An example is shown in Figure 1.
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Figure 1. Example of a backscattering vector for a corner scene.

The mentioned perks, while certainly appealing, come at a cost as transient cameras
currently have a low spatial resolution and higher prices w.r.t. their ToF counterpart [25,27].
The research on transient cameras is quite active—in [28], the authors introduce a transient
frequency transport equation, which helps simplifying transport analysis problems by
tackling them in the frequency domain. More recently, in [29] a co-focal scanning procedure
is used to tackle the task of non-line-of-sight imaging, while [30,31] tackle the task using the
concepts of Fermat paths and of phasor fields, respectively. Nowadays however, transient
cameras are mostly limited to research grade instrumentation, while ToF cameras are
available as off-the-shelf products.

In this work, we propose to employ the underlying structure of transient images
as a prior for MPI denoising. In practice, we propose to train a deep learning model
for MPI correction, with a solution following a simplified backscattering model. To our
knowledge, this is the first time that transient information is used for the task of MPI
correction in a deep learning framework. Many authors in the literature proposed methods
to correct MPI starting from the raw data acquired by a ToF camera or from noisy depth
measurements [18–20,32]. The focus of this work is the development of a completely new
approach for MPI correction based on the underlying structure of the backscattering vectors.
The deep learning pipeline we propose is split into two main blocks: a predictive model,
which learns the relation between the noisy iToF measurements and the encoded version
of our transient data and a fixed model which translates the encoded information into
the corresponding transient vector. While the network was developed under the strongly
simplifying assumption that MPI is related to a backscattering vector composed by two
peaks, one for the direct light reflection and a second peak summarizing the global light,
the approach still reaches competitive performance with state-of-the-art approaches. The
proposed pipeline is to our knowledge the first data-driven approach going in the direction
of transient image reconstruction from noisy ToF data.

The remainder of this paper is articulated in the following way—in Section 2, we
provide a review of the related literature. In Section 3, we describe the training pipeline
and the idea behind our model in depth, while in Section 4 we show the datasets employed
and then provide both qualitative and quantitative evaluation of our approach in Section 5.
Finally, in Section 6 we draw our conclusions and mention some future developments.

2. Related Work

We will now describe some of the key works in the literature for MPI denoising,
starting from approaches dealing with measurements at single or multiple frequencies,
then focusing on some of the most recent deep learning methods which set the current
state of the art and finally mentioning some other methods combining ToF with other 3D
acquisition devices.
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Many approaches rely only on standard measurements from ToF cameras. A single
modulation frequency acquisition method is introduced by Fuchs et al. in [33], where
a two bounces scenario on ideal lambertian surfaces is considered. In [34], they refine
the approach by improving the reflection model and taking into account materials with
multiple albedos. In [35], Jiménez et al. start from a similar setting and then use an
iterative optimization algorithm to find the image which best fits the ToF measurements.
The cited approaches show a nice performance but prove to be quite slow due to the
high computation time of the algorithms employed, which makes them unfeasible for
real-time applications.

The method in [36] by Freedman et al. is instead based on multi-frequency ToF acqui-
sitions; they study MPI denoising as a LP minimization problem and propose an algorithm
which works in real-time relying on a precomputed look-up table (LUT). The approach
allows to estimate the backscattering information but the model is limited to a few peaks
related to specular reflections. Bhandari et al. [37] introduce instead a closed-form solution
for light rays bouncing a maximum of K times inside the scene, which however requires a
high number of acquisitions at different frequencies (2K + 1) to be implemented.

All the mentioned approaches restrict themselves to a simplified model, limiting
the maximum amount of bounces, or requiring only specular reflections inside the scene.
The need of more general models and the creation of bigger ToF datasets [19,38], opened
the way for data-driven models, which set the current state-of-the-art. In [18] Son et al.
designed a setup where a ToF camera is mounted on a robotic arm at acquisition time.
They then employ two neural networks for the denoising, the first one F for mapping
the ToF measurements to the correct range and the second G to correctly detect the object
boundaries. Marco et al. [19] proposed an encoder-decoder convolutional neural network
(CNN) architecture where the encoder was trained in an unsupervised way over real
data, while the decoder instead was trained with supervision on a synthetic dataset they
introduced. However, the approach is limited to single frequency data, thus limiting the
MPI removal capabilities. In the following years, different architectures and techniques
were investigated—in [24], the authors proposed a CNN for multi-frequency data with
two separate branches: a coarse network analyzing the global structure of the scene at a
low resolution and a fine one capturing the small details at a local level. In [38], the authors
propose a two-stage architecture combining an encoder-decoder pipeline with a kernel
prediction network. Up to that point however, the evaluation of the models was carried out
mainly on synthetic data, with only [17,38] showing a qualitative evaluation on real images,
and [24] showing the performance of their approach on a real dataset, but at the same
time highlighting a clear gap between synthetic and real. Focusing on this issue, in 2019
Agresti et al. [20] provided two novel realistic ToF datasets and devised an Unsupervised
Domain Adaptation (UDA) strategy based on adversarial learning which showed impres-
sive performance both on synthetic and real world data. In 2020, Dong et al. [32] introduced
a residual pyramid network, which focused on MPI patterns at different resolutions for a
better prediction.

Table 1 shows a high-level of comparison between the main related works and the
approach we introduce in this paper. To the best of our knowledge, this is the first work
which exploits deep learning to reconstruct transient information starting from iToF data.
The trend is to solve the MPI denoising task in the depth domain [20,24,32], with only
SRA [36] trying to also predict the associated transient information. The proposed method
is build on a sparse physical model for the MPI effect, similar to those adopted in [33–37],
but employs a CNN for the predictions. It relies on iToF data acquired at multiple modula-
tion frequencies by a standard ToF camera, such as many of the most recent best performing
works in the field [17,20,24,36,38], and it turns out to be one of the simplest in terms of
computational complexity.
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Table 1. Summary of the main state-of-the-art Multi-Path Interference (MPI) correction methods.

Solution # of Frequencies Complexity MPI Type Output

Fuchs et al. [33,34] Iterative 1 High 2-sparse Depth
Jiménez et al. [35] Iterative 1 High 2-sparse Depth
SRA [36] LP K > 1 Avg M-sparse Backscattering
Bhandari et al. [37] Deterministic 2K + 1 High K-sparse Depth
Son et al. [18] FCN Low General Depth + Object Boundary
DeepToF [19] CNN 1 High General Depth
Agresti et al. [24] CNN 3 Avg General Depth
Guo et al. [38] CNN 3 Avg General Depth
Su et al. [17] CNN 2 High General Depth
Agresti et al. [20] CNN + UDA 3 High General Depth
Dong et al. [32] CNN 1 High General Depth
Our Approach CNN 3 Low 2-sparse Backscattering

On a different note, the works in [39–41] combine stereo and ToF measurements for
MPI denoising. In [42–44], the authors propose a modified ToF light source which projects
a set of different spatial patterns over the scene and use the additional spatial information
to recover a clean ToF signal.

3. Proposed Approach

This section is devoted to an introduction and in depth description of the pro-
posed deep learning approach for MPI denoising. Following other works in the liter-
ature [19,20,32], we decided to rely on deep learning models for this work as they are
clearly outperforming other competing methods.

The main novelty we propose is the introduction of the transient information inside
our training pipeline. Transient data as we mentioned in Section 1, is closely related to
iToF information. Starting from Equation (8), and following the study done in [36], we will
express the relation between raw iToF measurements and the corresponding backscattering
into a simple matrix multiplication. Following that, we will introduce our model which
takes in input raw iToF measurements in order to predict transient information.

3.1. The Transient Imaging Prior

Before proceeding with the model description, we will present a simplified represen-
tation for Equation (8) describing MPI in ToF acquisition. This simplified representation
will be useful for the proposed method implementation. Equation (8) has an integral for-
mulation, which, however, is not practical when trying to train a neural network. For this
reason, we consider the discrete version of this equation by sampling the time interval of
integration into N time steps. This allows to rewrite the equation as:

v =
[
ei2π fmt0 . . . ei2π fmtN−1

] x0
...

xN−1

 = Φ′x, (9)

where we isolated the scene impulse response inside the backscattering vector x ∈ RN×1

and used the matrix Φ′ ∈ C1×N for the measurement model.
At the same time, it is quite useful to consider a set of acquisitions made at M different

modulation frequencies, as the distortion pattern due to interfering rays is frequency depen-
dent, it changes and therefore provides additional information regarding MPI distribution;
at the same time, this can also help getting a longer unambiguous range while keeping the
same accuracy in the depth domain [45].
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A quite straightforward generalization of Equation (9) leads to the following expression:

v =

 v0
...

vM−1

 =

 ei2π f0t0 · · · ei2π f0tN−1

...
. . .

...
ei2π fM−1t0 · · · ei2π fM−1tN−1


 x0

...
xN−1

 = Φx, (10)

where v ∈ CM×1 is the stack of the raw camera measurements in the complex domain at
different modulation frequencies, while Φ ∈ CM×N .

In conclusion, the problem we are dealing with is the following: given the raw
measurements v and matrix Φ, we want to recover the backscattering vector x. The hereby
presented problem is heavily under-constrained as N � M, and has an infinite amount
of solutions.

3.2. Training Pipeline

Deep neural networks can have issues when handling high-dimensional data [46,47],
and this is exactly the case of transient information; a backscattering vector can easily have
a few thousand entries in the temporal direction against a handful of iToF measurements,
a problem that can make the training of the architecture hard if not impossible. In order
to solve this issue, we decided to split the backscattering estimation task in two parts as
shown in Figure 2. On one side we have the backscattering model, which takes care of
the dimensionality reduction, while on the other we have the predictive model, the true
deep learning backbone of the approach. The learnable predictive model maps the iToF
measurements into a low dimensional space that is then expanded into the transient
information by the Backscattering model. This allows to greatly reduce the dimensionality
of the deep network output space making the training of the model feasible.

v Pθ

Predictive model

ẑ Bξ

Backscattering model

x̂

v̂ = Φx̂

Figure 2. Structure of the proposed approach.

As follows, we will describe in depth the two components and finally conclude the
section considering the loss functions used for training.

3.2.1. Backscattering Model

The main task of the backscattering model is to compact the high dimensional transient
information into a representation that is easier to handle. Basically, the task of this module
Bξ is to map a latent variable z into the respective backscattering vector x:

Bξ : RL → Dx ⊆ RN , (11)

z→ x = Bξ(z), (12)

where L � N, ξ are in principle some trainable parameters and Dx is the domain of all
possible backscattering vectors. In more general settings, Bξ could be a generative model
such as a generative adversarial network (GAN) or a Variational Autoencoder offering a
precise mapping between a low-dimensional domain and the transient data. In practice
however, since our task is MPI denoising, we really just need an accurate localization of the
direct component (the first peak), while for the second global component a more concise
encoding can suffice.

For our implementation, we decided to use a simple model for the backscattering
vector, where just the two-rays interfering case is taken in consideration. This choice is
motivated by the practical consideration that in real scenarios the first and second order
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reflections are the ones containing the largest part of the energy of the backscattering
vector [48]. For this reason, we used as backscattering model a deterministic mapping
from a 4-dimensional z vector (z ∈ R4) to an approximated version of the backscattering
information. More in detail, the 4 values of the z representation are the amplitudes and
the path lengths of the first and the second interfering rays. The backscattering model has
the task of converting these 4 values to the approximated backscattering vector that will
be equal to zero on each entry apart from two peaks related to the first and the second
interfering rays.

3.2.2. Predictive Model

The deep learning part in our pipeline is the predictive model. Given an input
matrix of raw iToF measurements at different modulation frequencies, it outputs the
corresponding values in the latent domain Z . In practice, the predictive model is a highly
non-linear function Pθ(·), with parameters θ, that takes in input the vector v and produces
an estimation of the corresponding vector z, that we will call ẑ.

In order to better exploit the spatial information for the prediction on each pixel, we
consider a local neighbourhood around the pixel itself of size (2P + 1)× (2P + 1) as in
Figure 3, where P is a parameter that we experimentally set to 1 (each window is therefore
3× 3).

V Z

2P + 1

2P + 1 Pθ

Figure 3. Predictive model working at a local level.

In Figure 4, we show the shape of the proposed network. We employ a Convolutional
Neural Network whose first layer combines a weight kernel which retrieves information
from each pixel, and another small (2P + 1)× (2P + 1) kernel centered around the pixel
itself which takes care of the local information. The rationale behind this model is that even
though local spatial information is quite important, at the same time it is crucial to give a
great importance to the data carried by the central pixel itself. As we will show in Section 5,
the spatial information ensures a slightly better performance, but the central pixel itself
conveys already a degree of information which is sufficient for an accurate prediction.

[
Â1
Â2

]

V

[
T̂1
T̂2

]

Ẑ

· · · · · ·

Figure 4. Predictive model structure.
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We want to bring to the attention of the reader that the strength of the approach does
not rely for the most part on the quite reduced local information we provide (the kernels we
employed are only 3× 3) but on the global information that is inherently carried by each
pixel. Other works in the literature relied on quite complex training structures in order to
consider this critical piece of information as for example in [24], where a coarse network
was proposed that considers the global structure of the scene, or in [32], where a pyramid
structure tries to predict MPI at different resolution levels. The approach we propose does
not need any complex addition, since the global information is already present in the form
of transient data and already conveys the information regarding the scene structure. Even
if the two-peaks representation we consider may seem quite rough, it is still enough for an
accurate depth estimation as we will prove in Section 5.

3.2.3. Training of the Deep Learning Model

The training has been performed using a combination of two losses: a standard
supervised loss and a soft constraint which made sure the predictions were consistent with
the model defined in Equation (10). The latter, called measurement loss, ensures that our
prediction makes sense according to the raw iToF measurement we gave in input. Since
the matrix Φ is known, for any predicted backscattering vector x̂, we can compute the
corresponding vector v̂, which must be equal to the one we had in input for the prediction
to make any sense. In other words we can write:

Lm(v, Φx̂) = ‖v−Φx̂‖ = ‖v− v̂‖. (13)

This loss, of course, only ensures a soft constraint since as mentioned the problem
of Equation (10) is quite ill-conditioned. In order to get a meaningful result we therefore
make use of a reconstruction loss, which simply ensures that our prediction x̂ matches
with the ground truth x. While being a simple supervised loss, it still presents a non trivial
challenge as it is not that straightforward to define a suitable distance measure between
sparse, high-dimensional vectors. Some common choices like the MSE or MAE quickly fail
as we only have two meaningful values along a plateau of null entries. We need to define a
loss function which amplifies the error in the case predicted and true peaks have different
time and intensity components, and that at the same time keeps in lower consideration the
null entries.

The main idea is to treat the two backscattering vectors as two different Probability
Mass Functions (PMFs) and measure their statistical distance. The two distributions are
defined as follows:

px(n) =
xn

Xsum
px̂(n) =

x̂n

Xsum
where Xsum =

N−1

∑
n=0

xn, (14)

where we normalize for the ground truth values in order to avoid divisions by zero issues
when we have all-zero predicted vectors. The distance between the two is then computed
using a modified version of the Earth Mover Distance (EMD) which, unlike some other
divergence measures such as the Kullback-Leibler or Jensen-Shannon ones, does not require
the two PMFs to have a common support. The standard EMD is defined as follows:

EMD(px, px̂) =
N−1

∑
n=0
|Px(n)− Px̂(n)|, (15)

where Px(n) and Px̂(n) are the cumulative mass functions of the original distributions.
Starting from the previous expression, we define the reconstruction loss between original
and predicted backscattering vector according to a weighted Earth Mover Distance (EMDw)
as below:

Lr(x, x̂) =
1

NXsum
EMDw(px, px̂) =

1
NXsum

N−1

∑
n=0

wn|cn − ĉn|, (16)
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with cn and ĉn the cumulative functions of our backscattering vectors:

cn =
n

∑
n′=0

xn′ ĉn =
n

∑
n′=0

x̂n′ , (17)

while the weights wn are computed as:

wn =
1

W

W−1

∑
k=0
|cn−k − ĉn−k|, (18)

with W a suitably sized window that, in our experiments, was set to 100. The reason for this
modification was due to the fact that it is quite hard for the network to distinguish between
direct and global components when the two peaks are very close one to the other; what
tends to happen is that the first peak obscures the other, leading to predicting a single peak.
The solution proposed in Equation (18) consists in giving more importance to elements
which are preceded by other non-zero samples, thus balancing out the importance given to
direct and global components.

3.2.4. Bilateral Filtering

To further improve performances, an additional step was included in the pipeline in
order to deal with zero-mean error sources. In practice, the predicted depth goes through a
bilateral filter to get the final prediction. The parameters of the filter were experimentally
set to σd = 0.05 and σs = 10, where the first value corresponds to the standard deviation of
the kernel in the depth domain, and the second to the spatial one instead.

4. Training and Test Datasets

For the supervised optimization of the proposed approach we need a training set
containing raw ToF data together with the corresponding ground truth transient data. Note
that from geometrical considerations it is clear that the true depth value is always associated
to the shortest returned path that corresponds to the direct component, and therefore depth
information can be easily extracted from the transient scene. The acquisition of a real
dataset with transient ground truth, however, is quite a complex and time consuming task;
since no publicly available datasets of the kind exist, we had to rely on synthetic data.

For the training of the approach, we relied on the FLAT synthetic dataset introduced
in [38], which contains transient data. At first, we applied a depth equalization procedure,
in order to obtain a final distribution that is as uniform as possible. Then, the data was
processed as discussed in Section 3.2.1 with the addition of a clipping operation for the
intensity of the second peak, whose maximum value could be h2 ≤ 0.8h1, with h1 and
h2 the intensity of the two peaks. Finally, the input iToF values were computed from the
compressed transient information using the measurement model described in Equation (10)
with modulation frequencies of 20, 50 and 60 MHz. After the processing the data was
then split into a training and a validation set, made of 211200 and 2064 3× 3 patches
respectively. Note that no test set was built at this phase since the testing will be performed
on real images.

The performance in the depth estimation provided by the proposed approach is
evaluated on real-world scenes where no transient data is given. Since our objective
is MPI denoising, transient data is not required at the testing phase, all that is needed
are the raw measurements at the desired modulation frequencies and the corresponding
ground truth depth maps. From the predictions on the selected dataset, we can focus
on the first peak and use that to estimate the depth value of each pixel. The real-world
datasets on which we carry out our analysis are the three real ToF datasets S3, S4, S5
provided by Agresti et al. in the works [20,24]. All three datasets have been captured in a
laboratory environment without external illumination using the SoftKinetic ToF camera
DS541 at multiple modulation frequencies. For each scene, they provide unwrapped phase,
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amplitude and intensity, as well as depth ground truth. The datasets are in the depth range
between 58 and 203 cm.

In Table 2 we can see the resolution, number of images and acquired modulation
frequencies of the three datasets.

Table 2. Properties of the real-world datasets S3, S4 and S5. In this work we only used the data relating to the frequencies
marked in bold.

Dataset Type Depth GT Trans. GT No. Scenes Spatial Res. Modulation Frequencies

S3 Real yes no 8 320× 239 10, 20, 30, 40, 50 and 60 MHz
S4 Real yes no 8 320× 239 20, 50 and 60 MHz
S5 (box) Real yes no 8 320× 239 10, 20, 30, 40, 50 and 60 MHz

In particular, the dataset S3 will be used for validation while S4 and S5 will be our test
sets. Notice that, for all three considered datasets, we used only the data acquired at 20, 50
and 60 MHz as input for the proposed method.

5. Experimental Results

In this Section we are going to present some experimental results obtained running
the proposed approach for backscattering vector estimation.

The proposed network was trained on the simulated dataset described in Section 4
using the Adam optimization algorithm. The entire dataset was divided into batches of
1024 samples each, and the gradient at each iteration was computed on a single batch. We
run the training for a total number of E = 2000 epochs on a Nvidia GeForce GTX 1060 GPU.
The overall time required was around 6 h. To account for the noise always present in any
real-world ToF measurements, at each iteration a gaussian zero-mean random noise is
added to the real and imaginary parts of the simulated raw ToF data:

v = Φ x + η η ∼ N (0, σ2
v ). (19)

The Gaussian noise is independent and identically distributed across all the samples
and across all the acquired phasors at the different modulation frequencies. It is also
independently added to the real and complex component. Changing the noise at each
iteration helps avoiding overfitting and acts as a form of regularization. The network never
sees the same exact input data more than once. Moreover, it helps the network in learning
to denoise the input data, giving more importance to the more stable relationships between
the acquired phasors and less to small fluctuations around the average. In Section 5.1 we
will show this in more detail; for all other experiments, unless otherwise stated, we will
use noise with a standard deviation σv = 0.02. The choice of this value was performed as
mentioned in Section 5.1.

The best set of weights are chosen according to the network performance on the
real dataset S3, which we employ as a realistic validation set. The testing is then carried
out from a qualitative and quantitative point of view on the two real datasets S4 and S5
provided by Agresti et al. [20,24]. As anticipated in Section 4, the evaluations focus on the
degree of MPI correction, while a few comparisons concerning the reconstruction of the
transient component are reported in Section 5.1. The metric used to quantify the error in
the depth domain is the Mean Absolute Error (MAE).

Figure 5 reports the depth error maps obtained applying our method on the real
datasets S4 and S5. The average MAEs for raw ToF measurements at 60 MHz are respec-
tively 5.43 and 3.62 cm for S4 and S5; these errors are reduced to 2.60 and 2.12 cm for the
two datasets by the proposed method.
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(a) (b)
Figure 5. Depth error maps on the real datasets S4 (a) and S5 (b) obtained applying our method and a single frequency
prediction at 60 MHz. Blue colour indicates depth underestimation, while red colour indicates depth overestimation.
The dark blue areas are those for which we do not have ground truth depth available. The Mean Absolute Error (MAE) for
each scene is also reported.

Even if we are considering only two reflections, experimental results show good MPI
compensation capabilities, confirming that many real-world cases can be well approximated
by a two components reflection model. This is due to the fact that, since the light power
decays with the square of the distance, higher order reflections reaching the camera are very
dim. Moreover, real lambertian surfaces present always a fraction of specular reflections
and thus our assumption in first approximation holds also for those surfaces. From Figure 5
it is possible to see how our approach removes most of the MPI on wall surfaces and reduces
it in proximity of edges. The large amount of MPI on the floor surfaces is also consistently
reduced even if some depth reconstruction errors are still present. These areas are probably
subject to more complex reflection patterns and are therefore more error prone. Looking at
the network output at some significant points (Figure 6), it is evident that it has learnt to
discriminate between MPI-free and MPI-affected pixels, introducting the global component
only when it is necessary to compensate for the MPI effect and providing a more reliable
depth estimation.

Figure 6. Network prediction for selected pixels in an image. The dashed lines correspond to the depth ground truth values
while the red plots indicate the predicted backscattering vectors.
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We have performed a thorough consistent comparison between different state-of-the-
art algorithms for MPI compensation, studying how our approach behaves with respect
to the others techniques. The compared algorithms are the SRA method proposed by
Freedman et al. [36], DeepToF proposed by Marco et al. [19] and the two methods proposed
by Agresti et al. [20,24]. Table 3 reports the MAEs and the relative errors for the compared
algorithms on the real datasets S4 and S5, while Figure 7 shows a qualitative comparison
between the competing approaches. The relative errors are computed as the ratio between
the MAE of the approach and that of the reconstruction based on the highest input fre-
quency (60 MHz for all the approaches but for DeepToF [19], which uses 20 MHz). From
Figure 7 it is possible to notice how our approach achieves a much better MPI reduction on
the floor and wall surfaces if compared with SRA and DeepToF. It also outperforms [24]
and achieves results very similar to [20] even if no real depth acquisitions have been used
for the training.

Table 3. Quantitative comparison between several state-of-the-art Multi-Path Interference (MPI)
correction algorithms on the real datasets S4 and S5. Each row reports the depth MAE and the relative
error obtained applying the corresponding method w.r.t. the maximum employed frequency (60
MHz for all methods except 20 MHz for [19] (*)).

Method
S4 Dataset S5 Dataset

MAE Relative MAE Relative
[cm] Error [cm] Error

Single frequency (20 MHz) 7.28 - 5.06 -
Single frequency (60 MHz) 5.43 - 3.62 -
SRA [36] 5.11 94.1% 3.37 93.1%
DeepToF [19] 5.13 70.5% * 6.68 132% *
+ calibration 5.46 75% * 3.36 66.4% *
Agresti et al. [24] 3.19 58.7% 2.22 60.5%
Agresti et al. [20] 2.36 43.5% 1.66 46.1%
Our Approach 2.79 51.4% 2.27 62.7%
Ours + bilateral filtering 2.60 47.9% 2.12 58.6%
Our Approach (without spatial correlation) 3.43 63.2% 2.52 69.6%
Ours + bilateral filtering 2.99 55.1% 1.88 52.0%

On real-world scenes our approach achieves performance comparable to the other
state-of-the-art algorithms. It produces an error of 2.60 cm on S4 and an error of 2.12 cm
on S5, performing better than all other methods, with the exception of the unsupervised
domain adaptation technique of Agresti et al. [20] which produces test errors of respectively
2.36 and 1.66 cm. We stress the fact that the unsupervised domain adaptation technique
has been adapted using unsupervised real data similar to the one in S4 and S5, while our
approach relies only on a completely different synthetic training dataset. It is remarkable to
notice that our method clearly outperforms the SRA method [36], which is the one adopting
the most similar setup to ours. We both acquire data at three modulation frequencies and
use a physical model to describe the MPI effect under the specular reflections assumption.
The MAEs on datasets S4 and S5 obtained by SRA are respectively 5.11 and 3.37 cm.
Figure 8 shows the depth profiles estimated in proximity of a corner using the compared
algorithms. Also in this case our network is able to reconstruct depth values which closely
resemble the ground truth.
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Figure 7. Qualitative comparison between several state-of-the-art MPI correction algorithms on some real scenes sampled
from S4 and S5. On the left side the depth ground truth is shown, while the others display the error between the prediction
of each method and the ground truth.

Figure 8. Depth profile estimation in proximity of a corner. The left plot reports the depth ground map, while the right
one compares with our approach the depth profile over the highlighted line on the left image, estimated by different
state-of-the-art MPI correction algorithms.

Concerning the complexity of the compared algorithms, note that our approach is
able to achieve state-of-the-art performance using around 22k learnable parameters (14k
in the version without the exploitation of the spatial correlation), approximately an order
of magnitude less with respect to the 145k parameters required by the two works of
Agresti et al. [20,24]. The DeepToF method [19] requires even more parameters (330k).
For SRA [36] the complexity is estimated by the size of the associated look-up table (LUT).
Fixed the number L of discretization steps for the input raw iToF measurements, the size of
the LUT grows as L4.

As a final study, we decided to investigate the goodness of the prediction of our
network for the intensity and time components of the two predicted peaks (corresponding
to direct and global component). Since the S3, S4 and S5 dataset do not have transient
information, we relied on the synthetic validation dataset we introduced in Section 4
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in order to compare our approach to [36], which is the only one among the compared
approaches that estimates the second peak. Comparing the accuracy of the reconstruction
of the global component is quite straightforward—from Table 3 we can retrieve the depth
information (which is linked to the time displacement) and we can see that our method
reaches significantly better results (2.60 and 2.12 cm on the S4 and S5 datasets respectively
vs. 5.11 and 3.37 of [36]), while concerning the intensity values of the first peak we obtained
a MAE of 0.0783 for our method against 0.1905 for SRA. For the second peak, since it is
not always present, we considered the capability of the approaches to correctly detect its
presence with the well known precision-recall measures. The precision (number of pixels
correctly identified as having a second peak over the total amount that have it), is 0.945
for our approach against 1 for SRA. However, these results are due to the fact that SRA
overestimates the presence of the second peak as shown by the recall measure (number of
pixels correctly identified as having a second peak divided by the total amount of peaks
identified), with a result of 0.839 for our approach against 0.675 for SRA. Our approach
also better estimates the intensity of the second peak with a MAE of 0.0702 against 0.0944
of SRA [36].

5.1. Ablation Studies

In this section, we present some ablation studies to evaluate the impact of some of the
employed design choices. In particular we focus on the addition of noise during training,
on the exploitation of the spatial correlation between pixels and finally on the choice of the
loss function.

Firstly, we will consider the addition of noise to the simulations. As we have men-
tioned, there is a loss in performance when switching from synthetic to realistic data, due to
the different characteristics of the two sets. The addition of noise helps the generalization
capabilities of the network and reduces the gap.

We repeated the training multiple times, varying the standard deviation of the noise
σv added to the input data. At each epoch we monitored the behaviour of measurement
error Lm, reconstruction error Lr and overall error L = Lm + Lr, as well as the MAE on
the depth estimated using the predicted output backscattering vector. Figure 9 reports the
behaviour of the considered metrics during the optimization on both the synthetic training
and validation sets. As expected, the higher the noise level, the larger the errors of the
predictive model will be for the synthetic data. More interesting is instead the behaviour
on real data: in Figure 10a we show the performance of the network trained without noise
on the dataset S3 compared to a direct estimation of the depth from the component at
60 MHz. It is clear that, after a promising start, the network performance starts quickly
degrading as it better learns the synthetic dataset; as the trend goes on we quickly get to the
point where its performance gets worse with respect even to a rough estimation based on a
single frequency component. The opposite trend is instead shown in Figure 10b, where
we display the network performance over the S3 dataset after training the model with a
noise std of σv = 0.02. The network quickly outperforms the naive reconstruction based on
a single modulation frequency while showing an overall better behaviour.

In Table 4, we show the performance of our network on the S3 dataset for different
noise levels. While a small amount of noise helps with the generalization, if it gets too high
we instead make the task too hard to solve. Experimentally, a noise std of σv = 0.02 turned
out to be the best compromise, as can be seen in the table.

Table 4. MAE on the S3 dataset for different amounts of noise. Window size is 3× 3. The best
performance (in bold) is achieved with a noise standard deviation σv = 0.02.

Mean Absolute Error for Noise with Different Standard Deviations (σv)

σv 0.00 0.01 0.02 0.03
MAE [cm] 4.02 2.65 2.58 2.83
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Figure 9. Training curves obtained running the network optimization for noise levels σv = {0.00;0.01;0.02;0.03} on training
and validation sets. The metrics monitored are, from left to right, the measurement error, the reconstruction error, the overall
error and the MAE on the depth estimated using the predicted output backscattering vector on synthetic data.
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(a) Training without noise (σv = 0)
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(b) Training with noise (σv = 0.02)
Figure 10. Performance of a network trained on synthetic data with or without noise on the S3 dataset.

Another line of investigation is the relevance of the spatial correlation in the final
prediction. The idea is that the network should take advantage also from the local infor-
mation coming from a small neighbourhood around each pixel to produce a more reliable
result. To this end, we trained our network for increasing kernel sizes and evaluated its
performance on the real datasets. In Table 5 we can see that we have the best results for a
window size of 3× 3 pixels around the central one, while they get worse for increasing
sizes. Focusing on the network trained without spatial correlation (1× 1 windows) the
average MAEs obtained over S4 and S5 are respectively 3.43 and 2.52 cm, which turn into
2.99 and 1.88 cm after some bilateral filtering. Experimental results confirm our intuition.
In the noise-free case the two networks converge to very similar results, while in the case
of noise the spatial correlation helps providing a smoother prediction making the network
more resilient against noise. Figure 11a reports the depth error maps we get on dataset S3
without exploiting the spatial correlation.
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Table 5. MAE on the S3 dataset for different window sizes. Noise level is σv = 0.02. The best
performance (in bold) is achieved with a 3× 3 window size.

Mean Absolute Error for Different Window Sizes

Window size 1× 1 3× 3 5× 5 7× 7
MAE [cm] 2.72 2.58 2.61 2.80

(a) (b)
Figure 11. (a) Depth error maps on dataset S3 obtained without spatial correlation. (b) Predicted depth error maps obtained
with increasing kernel size on three real scenes, from left to right respectively P = 1, 2 and 3.

In Figure 11b, we show the results obtained on three real scenes for values of P = 1, 2
and 3 (corresponding to windows of size 3× 3, 5× 5 and 7× 7). It is quite clear how a
bigger window size generates some strong artifacts and leads to over-correcting MPI. One
more time we stress the importance of linking the final prediction for each pixel to the
corresponding input pixel since it is the one which carries the most information, using only
a small amount of spatial correlation to refine the estimation.

To conclude the discussion on spatial information, notice that considering only a very
small window size around each pixel also improves the generalization capabilities of the
network. As pointed out by the ablation, a direct approach such as the one we attempted
(increasing the window size) leads to not very satisfactory performances, but probably
the spatial information could be exploited by using a more refined branch (e.g., a second
architecture in parallel with a large window size, that only considers the high level structure
of the scene, similarly to [24]).

The choice of a proper loss function is a crucial point in the machine learning pipeline.
As already stated, some problems arise with the reconstruction loss function Lr since we are
dealing with highly sparse vectors and in this case the gradient likely vanishes. In our study
we evaluated many different loss function models in order to identify the best suitable one
for our task. We started from the common MAE and MSE but they produce an all-zero
output backscattering vector in most of the cases. Intuitively, looking at the behaviour of
these loss functions in Figure 12 it is evident that applying the gradient descent algorithm
the solution easily gets stuck on bad local minima. Then, we shifted to cross-correlation
based loss functions obtaining a significant improvement in the final prediction but they
still are subjected to numerical instabilities during the optimization phase. The best results
came from the weighted Earth Mover Distance introduced in Section 3.2.3 which exhibits
good convergence properties and turns out to be able to drive the algorithm towards the
optimal solution in a smooth fashion.
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Figure 12. Behaviour of MAE, MSE and Earth Mover Distance (EMD loss functions varying amplitude Â and position T̂ of
the predicted direct component).

6. Conclusions

In this paper, we have presented a novel approach for MPI denoising based on
transient information. Since neural networks have issues when handling high dimensional
data, which is exactly what backscattering vectors are, we split the problem in two parts—a
predictive model and a backscattering model. The predictive model takes the input iToF
measurements and predicts an encoded version of the transient information, while the
backscattering model links each encoded representation to the respective transient one.
In this work, the backscattering model has been kept fixed since our aim was MPI denoising
rather than transient data reconstruction. In practice, while the direct component has been
kept, the global component has instead been summarized into a single peak. This allowed
to build a simple but effective model where the neural network only had to predict two
peaks from the input raw measurements.

Even if all the trainings have been performed on synthetic data, the testing has been
done on real iToF data. Our approach showed close to state of the art performance,
without the need of a heavy or complex structure or of a large amount of training data (our
model contains only a few thousands parameters).

Our work leaves open several future research directions, first of all an extension of the
backscattering model which as of now is quite simple and an extension of the approach
employing a similar model for transient data reconstruction. We will also consider more
advanced architectures in order to exploit the spatial context in the backscattering estimation.
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