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ABSTRACT

The presynaptic protein a-synuclein is involved in
several neurodegenerative diseases, including
Parkinson’s disease (PD). In rare familial forms of
PD, causal mutations (PARK1) as well as multi-
plications (PARK4) of the a-synuclein gene have
been identified. In sporadic, idiopathic PD, abnormal
accumulation and deposition of a-synuclein might
also cause degeneration of dopaminergic midbrain
neurons, the clinically most relevant neuronal popu-
lation in PD. Thus, cell-specific quantification of
a-synuclein expression-levels in dopaminergic
neurons from idiopathic PD patients in comparison
to controls would provide essential information
about contributions of a-synuclein to the etiology
of PD. However, a number of previous studies
addressing this question at the tissue-level yielded
varying results regarding a-synuclein expression. To
increase specificity, we developed a cell-specific
approach for mRNA quantification that also took
into account the important issue of variable RNA
integrities of the individual human postmortem
brain samples. We demonstrate that PCR –amplicon
size can confound quantitative gene-expression
analysis, in particular of partly degraded RNA.
By combining optimized UV-laser microdissection-
and quantitative RT–PCR-techniques with suitable
PCR assays, we detected significantly elevated
a-synuclein mRNA levels in individual, surviving
neuromelanin- and tyrosine hydroxylase-positive
substantia nigra dopaminergic neurons from

idiopathic PD brains compared to controls. These
results strengthen the pathophysiologic role of
transcriptional dysregulation of the a-synuclein
gene in sporadic PD.

INTRODUCTION

The progressive degeneration of dopaminergic (DA)
midbrain neurons, in particular within the substantia
nigra (SN), and in consequence the dramatic reduction of
DA innervation in the striatal target areas is the clinically
most relevant, pathological hallmark in Parkinson’s
disease (PD) and related neurodegenerative disorders
(1,2). The etiology for most forms of PD is still unclear
(sporadic or idiopathic PD, iPD), however, for some rare
familial forms of PD, several underlying causal gene-
mutations have been identified (3,4). Alpha-synuclein
(a-SYN) has been identified as the first causative gene
(PARK1) in familial forms of Parkinson’s disease,
harboring dominant gain-of-function mutations (5).
Human a-SYN is coded by the SNCA-gene (=NACP;
4q21; 6 exons) and exists in three distinct splice variants,
140 amino acids (full length), 126 amino acids (no exon 3)
and 112 amino acids (no exon 5) (6–8). Mutations in
SNCA lead to a range of neuropathologic phenotypes,
from PD to diffuse Lewy-body disease or dementia with
Lewy-bodies (DLB) (9). Lewy-bodies—neuronal protein-
inclusions—are a hallmark of iPD, and other neurode-
generative diseases (10), and a-SYN is one major
constituent of Lewy-bodies (11–13). Point-mutations
found in SNCA reduce a-SYN protein degradation by
lysosomal and/or proteasomal pathways (14), and lead to
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accumulation and aggregation of a-synuclein in the cell
(15). Furthermore, increased expression of wild-type
a-SYN due to SNCA gene duplications or triplications
has also been identified as causes for Parkinsonism
(PARK4) (16–19). These findings led to the view that
elevated levels of a-synuclein expression might be suffi-
cient to cause PD in a dose-dependent manner (20–22).
This assumption is supported by the findings that
transcriptional dysregulation of the SNCA gene (23) as
well as posttranslational processing of wild-type a-SYN
(7) might contribute to the neurodegenerative process of
PD. Furthermore, overexpression of wild-type SNCA is
sufficient to kill dopaminergic neurons in several animal
models (20,24,25), further substantiating the importance
of transcriptional control of a-SYN-levels. Importantly,
the Parkinsonism-inducing toxin MPTP and other forms
of neuronal injury increase a-SYN expression in rodent
DA neurons, thus suggesting an a-SYN-dependent final
pathway of DA neurodegeneration (26,27). Accordingly,
DA neurons from a-SYN KOmice are resistant to MPTP-
induced neurotoxicity (28,29). Surprisingly, single a-SYN
KO-, or double a-, b- and/or g-synuclein KO-mice are
viable, fertile and display no major phenotype (30–32).
These findings suggest that a-synuclein is not fundamen-
tally important for the cell, and its spectrum of physiolo-
gical roles for synaptic neuronal functions are still not clear
(33,34). Dopamine-dependent selective neurotoxicity of
a-SYN has been described (35). However, a neuroprotec-
tive role of presynaptic a-SYN acting as co-chaperone for
the formation of SNAP/SNARE complexes has also been
demonstrated in a mouse model of neurodegeneration
(32), arguing that transcriptional control of the SNCA-
gene might be important in both directions. Given these
important—but mechanistically still unclear—roles of
a-SYN in context of neurodegeneration and PD (36),
it is mandatory to conclusively answer the question
whether a-SYN gene-expression is up- or down-regu-
lated, or unchanged in dopaminergic neurons from iPD
brains, in comparison to age-matched controls. Up to
now, evidence for changes of a-SYN expression in
human iPD midbrain-tissues in both directions have
been reported (37–42). However, tissue-based studies
cannot directly compare a-SYN expression in dopami-
nergic midbrain neurons from control and PD brains, as
these approaches only report averaged expression-levels
across a complex multitude of neuronal and nonneuronal
cell-types present in midbrain. Even more, the relative
number of DA neurons in substantia nigra-/midbrain-
tissue differs dramatically among individual PD brains as
well as between PD brains and controls, which renders
tissue-based approaches in this case even more proble-
matic. Another crucial factor that will also seriously
affect gene-expression studies using human postmortem
material is caused by case-to-case variations in mRNA
quality/integrity of the individual brain samples, due to
e.g. clinical differences in end-stage disease (e.g. degree of
cerebral ischemia, age and differences of medication) as
well as significant differences in postmortem factors like
the delay between death and tissue collection, tissue-pH
and the protocol for preservation/freezing of the human
tissue, respectively (37,39,41,43–45). Thus, in order to

overcome the combination of these confounding factors
of tissue-based approaches and variable RNA qualities,
gene-expression studies should combine cell specificity
with a rigorous assessment and consideration of distinct
and suboptimal mRNA integrities. Here, we describe,
validate and utilize such an optimized target-cell-specific
quantitative approach that combines contact-free UV-
laser-microdissection-based selective sampling of indivi-
dual DA SN neurons from human postmortem iPD
midbrain-tissue and respective controls, and subsequent
quantitative real-time RT–PCR gene-expression analysis.
We detail and discuss our specific experimental design
and interpretation of results, given that RNA integrities
of different individual human brain samples were not
homogeneous. By applying this protocol, we detected
about 6-fold higher a-SYN mRNA-levels in surviving
neuromelanin- and tyrosine-hydroxylase-positive DA SN
neurons from PD patients compared to those of
unaffected controls. These experimental findings support
the hypothesis that transcriptional upregulation of
a-SYN does indeed exist in the DA SN neurons, the
essential target population in iPD.

METHODS

Preparation and cryosectioning of fresh mouse
brains for UV-LMD

For data shown in Figure 2, 1-month-old male C57Bl/6
mice from our breeding colony were deeply anesthetized
with isoflurane (Abbot) and decapitated. Brains were
quickly removed, and a coronal tissue-block containing
the midbrain was cut and mounted with tissue freezing
medium (Jung), and immediately frozen by insertion into
the snap-freeze holder of a cryostat (Leica CM1850). After
equilibration at �188C for 30min, 12 mm serial coronal
cryosections of mouse midbrains were cut and mounted on
RNAse-free UV-C-treated membrane slides (1mm PEN-
membrane, Microdissect). A fresh, ethanol-cleaned single-
use blade (Leica Type 819) was used for each brain. All
animal-procedures were in accordance with the German
guidelines (approved by the Regierungspräsidium Giessen,
Germany).

Cryosectioning of frozen human midbrain tissue blocks

For data shown in Figures 3–5 and Tables 1 and 2, native
cryoprotected (�808C) human midbrain tissue containing
the substantia nigra was provided as horizontal tissue-
blocks by the German BrainNet (www.brain-net.net;
Grant-No. GA 28). Further available details of all
human brain samples analyzed in this study are specified
in Table 1. Upon arrival, the human midbrain tissue-
blocks were cryospotted with mounting medium (Jung)
onto UV-C-treated cork discs and long-term stored
in boxes at �808C. For cryosectioning, the tissue was
removed from �808C storage, equilibrated at �358C for
20min and afterwards cut into 12 mm sections at �198C
in a cryostat (Leica CM1850). The human midbrain
cryosections were mounted on RNAse-free UV-C-treated
membrane slides (1mm PEN-membrane, Microdissect).
A fresh, ethanol-cleaned single-use blade (Leica Type 819)
was used for each human brain. All experiments were
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in accordance with the ethic commission of the
Philipps-University Marburg (AZ 35/06) and Ulm (277/
07 - UBB/se).

Fixation and staining of mouse- and human-brain
cryosections prior to UV-LMD

The fixation and staining procedure of cryosections was
the same for mouse and human brain sections: immedi-
ately after cryosectioning and mounting on PEN-
membrane slides, the sections were shortly fixed with
RNAse-free ethanol [75% at �208C, 75%, 95%, 100%
(Roth), 100% with molecular sieve 0.3 nm (VWR), at
room temperature], stained with sterile-filtered cresylviolet
(Sigma, 1% solution in 100% ethanol) and dried in a
chamber with Silica Gel (Merck) for at least 40min at
room temperature before use for experiments or long-time
storage. For long-term storage, either directly after cutting
and fixation/staining, or after UV-laser-microdissection,
LMD slides were placed upright in a sterile 50ml Falcon
tube with Silica Gel in the conus, sealed with parafilm and
stored at �808C. Before LMD usage of frozen slides, these
sections were allowed to equilibrate (in falcon tube on
silicagel) for 15min at �208C, followed by 15min at 48C
and finally for 15min at room temperature, prior to
opening of the falcons and UV-LMD of the sections.

Tissue RNA extraction, RINmeasurements and
cDNA synthesis

Total RNA of human brain tissue was extracted from
spare slices and chippings obtained during the cryosection
procedure, without fixation and cresylviolet-staining.
RNA from these sections was extracted according to the
manufacturer’s instructions using suited RNAeasy kits
(Qiagen). Eluted total RNA was precipitated with 1/10 vol
sodium acetate (Ambion) and 3 vol of 100% ethanol
(Sigma) in the presence of 1 mg glycogen (Ambion) and
300 ng poly-inosin (Sigma). The precipitated RNA was
washed with 80% ethanol, resuspended in 2U/ml
SUPERase-In (Ambion) and stored at �808C. For
human brains, RNA integrity numbers (RIN) were
determined with the Agilent 2100 Bioanalyzer and the
RNA 6000 Nano LabChip Kit (46) from the RNA
isolated from unfixed, unstained spare cryosections and
chippings. Reverse transcription of extracted total RNA
was carried out in 1� first-strand buffer (Invitrogen),
10mM DTT (Invitrogen), 400U SuperScriptII
(Invitrogen), 0.5mM dNTPs (Pharmacia), 5 mM random
hexamer primer (Roche) and 40U SUPERase-In
(Ambion) in a final volume of 10 ml for 2 h at 378C
(Thermomixer, Eppendorf) as described (47).

UV-Laser-microdissection and cDNA synthesis of
microdissected cells

A contact-free Leica LMD6000 UV-Laser microdissection
system (diode-laser 355 nm; Leica) was used. Cresylviolet-
stained neurons were visualized and cut under brightfield
(phase contrast, 63�-fold magnification). Individual
neurons were harvested by gravity directly into an
RNAse-free UV-C-treated cap of a 0.5ml, nuclease free
thin-walled reaction tube (Applied Biosystems). Successful

harvesting was controlled by visual inspection of the cap.
A mixture for combined cell-lysis and cDNA synthesis
was freshly prepared for each experimental day [0.5%
NP-40 (Roche Diagnostics), 5U SUPERaseIn (Ambion)
0.5mM dNTPs (Pharmacia), 5 mM random hexamer
primers (Roche), 500 ng poly-inosin (Sigma), 10mM
Tris–HCl (Sigma), 10mM DTT (Sigma) in 1� first-
strand buffer (Invitrogen)], and was added directly into
the cap. The tube (thin-walled PCR, Applied Biosystems)
was closed, incubated upside down for 2min at 728C
(Combibox, Thermostat, Eppendorf), cooled on ice for
1min, spun down for 60 s full speed (MiniSpin,
Eppendorf) and quickly cooled on ice for 10 s, prior to
adding 60U reverse transcriptase (SuperScriptII,
Invitrogen). cDNA synthesis was carried out in a
final volume of 5 ml at 388C overnight (Combibox,
Eppendorf).

Qualitative and quantitative PCR

Qualitative and quantitative real-time single cell PCR was
carried out essentially as described (47,48). For sensitivity
experiments, mouse cDNA was split and 80% was used as
template for the qualitative marker PCR and 2� 10% for
Eno2 real-time PCRs (duplicate reactions). Mouse-
primer-sequences for qualitative marker PCR are as
described (48), mouse Eno2 assay: Mm00469062_m1
(FAM, and nonfluorescent quencher-labeled), PCR frag-
ment size 76 bp. For analysis of human LMD samples,
10% aliquots of cDNA (estimating about 1.5 cells) were
used to study the expression of each gene. Real-time
TaqMan assays were either predesigned by Applied
Biosystems or self-designed (Primer Express software
1.5, Applied Biosystems). All predesigned assays were
labeled with FAM as reporter and a nonfluorescent
quencher. The two self-designed assays (TH and ENO2
assay A=ENO2-A) were labeled with FAM as reporter
and TAMRA as quencher. The self-designed TH
assay detected all three TH transcript variants. Human
TH: Primer: F-1117-GTCCACGCTGTCATGGTTCA;
R-1190-CGGCACCATAGGCCTTCA; Probe: 1145-CC
CGTTCTGCTTACACAGCCCGAA; fragment size:
73 bp; (ENO2-A): Primer: F-1053-GGCACTCTACCAG
GACTTTGTCA; R-1161-GATCCCTACATTGGCTGT
GAACTT, Probe-1079-ACTATCCTGTGGTCTCCATT
GAGGACCCATT; fragment size: 108 bp. Applied
Biosystems identifying assay IDs: human ENO2 assay
B=ENO2-B: Hs00157360_m1, fragment size: 77 bp;
human a-SYN: HS00240906_m1, fragment size: 62 bp.
All assays were tested for performance and reproducibility
by generation of relative standard curves using serial
dilutions of cDNA generated from brain tissue as
templates (over three to four magnitudes, triplicate
reactions). Assay performance was assessed on serial
dilutions (1:1000, 1:10 000, 1:100 000) of human cDNA
derived from SN-tissue [human brain substantia nigra
Quick clone cDNA, generated from poly(A)+ RNA;
Clontech, 5.6 ng/ml, determined with Picodrop photometer
(Biozym)] by analysis of standard deviation for replicates
and slopes of standard-curves as described (47,49). cDNA
expression levels of small cell pools were calculated in
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regard to assay performance derived from the respective
total cDNA standard curves (slope and Y-intercept of
standard curves) as: 10[(Ct�Y-intercept)/slope] and normal-
ized to cell-numbers. Expression levels are given as
pg-equivalents of total cDNA derived from SN-tissue
per cell (standard curve quantification). Slopes and
Y-intercepts for human a-SYN, TH and ENO2-B were
�3.41 and 37.26, �3.47 and 37.59 as well as �3.25 and
36.93, respectively. For mouse Eno2, standard curve was
generated using cDNA, derived from poly(A)+ RNA
from mouse midbrain-tissue; slopes and Y-intercept
were �3.54 and 43.2, respectively. Data were not normal-
ized to a reference gene. Reverse transcription conditions
were the same for all LMD pools.

Statistics

All data were analyzed with Excel (Microsoft) or Igor
(Wavemetrics) software, and given as mean�SEM. To
evaluate statistical significance, we used Student’s t-tests,
paired t-tests and ANOVA-analysis. Normally distribu-
ted, parametric data were compared by a two-tailed,
unpaired t-test. A value P< 0.05 was considered to be
statistically significant and indicated by asterisk (P< 0.01
and P< 0.001 indicated as �� and ���, respectively).

RESULTS

Here, we detail a novel protocol for contact-free UV-
Laser-microdissection (LMD) and subsequent RT–PCR-
based quantitative gene-expression analysis of single cells
and homogeneous small cell pools, optimized for human
postmortem tissue. It was developed, optimized and
evaluated using a Leica LMD6000 diode-laser (355 nm)
setup (50,51). Figure 1 illustrates the general principle
of this technique as well as the experimental design of this
study for the analysis of a-SYN mRNA levels in
individual neuromelanin-positive [NM(+)] DA SN neu-
rons from human iPD brains and controls. To minimize
handling steps, we performed cell lysis, cDNA synthesis
and qualitative PCR in the same tube in subsequent
reactions without a distinct RNA isolation step (see
Methods section). An important prerequisite for reliable
quantitative gene-expression analysis of LMD-samples
is that the RNA quality does not progressively decrease
with increasing LMD-harvesting time. In addition,
in particular when working with precious human tissues,
long-term storage of fixed, stained sections as well as re-
use of sections for LMD is highly desired. Thus, as
illustrated in Figure 1 and demonstrated in Figure 2, we
established and optimized a protocol for sectioning,
staining and UV-LMD of brain tissue that allowed
(i) long-term storage and re-use of the tissue sections,
and (ii) UV-LMD collection of cells over a period of at
least 7 h, both without detectable decrease of RNA
quality. As shown in Figure 2, we assured that our
procedure allowed long-time storage of fixed, stained
sections at �808C after LMD and re-use of sections
without detectable loss of RNA quality by harvesting
small pools of 15 individual SN DA neurons from coronal
mouse-brain sections via UV-LMD, and comparing both

qualitative marker-gene expression as well as quantitative
real-time PCR results for neuron-specific enolase in
parallel. Figure 2A (left panel) illustrates the typical
localization of SN DA neurons in coronal mouse brain
sections and UV-LMD of the whole substantia nigra pars
compacta (SNpc) tissue. Figure 2B shows the UV-LMD
harvesting procedure of individual cresylviolet-stained
neurons from mouse-brain SNpc. Successful harvesting
was verified by optical control of the reaction tube cap
after LMD (Figure 2B, lower right panel). After LMD,
slides with tissue sections were stored at �808C in a
specially developed storage jar (see Methods section for
details). After 1–2 weeks, we thawed the same sections and
again collected similar SN DA pools for respective gene-
expression analysis. Positive markers for SN DA neurons
were: tyrosine hydroxylase (TH), the rate-limiting enzyme
for dopamine synthesis, the dopamine transporter (DAT),
the dopamine receptors (in particular D2 long and/or
short splice variants) and G-protein coupled inwardly
rectifying potassium channels (Girk2). Calbindin-d28k
(CB), is expressed in small subpopulation of SN DA
neurons (as shown in Figure 2C, third panel), L-glutamate
decarboxylase 67 (GAD67) is expressed in GABAergic
neurons and glial fibrillary acidic protein (GFAP) is a
marker for astroglial cells. Expression of all tested genes
was detected at tissue level (LMD of a whole substantia
nigra containing dopaminergic, GABAergic and astroglial
cells (52) (compare Figure 2A, right panel). In contrast, a
reproducible expression pattern of only the expected
subset of selective DA marker genes (TH, DAT, Girk2,
D2) but not those of GABAergic neurons (GAD) or
astroglial cells (GFAP) was found in all analyzed TH-
positive UV-LMD-pools of SN neurons (n=20, Figure.
2B and C). These results demonstrated the selectivity of
the collected cell pools for DA neurons and thus the
specificity of our approach (no accidental LMD collection
of GABAergic or glial-cells). Importantly, no significant
difference between Eno2 detection levels (i.e. mean
Ct-values and variances) in pools of UV-LMD SN DA
neurons from fresh slides compared to those from
re-used slides was detected (Figure 2D and E; fresh:
Ct=34.43� 0.51; n=10; frozen, re-used: Ct=34.62�
0.48; n=9; P=0.78; calculated respective expression per
cell (pg equivalents of total cDNA of midbrain-tissue)
were: fresh: 29.07� 6.58 pg; frozen: 23.15� 4.64 pg;
P=0.481; all probes amplified in parallel in the same
PCR-run, Eno2, 76-bp PCR-assay).

In a similar way, we ensured that gene-expression
results were not affected over time during UV-LMD
harvesting. We collected comparable pools of 15 SN DA
neurons (again identified via expression of the dopami-
nergic marker-gene set) (i) directly after fixation of tissue-
sections and (ii) 3 h after fixation and storage of sections at
room temperature (two independent experiments, each
LMD-harvesting procedure lasted about 3 h). As desired,
we did not detect any significant differences in Eno2
detection thresholds (same PCR-run) between early
collected UV-LMD samples [Ct=34.39� 0.24, n=9;
calculated expression (pg equivalents of total cDNA of
midbrain-tissue): 23.16� 4.72 pg] and samples harvested
with a 3–7 h delay [Ct=34.25� 0.32, n=8; P=0.553;
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calculated expression: 26.62� 6.62pg; P=0.671; data not
shown].

After having established these crucial prerequisites, we
utilized the protocol to harvest neuromelanin-positive
[NM(+)] DA neurons of substantia nigra pars compacta
(SNpc) from human postmortem brains from iPD patients
and matched controls for subsequent quantitative RT–
PCR analysis. Human postmortem midbrain samples (four
iPD brains and five controls included into this study) were
obtained from the German BrainNet (www.brain-net.net).
As expected, midbrain-tissue from iPD cases showed

remarkable reductions in the numbers of NM(+) SN
neurons (Figure 3A and B). We observed that the SN of
human control-sections showed reduced tissue integrity
with a larger number of ruptures compared to the SN of
PD cases. However, the dopaminergic cell morphology
was well preserved in both groups (compare Figure 3A
and B). Mean age of death was 68.2� 2.5 years and
77.8� 1.6 years for controls and PD patients, respectively
(P=0.020). The mean postmortem interval was not
significantly different (Figure 3C; 19 h 48min� 4 h
23min for controls and 14 h 30min� 3 h 30min for PD

Figure 1. Flow-chart of experimental procedure. Flow-chart representing the experimental procedure of the protocol for UV-LMD and quantitative
RT–PCR gene-expression analysis of individual SN DA neurons from human postmortem PD brains and controls.
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Figure 2. UV-LMD of individual neurons. (A) Left panel: cresylviolet (CV)-stained mouse coronal midbrain section indicating the area of the
substantia nigra pars compacta (SNpc) before (left) and after (right) UV-laser-microdissection of the entire area. Right panel: gel electrophoresis
results of qualitative reverse transcription (RT) multiplex-nested PCR products for a whole LMD SNpc. RT–PCR signals for all eight different
dopaminergic (TH, DAT, Girk2, D2s/l) and nondopaminergic (GAD, Girk1, GFAP, CB) marker-genes, detected in the heterogeneous cellular
mixture of dopaminergic, GABAergic and glial cells. (DNA-ladder: 100-bp marker). (B) Top: CV-stained coronal midbrain section after UV-laser-
microdissection of 15 individual DA neurons. Middle: selection and laser-microdissection of an individual neuron from upper section. Lower: after
UV-LMD of individual neuron—section (left) and cap-control (right) demonstrating successful isolation. (C) PCR products after gel electrophoresis
of qualitative RT multiplex-nested PCR for individual LMD SN DA neurons and small SN DA pools. Upper and second panel: similar gene-
expression profile of dopaminergic marker genes (TH, DAT, Girk2, D2; not Girk2, GAD67, GFAP) in pools of 20 and single SN DA neurons
illustrate sensitivity and specificity of the protocol. Third panel: expression profile of an individual calbindin-positive CB (+) SN DA neuron
(D and E) Quantitative real-time RT–PCR analysis of Eno2 gene-expression using 10% of cDNA from pools of 15 mouse SN DA neurons as
template. Neurons were UV-LMD-collected from either fresh or stored (1-week) and re-used tissue slices. (D) Representative real-time PCR traces
testing for Eno2 expression, relative fluorescence levels on a logarithmic scale are plotted against PCR cycles (�RN: relative fluorescence, normalized
to internal fluorescence marker ROX); threshold-line for determinations of threshold cycles (Ct) indicated by the green line (� RN 0.4). (E) No
significant difference n.s. between Eno2 detection levels (Ct) in SN DA cell-pools from fresh and frozen tissue sections (fresh: 34.43� 0.51, n=10;
re-used: 34.62� 0.48 n=9; p=0.785).
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patients; P=0.395). Available clinical details of individ-
ual cases are summarized in Table 1.

As different degrees of RNA degradation among the
individual postmortem brain samples are to be expected
(due to biological and/or methodological issues), compre-
hensive assessment of respective RNA quality is crucial.
We analyzed RNA quality of all human midbrain tissues
of this study from spare, unfixed, unstained sections and
chippings collected during cryosectioning and before
mounting of tissue for LMD using the Agilent Lab-on-
a-Chip System, which calculates the RIN. The RIN is a

more sophisticated measure of RNA quality, superior
to the determination of the 28S/18S ratios (43,46,53).
A complex algorithm [detailed in (46)] assigns a RIN score
in the range from 1 to 10 to each sample, where a score 10
represents completely intact RNA, and a score 1 fully
degraded RNA (46,53). The RNA from the human
brain samples in this study was moderately to
slightly degraded with RIN numbers ranging between
4.8 and 7.3. The mean RNA integrity in PD brains
(RIN=6.9� 0.3) was significantly higher compared to
controls (RIN=5.4� 0.3; P=0.007, Figure 3D). It has
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Figure 3. Assessment of human postmortem midbrain tissue. (A and B) Cresylviolet-stained human postmortem SN nigra tissue showed typical
neuromelanin-positive [NM(+)] cells in control and PD brains, whereas in PD tissue the number of NM(+) neurons was reduced. Snap-frozen PD
tissue showed better preservation of the macroscopic structure of the midbrain, but cell morphology was not affect by macroscopic differences (A, B,
lower panels). In PD sections, dying neurons (arrows) with poor cellular structure and Lewy-body positive neurons (arrowhead) were identified.
(C) No significant difference in the respective mean postmortem intervals between PD and control brains (PD: 14 h 30min� 3 h 50min, n=4;
control: 19 h 48min� 4 h 23min, n=5; P=0.395). (D) The RNA integrity, as given by RIN-value (Agilent analysis) was significantly higher in the
PD brains compared to controls (PD: 6.9� 0.3 n=4; control: 5.4� 0.3 n=5; P=0.007). Additional data are given in Table 1.

PAGE 7 OF 16 Nucleic Acids Research, 2008, Vol. 36, No. 7 e38



been previously reported that the probability of skewed
quantitative RT–PCR results dramatically depends on
PCR-assay sizes. Assay sizes smaller than 150 bp have
been reported to be suited for reliable real-time RT–PCR
given a RIN> 5 (53–55). To evaluate this proposed
correlation in our study experimentally, we compared
two different human ENO2 TaqMan assays (ENO2-A and
ENO2-B) with different amplicon sizes of 108 bp and
77 bp, respectively. For real-time PCR, we used two
different sets of serial dilutions of human brain cDNA as
templates, generated from (i) RNA with very high
integrity (whole-brain cDNA purchased from Clontech,
RIN-number not determined, but photograph of RNA gel
electrophoresis provided, demonstrating the high RNA
integrity) and (ii) from the partly degraded RNA isolated
from BrainNet sample SN 2/02 (RIN=6.1). Using the
cDNA from nondegraded whole-brain RNA as template,
similar over-all PCR efficiencies and respective standard
curves were obtained for both, the large and the small
ENO2 PCR assay. [Figure 4A and C; standard curve
ENO2-A (108 bp): slope: �3.38, R2=0.99; ENO2-B
(77 bp): slope: �3.65, R2=0.99]. However, using the
cDNA derived from partly degraded RNA (SN 2/02,
RIN=6.1) as template, we received dramatically different
real-time PCR results and respective standard curves
depending on assay size. While the 77-bp ENO-assay still
allowed quantification over three magnifications of
template DNA, similar as for high-quality RNA, a
meaningful standard curve for the 108-bp ENO2-assay
could not be generated. Thus, reliable gene-expression
quantification was not possible with the 108-bp assay
using partially degraded RNA (Figure 4B and D, standard
curve ENO2-A: slope: �1.69, R2=0.66). Given
these findings, we decided to use the smallest available

a-synuclein real-time TaqMan PCR assay for the quanti-
tative RT–PCR expression analysis of UV-LMD NM(+)
SN neurons from the human postmortem brains (see
Methods section for details). In addition, we tested the
performance of the chosen 62-bp a-synuclein assay on
serially diluted cDNAs derived from commercially avail-
able SN tissue RNA (Ambion, RIN 6.4) and our cDNA
from SN 2/02 (RIN=6.1). In contrast to the 108-bp
ENO2 assay, we observed no significant difference
between the slopes of respective standard curves for
both cDNA sources as well as a near ideal slope for the
a-synuclein assay of �3.38 (R2=0.98; data not shown).

Similarly as described earlier for mouse-brain sections,
pools of 15 individual NM(+) SN DA neurons with well-
defined cell borders were collected via UV-LMD from
each human postmortem brain after sectioning, fixation
and staining and analyzed (compare Figure 5A and B).
Eight individual SN DA pools of each human midbrain
were harvested, reverse transcribed and analyzed
via quantitative PCR for the RNA-expression-levels of
a-SYN (62-bp assay), ENO2 (77-bp assay) and TH (73-bp
assay). Individual a-synuclein expression levels for all
analyzed cell pools of NM(+) and TH(+) (detected via
RT–PCR) SNpc neurons from human PD and control
brains are given in the scatter plots of Figure 5C. With our
approach, we detected no significant differences between
the a-SYN cDNA levels of the different brains within the
PD group via ANOVA analysis (Table 2). However, the
gene expression of brains from the control group was
identified as not homogeneous (ANOVA P-values <0.05
for TH and a-SYN, Table 2), i.e. control brains SN 323/01
and SN 2/02 displayed significantly higher expression
levels for TH and a-SYN genes compared to the other
control brains. These inhomogeneities were not associated

Table 1. Human postmortem midbrain samples—characteristics and gene-expression

BBC Sex,
Age/a

CERAD/
Braak

PMI/h RIN cDNA amount per SN neuron (pg) (n/x) Disease state

TH ENO2 a-SYN

PD SN RZ 238 f, 79 0, II 17 6.0 2.03� 0.40 (8/8) 1.41� 0.19 (8/8) 4.62� 0.66 (8/8) PD
SN RZ 239 m, 79 0, 0 23 7.1 1.40� 0.40 (8/8) 2.23� 0.55 (8/8) 3.23� 0.96 (8/8) PD, AD, cardiac

infarction, lung
cancer

SN RZ 224 m, 80 0, II 7 7.2 1.01� 0.18 (8/8) 1.25� 0.30 (8/8) 3.01� 0.70 (8/8) PD, multisystem
atrophy

SN RZ 389 f, 73 0, V 11 7.3 1.76� 0.31 (8/8) 2.01� 0.45 (8/8) 2.81� 0.45 (8/8) PD, ovary cancer,
Sudeck’s atrophy

Control SN 323/01 f, 69 A, I 14 4.9 0.27� 0.08 (8/8) 0.17� 0.08 (8/8) 1.11� 0.29 (8/8) diabetes, hypertonia,
pneumonia, ARDS

SN 2/02 m, 62 0, I 31 6.1 0.38� 0.14 (7/8) 0.27� 0.07 (6/8) 1.20� 0.48 (7/8) hypertonia, cardiac
infarction

SN 15/02 m, 72 0, II 6 5.2 0.08� 0.02 (8/8) 0.06� 0.02 (8/8) 0.38� 0.06 (8/8) CMV, diabetes, kidney
transplant, nephritis

BBC 2-12 f, 75 0, I 24 4.8 0.06� 0.02 (8/8) 0.04� 0.01 (5/8) 0.11� 0.02 (8/8) atherosclerosis
BBC 3-12 m, 63 0, 0 24 5.9 0.07� 0.02 (8/8) 0.12� 0.12 (2/8) 0.15� 0.04 (8/8) liver cancer, hepatore-

nal syndrome

German BrainNet case number (BBC), sex/age, disease states classified according to the Consortium to establish a registry for Alzheimer’s disease
(CERAD) and according to the classification of Braak and Braak 1991 (Braak), postmortem interval (PMI), RNA integrity number (RIN) and
cDNA amount per SN neuron (as pg-equivalents of total cDNA, derived from human SN-tissue) for the genes tyrosine hydroxylase (TH), neuron-
specific enolase (ENO2) and a-synuclein (a-SYN) (mean� SEM) are given for all analyzed PD and control brain tissues. Number of analyzed pools
(x) and number of pools which expressed the tested gene (n) are indicated for each brain.
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with differences in sex, age, PMI or RIN (Table 1 and
Figure 5C–E). Importantly, we detected significantly
higher a-synuclein expression levels (about 6-fold) in
surviving individual NM(+) and TH(+) SN DA neurons
from PD brains compared to unaffected controls
(Figure 5C–F; control=0.59� 0.24 pg per cell, n=5;
PD=3.42� 0.41 pg per cell, n=4, P=0.0004). As
evident from Figure 5D, even for comparable RINs,
a-synuclein expression levels were higher in PD brains
(compare PD brain SN RZ 238 to control brains SN 2/02
and BBC 3-12). In addition, there was no positive
correlation between higher RIN numbers (i.e. higher
RNA integrity) and detected higher a-synuclein expres-
sion levels for control brains as well as for PD brains
(Figure 5E, R2=0.0506 for control brains, 0.9950 for PD
brains and 0.4369 for all pooled brains). This argues
against the possibility that higher a-SYN expression in
surviving SN DA neurons from PD brains simply reflected
their higher RNA qualities. The strong inverse correlation
(R2=0.9950) found between RIN number and gene-
expression levels for the PD brains further supports this

notion, as detected a-SYN gene-expression levels decrease
but not increase with higher RIN numbers (reflecting
higher RNA integrities).
For ENO2 and TH, we also detected significantly

higher gene-expression-levels per cell (about 10-fold) in
pools of SN NM- and TH-positive PD brains compared to
controls (Figure 5F; ENO2: control: 0.13� 0.04 pg, n=5;
PD: 1.73� 0.24 pg, n=4; P=0.0056; TH: control:
0.17� 0.07 pg, n=5 versus PD: 1.55� 0.22 pg, n=4;
P=0.0060).
To further rule out artificial quantitative RT–PCR

results for human TH, ENO2 and a-SYN due to potential
differences in the respective rates of progressive RNA
degradation in SN DA neurons from human brain sections
before and after fixation and staining, we have repeated the
complete set of UV-LMD and RT–qPCR experiments for
these three genes after one additional year of storage of the
unfixed brain tissue-blocks at �808C. In addition, in
contrast to the first set of experiments, where fixed, stained
brain sections were directly used for UV-LMD, this
time we stored the fixed and stained brain sections on
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Figure 4. Effects of RNA integrity and PCR-assay size on real-time quantitative PCR performance. Serial dilutions of high-quality whole brain
cDNA (200, 20 and 2 pg; Clontech), and cDNA derived from partly degraded midbrain RNA (400, 40 and 4 pg; brain SN 2/02, RIN=6.1) were
used as templates for ENO2 real-time PCR, employing two different assays for ENO2 with large (ENO2-A, 108 bp) and small (ENO2-B, 77 bp)
amplicon size (A and C) With high-quality cDNA as templates, amplification curves (A) and slopes (amplification-efficiencies) of standard curves
were similar for both assays (� RN: relative fluorescence, normalized to internal fluorescence marker ROX) (C). (B and D) With cDNA from partly
degraded RNA as templates, amplification curves (B) and slopes of standard curves (D) were similar as for high-quality cDNA only when using the
small amplicon size assay ENO2-B. The larger ENO2-A assay did not allow the generation of a respective reliable standard curve and was not suited
for RT–PCR quantification of SN 2/02 RNA sample.
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Figure 5. LMD and mRNA-expression analysis of individual SN DA neurons from human PD and control postmortem brains. (A and B) Pools of
neuromelanin-positive [NM(+)] neurons were isolated via LMD of cresylviolet-stained horizontal midbrain cryosections from PD (A) and control
brains (B). Upper panel: PD (A) and control (B) cryosections after LMD of small pools of NM+ neurons from SNpc. Lower panels: Representative
PD (A) and control (b) SNpc NM(+) neurons before (left) and after dissection (right). Insert: cap control after UV-LMD. Scale bars: 250 mm, 20 mm,
respectively. (C) Scatter plot of a-synuclein gene-expression-levels in PD and control brains. a-Synuclein gene-expression of each pool of 15 NM(+)
and TH(+) SNpc neurons is given as pg-equivalents of total cDNA derived from human SN-tissue per cell (standard curve quantification),
determined via quantitative real-time PCR. Bars represent mean a-synuclein expression for SNpc pools of each brain�SEM. (D) Plot of the mean
a-synuclein cDNA levels (�SEM) against the RNA integrity number for each brain. Brain Bank codes are indicated next to each dot (see Figure 5C
and Table 1). (E) Linear regression between mean a-synuclein expression and RNA integrity number for all individual analyzed control and
PD brains showed no positive correlation between higher RNA quality of the tissue and detected a-synuclein expression-levels. (controls:
black dotted line, R2=0.0506; PD brains: red dotted line, R2=0.9950; all analyzed brains combined: black line, R2=0.4369). Please note that
PD brains showed a strong inverse correlation between RNA-integrity and detected a-synuclein expression-levels (red dotted line, R2=0.9950).
(F) Mean expression levels of a-SYN, TH and ENO2 were significantly higher in individual NM(+) SN DA neurons from PD brains compared
to controls (see Tables 1 and 2).
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PEN-membrane slides for 1 week at �808C prior to UV-
LMD and subsequent quantitative RT–PCR analysis.
Again, we detected significantly higher mRNA levels of
a-SYN, TH and ENO2 in SN DA neurons from PD brains
compared to controls (see Supplementary Figure). More
important, the detected differences in gene-expression
levels between PD and control brains for a-SYN, ENO2
and TH were not significantly different compared to those
of the previous experimental series (Paired t-tests: a-SYN:
PD: P> 0.2; control: P> 0.2; ENO2: PD: P> 0.2; control:
P> 0.2; TH: PD: P> 0.2; control P> 0.2; see also
Supplementary Figure). This robust replication of the
detected quantitative differences in gene-expression
between NM(+) and TH(+) SN DA neurons of PD and
control brains after extended storage of human brain tissue
blocks and fixed stained human brain-tissue sections,
demonstrates that these results are likely to reflect genuine
biological differences and are rather not significantly
affected by progressive RNA degradation due to the
experimental procedures.

DISCUSSION

In the present study, we detected significantly higher levels
of a-synuclein mRNA in individual neuromelanin (NM)-
and TH-positive dopaminergic substantia nigra neurons
from postmortem PD brains compared to unaffected
controls by combining UV-LMD with quantitative real-
time PCR. In contrast to previous tissue-based studies,
our approach demonstrates for the first time a cell-type
specific transcriptional upregulation of a-synuclein in SN
DA neurons (from PD brains), a neuronal key population
in PD. In addition, we provide a step-to-step description
and extensive experimental evaluation of the utilized
single-cell UV-LMD protocol including tissue-section
preparation and their long-term storage that allows the
reliable application of laser-microdissection with contact-
free UV-LMD-systems in combination with quantitative
RT–PCR analysis of individual cells, in particular from
human postmortem tissue. Based on our well-established
RT–PCR protocols for single living SN DA neurons and
single fixed SN DA neurons from mouse brain sections
(47,49), we optimized, validated and utilized this protocol

for fixed postmortem human brain tissue. All data shown
here were generated with the Leica LMD6000 system.
However, we have also tested our protocol for another
contact-free UV-LMD system, the PALM-LMD, again
with reliable results (data not shown). In contrast, we have
not tested this protocol with the Arcturus IR-LMD system
as it utilizes a different technical approach including
physical contact, and thus might be less suitable for
selective single cell analysis (51). In general, tissue sections
for Arcturus IR-LMD exhibit properties distinct from the
UV-LMD systems and thus require different fixation and
lysis protocols for successful RT–PCR of LMD-samples
(56,57).
The quantitative results in this study demonstrated the

selectivity, sensitivity and reproducibility of our rapid and
easy to perform protocol by analyzing gene-expression of
individual dopaminergic neurons from mouse midbrain
via qualitative and quantitative RT–PCR (compare
Figures 1 and 2). Our detailed protocol allows quantita-
tive RT–PCR based (or after global amplification,
microarray based; data not shown) expression profiling
of individual cells after UV-LMD, with a similar high
sensitivity and reproducibility as described for ‘living’ SN
DA cells after cytoplasm harvesting via patch-pipette
(47,49,58). We have further successfully applied this
protocol for LMD analysis of individual fluorescence
labeled mouse dopaminergic midbrain neurons (48) as
well as for human SNpc DA neurons from postmortem
brain sections (50). We omitted a DNAse digestion step
[as described in (58)] for the analysis of human SN DA
neurons, as all TaqMan assays used in this study were
designed to be intron-spanning, thus amplifying only
mRNA-derived cDNA. However, with a respective
genomic TaqMan assay we were also able to amplify
genomic DNA of single cell samples [compare (58)]. Thus,
our protocol is sensitive enough to detect the two genomic
DNA copies within a single nucleus.
Here, we employed our protocol to analyze a-synuclein

mRNA levels of individual NM(+) and TH(+) DA
substantia nigra pars compacta (SNpc) neurons of human
postmortem brains from iPD patients and matched
controls. As a causal—but mechanistically not well-
defined—role of a-SYN for dopaminergic degeneration in

Table 2. Significantly lower mean mRNA-levels of a-synuclein, tyrosine hydroxylase, and neuron-specific enolase in individual SN DA neurons for

Parkinson’s brains compared to control brains

Target
gene

Assay
size

Parkinson’s brains (n=4) Control brains (n=5) PD/Con t-test
P-value

cDNA amount
per neuron
(pg)� SEM

Normalized mean
quantity�SEM

ANOVA
P-value

cDNA amount
per neuron
(pg)� SEM

Normalized mean
quantity�SEM

ANOVA
P-value

a-SYN 62 bp 3.42� 0.41 5.81� 0.70 0.2853 0.59� 0.24 1.00� 0.40 0.0033 5.81 0.0004
TH 73 bp 1.55� 0.22 9.05� 1.30 0.1771 0.17� 0.07 1.00� 0.38 0.0077 9.05 0.0060
ENO2 77 bp 1.73� 0.24 13.22� 1.80 0.2645 0.13� 0.04 1.00� 0.32 0.0968 13.28 0.0056

Mean cDNA quantity determined via quantitative real-time RT–PCR of UV-LMD individual neuromelanin-positive SN DA neurons from control
and PD brains of a-SYN, TH and ENO2 (compare Table 1). Mean cDNA quantities, normalized to control brains. Amplicon size of the utilized
TaqMan real-time PCR assay (assay size) is given as well as the relation of gene-expression between PD and control tissue (PD/Con). ANOVA tests
were performed to test for variances of gene-expression within either group (PD and control). P-values of two-tailed t-test indicated significant
differences between mean expression levels of all three tested genes between control and PD brains.
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PD has been demonstrated, analyzing a-SYN expression in
a cell-specific and quantitative fashion is highly relevant.
Differences in a-SYN expression levels might reflect
different pathophysiologic stages of DA neurons
en route either toward degeneration or survival and
compensation in PD. As already noted, up- or down-
regulation of a-SYN expression at the tissue level has
been reported in iPD (37–42). Necessarily, none of these
tissue-based studies could have been selective for NM(+)
SN DA neurons but rather used the highly heteroge-
neous substantia nigra tissue (and other complex brain
tissues), consisting of many different a-SYN-expressing
cell-types in addition to DA neurons [but note that
Kingsbury et al. (41) carried out in situ hybridization].
The progressive and variable loss of DA SN neurons in
iPD, which inevitably alters the relative proportion of
DA neurons in the SN, was a further confounding factor
for these tissue-based studies. In this context, the
described increased ectopic expression of a-SYN in
other cell types, e.g. glial cells during the course of the
disease (59,60), might provide further problems for
tissue-based studies. Normalization procedures using so-
called housekeeping genes as reference genes are of great
value when studying gene-expression at the level of
tissues (61–63), but they cannot compensate for dwind-
ling content of DA neurons in SN tissue [and are in most
cases not homogeneously expressed at the single cell level
(49)]. In summary, all these confounding factors are
effectively eliminated by cell-specific expression analysis
as described here.
With our cell-specific approach with single cell resolu-

tion, we compared a-SYN mRNA-levels of small pools
(15 neurons each) of individual NM-positive SN DA
neurons from controls with the same number of surviving
NM-positive SN DA neurons from PD brains via
quantitative real-time RT–PCR. We detected about
6-fold higher mRNA-level of a-SYN mRNA in surviving
NM(+) and TH(+) SN DA neurons from iPD brains
compared to controls. These data do not distinguish
between two potential explanations: either an upregula-
tion in a-SYN gene-expression in surviving DA SN
neurons in response to the progression of PD, or a
selective survival of those SN DA neurons with constitu-
tively elevated a-SYN expression. However, protection
of SN DA neurons due to higher a-SYN levels would be
at odds with the findings that duplication and triplications
of the wild-type SNCA-gene lead to familiar PD (PARK4)
(16). On the other hand, a recent study clearly demon-
strated that a-SYN protects nerve terminals against injury
and neurodegeration (32). In addition to these opposing
roles for a-SYN function in vivo, a-SYN expression in
neuronal cultures has been described both as beneficial or
adverse for neuronal survival (studies summarized
in Table 1 of ref. 37,64). As a-SYN appears to be involved
in vesicle release (3,31,34), a higher expression of a-SYN
might modulate striatal dopamine release in the striatum
and compensate for dopamine loss. In this context, it is
interesting to note that increased a-SYN expression has
also been reported in response to cocaine, amphetamine
and ethanol abuse, suggesting an additional pathophysio-
logic role of a-SYN in the context of drug abuse (65–69).

In summary, while we established direct evidence for
transcriptional upregulation of a-SYN mRNA in DA SN
neurons in iPD, its pathophysiologic consequences—e.g.
elevated levels of a-SYN protein but also the potential
presence of different a-SYN structural states like unfolded
random coiled, soluble oligomers, a-pleaded sheet and
insoluble fibrillar structures (20,21,31,34,64,70)—have still
to be elucidated.

An additional level of complexity might be related to
changes in alternative splicing of SCNA. Indeed, sig-
nificantly higher mRNA levels of the a-SYN 112 splice
variant have been reported in frontal cortex tissue of DLB
brains compared to controls, whereas contrary, the splice
variants a-SYN 126 and 140 where expressed at signifi-
cantly lower levels (42,71). This finding is particularly
striking, as the a-SYN 112 splice variant is more prone to
form fibrillic conformational structures due to the absence
of the dopaminochrome recognition site in exon 5 and
the shortened C-terminus of the protein (7). In contrast,
a-SYN 126 exhibits diminished aggregation propensity,
compared to a-SYN 112 and a-SYN 140 (7). Thus,
alternative splicing might also contribute to the hetero-
geneous findings concerning a-SYN expression, but
cell-specific data are missing. The 62-bp TaqMan assay
used in our study and the study of Dachsel et al. (39) spans
the SNCA-exon 3/4 boundary and therefore detects (but
not discriminates) both the a-SYN 140 as well as a-SYN
112 variant, but not the a-SYN 126 splice variant. In
contrast, the 104-bp TaqMan assay utilized by Chiba-
Falek and Papapetropoulos (37,38) spans the exon4/5
boundary and thus detects both the a-SYN 140 as well as
a-SYN 126 variant, but not the a-SYN 112 variant.
Although a-SYN 140 has been described as the most
relevant and abundantly expressed variant (6), the relative
expression ratios of all three splice variants might be
crucial in context of iPD (7).

We also detected higher mRNA levels of tyrosine-
hydroxylase and neuron-specific enolase (ENO2) in
individual surviving SN DA neurons from PD brains,
which might indicate a general transcriptional upregula-
tion to counteract the progressive loss within this neuronal
population in PD. Respective data for TH-expression in
the literature (without single cell resolution) are similarly
controversial as those for a-SYN, and splice variants were
not addressed systematically (72–78). In general, con-
certed upregulation of gene-expression has already been
described for other related genes at the single-cell level
(79,80).

Finally, we focus on specific methodological issues
relevant when analyzing human postmortem material, but
will not further discuss general methodological issues and
caveats of qualitative and quantitative single cell gene-
expression profiling that have been extensively reviewed
elsewhere (43–45,58,81–83). A prerequisite for the analysis
of quantitative gene-expression is that the respective RNA
remains stable throughout the fixation/staining and
extended LMD-harvesting procedure (performed at room
temperature). Currently, the extent of this potential
problem for LMD-based gene-expression profiling as
well as the use of cresylviolet-stained sections for RNA
analysis after LMD is controversially discussed
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(51,56,82,84–86,87). In our hands, cresylviolet-stained
sections gave similar RT–PCR results for individual
SN DA neurons after UV-LMD as those collected from
unstained fixed sections [where we harvested fluorescence-
labeled neurons after retrograde tracing in vivo; (48)
Lammel et al., unpublished data]. However, we emphasize,
that, in order to avoid RNA degradation, we modified the
staining protocol by minimizing incubation times and
staining in 100% ethanol, to quickly and completely
maintain dehydration of tissue sections. Our protocol for
tissue-section preparation allowed the LMD harvesting of
samples over several hours at room temperature without
significant degradation of RNA. Furthermore, fixed-
stained tissue sections of mouse and human brains can be
stored after LMD at �808C for at least 1 week for later re-
use without loss of sensitivity (compare Figure 2 and
Supplementary Figure). This possibility of re-use is of
particular importance, if mRNA of unique postmortem
human tissues is to be studied. We also identified the
importance of another confounding factor i.e. the
variable, mostly suboptimal RNA qualities of the human
postmortem tissues, as evident by Agilent RIN analysis.
RIN-values allow a very detailed, exact assessment of
RNA-integrity, compared to judgment of RNA quality via
28S/18S rRNA analysis (53,55,88). We would like to
emphasize that RIN values of human brain sections were
determined in this study after RNA extraction from spare
cryosections that were not ethanol-fixed and cresylviolet-
stained. Due to the limited amount of RNA from single
cells, and as we performed cDNA synthesis of LMD
samples without a distinct RNA-isolation step, it was not
possible to determine RIN values from UV-LMD samples.
However, as the fixation and staining protocol was
particularly optimized in order to avoid progressive
RNA degradation (as discussed earlier) and procedures
and chemicals were exactly the same for all experiments, a
potential influence on RNA quality due to fixation and
staining is expected to be similar for all samples. In
addition, we have demonstrated for mouse brain sections
that after fixation and staining, RNA of cryosections
was not further degraded—at least for ENO2 mRNA
(compare Figure 2D and E). To particularly exclude
artificial RT–qPCR results for human TH, ENO2 and
a-SYN due to different degrees of progressive RNA
degradation in SNDA neurons from human brain sections
after fixation and staining, we have repeated UV-LMD
and RT–qPCR expression analysis of these genes. We
collected SN DA neurons from human midbrain sections
which were kept for 1 week at –808C after cryosectioning,
fixation and staining. Sections were cut from the same
human brain samples as before (stored for over 1 year at
–808C). The obtained differences in gene-expression levels
of SN DA neurons between PD and controls were not
significantly different compared to those obtained in the
previous experiments on these human brain sections (used
for UV-LMDdirectly after fixation/staining). These results
further support that progressive RNA degradation due to
the experimental procedure that does not affect the
here reported differences in gene-expression (compare
Supplementary Figure).

Our comparison of the RIN numbers and the
postmortem interval (PMI) of the brains showed, that
PMI had no obvious influence on RNA integrity
(Figure 3C and D, Table 1), which is in accordance with
previous findings (44,45,89). It has already been demon-
strated that expression analysis of degraded mRNA is
possible, as long as RIN-values and thus RNA qualities
are comparable (53,54,63,88). Furthermore, Fleige and
coworkers (53,55) concluded that samples with RIN-
differences of +1 are maximally overestimated by
factor 3, however most tested genes showed an artificial
difference of about 0.7 Ct values per 1 RIN number
difference, which would correspond to an artificially 1.6�
higher detected cDNA amount. In addition, they showed
that this effect was nearly abolished by the use of
quantitative PCR amplicon sizes <100 bp (53,55). Here
we performed a similar analysis by comparing two
different ENO2 assays with (108- and 77-bp amplicon
size) and found that quantitative PCR assay-size around
100 bp (in contrast to the 77-bp assay) still did bias the
comparison of gene-expression levels if compared RNA
had significantly different RNA integrities (compare
Figure 4). The a-SYN real-time PCR-assay used in this
study generated a very small PCR amplicon of only 62 bp,
which was not likely to be affected by RIN differences.
Furthermore, samples of control and PD brains with
overlapping RIN values also represented the higher
expression of a-synuclein in PD (compare Figure 4 and
Table 1). The detected differences in ENO2, TH, a-SYN
expression-levels were about 13-, 9- and 6-fold, respec-
tively (Table 2). As we have recently shown, the expression
of another gene responsible for familiar PD, the p-type
ATPase 13A2 (PARK9) was expressed at about 11-fold
higher levels in NM(+) SN DA neurons of these PD
brains compared to controls (50). Nevertheless, the mean
RNA integrity difference of 1.5 between our controls and
PD samples provides a factor that might—despite the very
small PCR-assay size chosen—contribute to the differ-
ences in gene-expression detected here.
Taken together, careful evaluation of RNA integrity is

of particular importance when working with—partly
degraded—human postmortem material, and absolute
differences in gene-expression need to be taken with a
degree of caution, even when RNA integrity and PCR
amplicon sizes have been taken into account.
Unfortunately, in none of the cited tissue-based studies,
neither RNA integrities (in particular RIN-values) of
individual cases were given, nor the suitability of the
utilized PCR assays (all >100 bp) were assessed. In
summary, our protocol for tissue-sectioning, fixation,
long-term storage, UV-LMD and subsequent one-tube
lysis and cDNA-synthesis of individual neurons in
combination with smallest possible real-time PCR assay-
size and definition of RNA integrity is well suited for cell-
specific RT–PCR-based quantitative mRNA expression
profiling of partly degraded human postmortem tissue.
Compiling carefully controlled cell-specific RNA expres-
sion profiles in a quantitative fashion from individual cells
will help to sharpen our concepts of cellular identity and
diversity and provide important information about the
molecular mechanisms of cell-specific adaptations and
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plasticity—not only in context of PD but in general health
and disease states.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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