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A numerical study of fish adaption 
behaviors in complex environments 
with a deep reinforcement learning 
and immersed boundary–lattice 
Boltzmann method
Yi Zhu1, Fang‑Bao Tian1*, John Young1, James C. Liao2 & Joseph C. S. Lai1

Fish adaption behaviors in complex environments are of great importance in improving the 
performance of underwater vehicles. This work presents a numerical study of the adaption behaviors 
of self-propelled fish in complex environments by developing a numerical framework of deep learning 
and immersed boundary–lattice Boltzmann method (IB–LBM). In this framework, the fish swimming 
in a viscous incompressible flow is simulated with an IB–LBM which is validated by conducting 
two benchmark problems including a uniform flow over a stationary cylinder and a self-propelled 
anguilliform swimming in a quiescent flow. Furthermore, a deep recurrent Q-network (DRQN) is 
incorporated with the IB–LBM to train the fish model to adapt its motion to optimally achieve a 
specific task, such as prey capture, rheotaxis and Kármán gaiting. Compared to existing learning 
models for fish, this work incorporates the fish position, velocity and acceleration into the state space 
in the DRQN; and it considers the amplitude and frequency action spaces as well as the historical 
effects. This framework makes use of the high computational efficiency of the IB–LBM which is of 
crucial importance for the effective coupling with learning algorithms. Applications of the proposed 
numerical framework in point-to-point swimming in quiescent flow and position holding both in a 
uniform stream and a Kármán vortex street demonstrate the strategies used to adapt to different 
situations.

It has long been observed that fish can adapt to different environments and achieve their goals optimally. These 
adaption behaviors are essential for survival since they allow a fish to obtain and save energy as well as avoid 
risks. A typical example of adaption behavior is prey capture, in which the fish is trying to reach a target with 
given time (generalized as point-to-point swimming). Another important behavior that has been observed in 
many fishes is rheotaxis1,2, which is a tendency of the fish to directly face into an oncoming current to capture 
food carried by the flow. Furthermore, a unique energy-saving behavior termed Kármán gaiting is observed 
in rainbow trout and other fishes when swimming behind a bluff body in the flow, which is characterized by 
large-amplitude lateral motion of the body occurring at a low frequency3–5. In addition, fish may exploit the 
vortices shedding from its leading one or its fins to improve its swimming performance6–8, of which the propul-
sion mechanism can be further revealed by separating the drag and thrust9. In nature, fish are able to achieve 
the above mentioned behaviors in a very quick and efficient way, with which current man-made vehicles cannot 
compete. Therefore, it is important to achieve them in numerical simulation, with which researchers are able to 
understand the design concepts of fish, and to put these concepts into man-made vehicles.

The mechanisms underlying these adaption behaviors are complex and have not been fully understood. The 
cooperation between the sensory system, the neural system and the muscles, which forms a precise and robust 
feedback control system, is of primary importance. The sensory system is responsible for continuously collecting 
information about the environment which is input into the neural system so that the fish can update its knowl-
edge of its surroundings in real time. Based on this information, the fish may change its swimming kinematics 
via the muscles to achieve its goals. During over 400 millions years of evolution, a variety of sensory systems 
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have emerged in different fishes based on proprioceptive, visual, tactile, olfactory, electric and hydromechanical 
signals10–12. Among them, visual signals from the eyes and hydrodynamical signals from the lateral line system 
are the most commonly used, allowing fish to perform a variety of adaption behaviors13,14.

Significant effort has been directed towards reproducing the adaption behaviors. Feedback control design has 
been adopted in robot fish15,16 based on the correlation between the pressure on the fish body and the position 
with respect to an object or a point in the flow field. The effect of a specific action in the control problem is typi-
cally predicted by using a simplified flow dynamics model (e.g. an inviscid potential flow model). However, the 
development of a robust and accurate controller is still a challenging problem, due to incomplete flow models 
and nonlinear historical influence of past actions. Given the difficulty of acquiring a reliable policy to reproduce 
adaption behaviors, swimmers in numerical simulations are often forced to swim in preferable configurations, 
thus making them not entirely free swimming17–20.

In order to address the challenge in developing robust and accurate controllers, a novel control method based 
on reinforcement learning (RL) has been proposed to study bio-inspired swimming and flying problems includ-
ing the individual21 or the collective motion of fish22,23 and dipole swimmers24, autonomous thermal soaring of 
UAVs25,26 and birds27,28, lift generation of UAVs29–32, and the navigation of microswimmers18,33. The method has 
two remarkable advantages. The first advantage is that the swimmer does not need to possess any prior knowl-
edge of the environment. Instead, it only needs to sample the information about the environment through trial 
and error and so there is no need to simplify the flow dynamics. The other advantage is that the influence of the 
historical states can be easily taken into consideration. Therefore, the correlation between action and its effect 
can be accurately captured even when there is a delay between them and there are measurable historical impacts 
from historical actions.

A challenge of the method is that in order to obtain a robust control policy, the learning agent must repeti-
tively explore a large number of different possible actions in many environment states. Thus, an efficient way to 
obtain the environmental flow information is of crucial importance for the agent to learn in a reasonable time, 
which is a great challenge for numerical simulations34. Here the environmental flow information is updated by 
using an immersed boundary–lattice Boltzmann method (IB–LBM) which makes excellent use of the advantages 
of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM)35–41. Compared to traditional 
numerical methods based on the Navier–Stokes equations, the IB–LBM is more efficient42,43 and is a promising 
alternative in combining with reinforcement learning methods. The IBM is a methodology for dealing with 
boundary conditions at interfaces based on meshes that do not conform to the shapes of the immersed bounda-
ries. In the IBM, the mesh generation is very easy even for complicated geometries. The mesh movement and 
mesh regeneration are not necessary for flows involving moving boundaries and fluid–structure interaction (FSI) 
problems. Therefore, it is very convenient to handle cases involving topological change of the computational 
domain, complicated geometries and large movement of boundaries36,40,44–48.

In this work, a deep recurrent Q-network (DRQN) is coupled with an adaptive-mesh IB–LBM FSI solver 
for the simulation of the FSI system mimicking fish adaption behaviors including prey capture in still water, 
rheotaxis in a uniform flow and Kármán gaiting in a Kármán vortex street. It should be noted that we recognize 
each component in the computational framework is not new. However, the combination of DRQN and adaptive 
IB–LBM FSI solver provides a very efficient tool to study the fish behaviours in complex environments. In addi-
tion, a new mathematical model of fish-like swimming is developed with amplitudes and frequencies altered 
smoothly every half period to implement highly maneuverable motions for the swimmer swimming in highly 
complex and dynamic flow environments. The feasibility and efficiency of the combined DRQN and IB–LBM 
method will be demonstrated by applying it in fish behaviors in three typical cases.

The rest of this paper is organized as follows. Numerical models, IB–LBM and DRQN are introduced in 
“Numerical model and methodology” section. The flow solver is validated in “Validation of the fluid solver” 
section. Adaption behaviors are discussed in “Applications of the coupled DRQN and IB–LBM” section and the 
conclusions are provided in “Conclusions” section.

Numerical model and methodology
The shape and motion of a trout model.  The shape of the 2D swimmer model here is reconstructed 
from the cross-section of a trout49 as shown in Fig. 1. The half thickness of the body is mathematically approxi-
mated by

(a)
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d

(b)

Figure 1.   A schematic of the fish model: (a) ventral view of a trout49; and (b) the constructed shape of a 2D 
model.
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where L is the body length, and sl is the arc length along the mid-line of the body.
The motion of the body includes three parts as shown in Fig. 2: the undulation motion of the body ( hl in xl–yl 

system), the translation of the mass center ( rc ), and the body rotation around the mass center ( θ ). The undulatory 
motion can be taken as the superposition of different waves propagating from head to tail. In order to implement 
the DRQN in an easy way as explained later, every wave lasts only half cycle. In the n-th half cycle, the mid-line 
lateral displacement is determined by

where θl is the deflection angle of the mid-line with respect to axis xl as shown in Fig. 2, θlmax is the maximum 
deflection angle at the trailing edge, �n is the wavelength, Tn is the period, t is the time, t0n = 0 for n = 1 and 
∑n−1

1 Tn for n > 1 , and h is the waveform function described by

where c0−5 can be determined by h(0) = h(�n/2) = 1 , h′(0) = h′(�n/2) = 0 , h′′(0) = −(2π/�n−1)
2 , and 

h′′(�n/2) = −(2π/�n)
2 . This undulatory motion is constructed based on extensive videos of rainbow trout 

free swimming, rheotaxis and Kármán gaiting49–51. It allows the swimmer to change its periods, amplitudes and 
wavelengths smoothly and arbitrarily every half period. Therefore, the swimmer model is able to choose appro-
priate combinations of different kinematics to achieve different maneuvering movements such as accelerating, 
decelerating and yawing, which enables the fish to handle complex and fast-changing environments.

The translational and rotational motions of the swimmer are determined by FSI in the global coordinate 
system (x, y) according to:

where m is the mass of the fish, Ft is the total hydrodynamic force on fish body, Iz is the inertia moment of the 
center of the mass, and Mz is the total hydrodynamic torque on the center of the mass.

IB–LBM for the fluid–structure–interaction system.  An IB–LBM is adopted to solve the FSI 
system52–54. In this method, the fluid dynamics is obtained by solving the multiple-relaxation-time lattice Boltz-
mann equation,

where f is the distribution function, x = (x, y) is the space coordinate, ci is the discrete lattice velocity, �t is time 
step, and �i and Gi are respectively the collision operator and the source term. Here �i and Gi are obtained by
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Figure 2.   A schematic illustration of the motion of the swimmer.
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where M is a 9× 9 transformation matrix, S is the relaxation matrix, I is the identity matrix, and f eqi  and Fi are 
respectively the equilibrium distribution function and the effect of the fluid body force. f eqi  and Fi are deter-
mined by

where wi is a weighting coefficient, ρ is the density of the fluid, u is the velocity of the fluid, cs = �x/(
√
3�t) 

is the lattice speed of sound, �x is the lattice spacing, and g  is the body force. In this work, D2Q9 is used. 
The M and S matrices of this model can be found in Lallemand and Luo52 and Krüger et al.55. c0-c8 are 
(0, 0), (±1, 0), (0,±1), (±1,±1) . w0 = 4/9 , w1-w4 = 1/9 , and w5-w8 = 1/36.

Once the distribution function f is obtained, the macro fluid density ρ , velocity u , pressure p, viscous stress 
tensor σαβ and fluid force density on the boundary Ff  in the new time step are calculated with

where nBβ is the outer normal vector of the boundary SB , δαβ is the Kronecker delta, and α and β are dummy 
indices. The forces and moment of the fluid exerting on the swimmer model can be calculated with

where FD is the drag, FL is the lift, X is the Lagrangian coordinate on the fish surface, s0 is the arc length along 
the surface of the swimmer, and ex , ey and ez are the unit vectors along x-axis, y-axis and yaw axis, respectively.

In addition, the IBM is utilized to handle the boundary condition at the fluid–structure interface according to

where FIB is the Lagrangian force on the immersed boundary, gIB is the fluid body force due to the boundary, SB 
is the boundary surface of the rigid body, η is the feedback coefficient, uB is the prescribed moving speed of the 
boundary surface, and Vf  is the fluid domain. The value of η is determined by the geometry of the body, which 
can be found in Refs.53,54. δ is approximated with a kernel function,

Furthermore, a multi-block geometry-adaptive Cartesian grid is coupled with the IB–LBM to improve the 
computational efficiency. A detailed description of this grid structure and method can be found in Refs.53,54.

The fluid–structure system is coupled by an explicit FSI coupling according to,
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where uc is the velocity of the mass center, and ω is the angular velocity. Since no iteration is required at each 
time step, this method is much more efficient than strong coupling methods39,56.

Yoshino et al.43 compared the computational efficiency between the LBM and the finite difference method 
(FDM) in modeling lid-driven cavity flows, and found that the CPU time of each step for the LBM is about 1/3 of 
that for the FDM, indicating the LBM is more efficient than the FDM in modeling fluid dynamics, which is of cru-
cial importance for the coupling with the reinforcement learning method as each learning application normally 
requires thousands of simulation cases. The FSI process implemented by the IB–LBM is shown in Algorithm 1.
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Deep reinforcement learning.  Deep reinforcement learning combines reinforcement learning with an 
artificial neural network to approach human-level control in complex real-world problems57. One of the most 
successful methods in reinforcement learning is one-step Q-learning. In this study, the DRQN58 is used where a 
one-step Q-learning is coupled with a three-layer long-short-term-memory recurrent neural network (LSTM-
RNN).

Q-learning describes a general process of an agent learning how to achieve a goal during prolonged and 
continued interaction with its environment by trial and error18. During this process, the agent must be able 
to sense a defined set of parameters representing the state of the environment (denoted by s) and take actions 
(denoted by a) to affect it. Each action is assessed with a scalar number called the reward (denoted by r) whose 
value indicates whether the agent moves towards or away from the goal by taking the action. In order to achieve 
the goal, the agent must seek actions that maximize its expected cumulative rewards in the long run (also known 
as the action-value function) which is defined as,

where sn and an are respectively the n-th state and action, rn+1 is the reward of n-th action, rn+2 , rn+3 and rn+4 are 
the subsequent rewards, and γ is the discount rate ranging from 0 to 1. If γ = 0 , the agent is termed “myopic” 
because it only maximizes the immediate rewards. Larger γ means that the agent is more “far-sighted”. For all 
cases in this paper, γ is chosen to be 0.99 as in Ref.57. The principle in Q-learning is that the agent explores dif-
ferent actions in different states and evaluates the actions with Q(s, a), so that when the state reoccurs, the agent 
will choose the optimal action to achieve its goal.

(25)Q(sn, an) = E[rn+1 + γ rn+2 + γ 2rn+3 + γ 3rn+4 + · · · | sn, an],
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Q-learning suffers from the classical “curse of dimensionality” problem, where the data and computational 
resource required grow exponentially with the dimensionality of the state and action spaces. Deep reinforcement 
learning has partly resolved this problem by approximating the action-value function with a neural network Q, 
which can generalize past experience to new situations57. In this work, an LSTM-RNN composed of three layers 
of 64 LSTM cells and a linear output layer is adopted. In order to find the optimal action-value function, the 
neural network is iteratively updated by minimizing the temporal difference error

where Q∗(s, a) is the optimal (maximized) action-value function, i.e. Q∗(sn+1, a
∗
n+1) = max

a
Q(sn+1, a) for all 

actions in state sn+1 , and a∗ is the optimal action maximizing Q. This can be achieved by updating the network 
weights via gradient descent methods,

where wsi is weight of the network, α is the learning rate. For efficient updating, the gradient descent is performed 
with the Adam optimization algorithm59.

(26)TDerr = rn+1 + γQ∗(sn+1, a
∗
n+1)− Q(sn, an),

(27)wsi = wsi − α
∂(TDerr)

2

∂wsi
,
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The state, action, reward, and next state quadruplet (sn, an, rn+1, sn+1) generated with agent-environment 
interaction are required to update the neural network. A replay memory D and a target neural network Qtarget 
are introduced in the iteration process57. The replay memory is used to store large numbers of quadruplets 
(sn, an, rn+1, sn+1) which are sampled randomly in a mini-batch [. . . , (sin, ain, rin+1, s

i
n+1), . . .] to update Q. This 

technique breaks the correlation between the samples to avoid local optimization57. The sizes of the replay mem-
ory ( ND ) and the mini-batch ( Nb ) are respectively set as ND = 5000 and Nb = 100 . The target neural network 
is used to generate the optimal action value Q∗(sn+1, a

∗
n+1) in Eq. (27). It is updated with Q for every Ntgt action 

steps to avoid the instability caused by frequent update of the optimal action-value function57. Ntgt is set to be 
100. The learning parameters (i.e. ND ,Nb and Ntgt ) have been tested to ensure the stability of the learning process.

The detailed interaction procedure is summarized in Algorithm 2 where the agent-environment interaction is 
broken into Ne episodes. Each episode is divided into a sequence of discrete action steps n = 0, 1, 2, 3, · · · . At step 
n of each action, the agent detects a state sn , and selects an action an based on a policy π(s, a) which describes the 
probability of selecting each possible action in each state. At action step n+ 1 , in response to the action an , the 
agent receives a reward rn+1 , and finds itself in a new state sn+1 . The ǫ-greedy policy60 is used to select actions, 
with which the agent chooses the optimal action (also known as exploiting) with probability 1− ǫ and other 
actions (also known as exploring) with probability ǫ . ǫ gradually decays from 1 to 0.05 so that the agent explores 
more at the initial stage of the simulation but exploits more in the long term afterwards.

It should be noted that compared to existing models of learning for fish21–23, this work incorporates the fish 
position, velocity and acceleration into the state space in the DRQN; and it considers the amplitude and frequency 
action spaces as well as the historical effects.

Validation of the fluid solver
The current flow solver has been validated in previous publications53,54. Here we further provide application-
specific validations by focusing on the frequency of vortex shedding from a cylinder in a uniform flow and the 
swimming speed of an anguilliform swimmer in a quiescent flow. The cases are conducted with 20 computational 
cores on a workstation with Intel Xeon CPU E5-2650 and OpenMP.

A uniform flow over a stationary cylinder.  A uniform flow over a stationary cylinder is conducted to 
determine the frequency f of the Kármán vortex street by varying the Reynolds number Re = ρUD/µ from 60 
to 360, where ρ is the density of the fluid, U is the incoming fluid velocity, D is the diameter of the cylinder, and 
µ is the dynamic viscosity of the fluid. The computational domain of 50D × 50D is divided into 7 blocks with 
about 52.0× 103 points. The minimum nondimensional grid spacing is �x/D = �y/D = 0.01 near the inner 
boundaries and the nondimensional time step size is �tU/D = 0.01 . Validation has been performed to ensure 
the numerical results are independent of mesh size, domain size and time step size.

The Strouhal number St = fD/U of the vortex street computed by the present method and observed in Refs.61–63 is 
shown in Fig. 3. The mean drag coefficient C̄D and the peak-to-peak lift coefficient �CL at Re = 100 are compared with 
other studies in Table 1. The simulation requires about 1.44s of CPU time per nondimensional time unit tU/D = 1.0 . 
Here the drag and lift coefficients are respectively defined by CD = FD/(0.5ρU

2D) and CL = FL/(0.5ρU
2D) . Figure 3 

and Table 1 show that St, C̄D and �CL predicted by our solver agree well with those in previous publications.

Self‑propelled anguilliform swimmer swimming in a quiescent flow.  Here an anguilliform swim-
mer swimming in a quiescent flow is conducted to validate the capability of the current fluid solver for modelling 
a self-propelled swimmer. The half thickness of the swimmer is described as68
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
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Figure 3.   Strouhal number as a function of the Reynolds number for a uniform flow over a stationary cylinder.
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where wb = sb = 0.04L , st = 0.95L and wt = 0.01L as shown in Fig. 4. To propel the swimmer, a travelling wave 
propagating from head to tail is generated,

where Amax is the maximum waving amplitude at the tail tip, and T is the waving period. Body length of the fish 
L, fluid density ρ , and waving period T are chosen as the characteristic values. To compare with the result in 
Ref.68, the parameters are selected as: Amax = 0.125L , and Re = ρL2/Tµ = 7142 . The translation and rotation 
are determined by Eqs. (5) and (6). The computational domain of 50L× 50L is divided into 7 blocks with about 
45.2× 103 initial points. The minimum nondimensional grid spacing is �x/L = �y/L = 0.01 near the inner 
boundaries and the nondimensional time step size is �t/T = 0.01 . The simulation requires about 2.41s of CPU 
time per nondimensional time unit t/T = 1.0.

The forward velocity u0/U ( U = L/T is one body per waving period) predicted by the current solver is shown 
in Fig. 5 and compared with the results reported by Kern and Koumoutsakos68. It is noted that the balanced 
swimming velocity of the present study is smaller than that of Kern and Koumoutsakos68 and Case b (with 
divergence-free correction of body motion) of Gazzola et al.69, but agrees well with Case a (without divergence-
free correction of body motion) of Gazzola et al.69. As the divergence of body motion does not affect the learning 
process considered in this work, and thus is not corrected in order to save computational costs.

(29)yl(sl , t) = Amax
sl/L+ 0.03125

1.03125
sin[2π(t/T − sl/L)],

Table 1.   Comparison of mean drag coefficient and peak-to-peak lift coefficient for a uniform flow over a 
stationary cylinder at Re = 100.

C̄D �CL

Present 1.373 0.679

Shu et al.64 1.383 0.700

Tseng and Ferziger65 1.420 0.580

Lai and Peskin66 1.447 0.660

Liu et al.67 1.350 0.678
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Figure 4.   Geometry of a self-propelled anguilliform swimmer.
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Figure 5.   Time history of the forward swimming velocity of an anguilliform swimmer. Case a and Case b of 
Gazzola et al.69 are without and with divergence-free correction of body motion, respectively.
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Applications of the coupled DRQN and IB–LBM
Three applications of the coupled DRQN and IB–LBM are conducted to demonstrate the effectiveness of this 
approach for the investigation of fish behaviors in different flow environments: point-to-point swimming in a 
quiescent flow mimicking prey capture behavior, position holding swimming in a uniform flow mimicking rhe-
otaxis behavior and position holding in a Kármán vortex street behind a half-cylinder mimicking the Kármán 
gaiting behavior. The simulations are conducted with 20 computational cores on a workstation with Intel Xeon 
CPU E5-2650 with OpenMP.

Point‑to‑point swimming.  Here we apply the coupled approach to the point-to-point swimming of a 
sub-carangiform swimmer in a quiescent flow. The swimmer of length L is placed in a circular area with radius 
R = 5L , as shown in Fig. 6. Its goal is to reach the center O from any position within the circular area and arbi-
trarily given orientation. This goal is reflected by defining a reward as

where rtip is the distance between the head of the swimmer and the center O.
The swimmer propels itself by periodically generating a travelling wave propagating from head to tail, as 

defined by Eqs. (2) and (3). In order to achieve high maneuverability, the swimmer can change the wave ampli-
tude every half swimming cycle. Each selected set of parameters is considered as an action. In this case, U = 1L/s 
is chosen as the characteristic velocity. The period is fixed at TU/L = 1.0 ; the amplitude action base is defined 
as θlmax = 0◦ , 20◦ , 40◦ , 60◦ , 80◦ , 100◦ , 120◦ , 140◦ and 160◦ ; and the wavelength is fixed at � = L . This parameter 
set forms an action base of 9 components.

The state is an important component in the DRQN. Theoretically, it should include the information of the 
swimmer and the ambient flow. The information of the swimmer includes the body waveform, position, pitch 
angle, velocity, angular velocity, acceleration and angular acceleration of the body. The flow information includes 
the flow velocity and pressure in the whole flow field. The historical evolution of the flow should also be consid-
ered. Therefore, it is impossible to consider the flow information as a simple definition of the state. One way to 
resolve this problem is to consider the information of the swimmer only as that in the work of Gazzola et al.21, 
Novati et al.22 and Verma et al.23 . However, ignoring the flow information will make the learned policy inaccurate 
as shown in Fig. 7a, where only the body waveform, position and pitch angle are considered in all the states. The 
fish is able to reach its destination in different stages of the learning process, but the path is highly diverse and 
complicated, and not improving with learning. Figure 7b shows the total number of periods ( Np ) the fish takes 
to reach its destination for all learning episodes. In the first 500 episodes, the fish dramatically decreases its time 
needed to reach the goal, indicating the fish is continuously learning and improving its swimming policy. How-
ever, after 500 episodes, the required time grows gradually, indicating the policy is getting worse as the learning 
progresses. This is because the defined states without considering the flow information is not able to capture the 
variability of the environment.

Here, we propose a method to consider the influence of the flow information in the states without having 
to deal with the complexity of the flow. Considering the flow is developed from the historical actions and fish 
dynamics, it is partially reflected by the dynamics and actions of the swimmer in the past time. If the whole 
historical dynamics and actions are considered in the states, the flow information is naturally included. However, 
tracking the whole historical dynamics and actions is memory and time consuming and not necessary since the 
far history only has minor influence on the flow dynamics at current instant. Our simulations show that only 
considering the historical dynamics and actions of the fish in the last 4 periods is enough to capture the flow 
dynamics. In order to further reduce the complexity, accelerations are not considered in the state. The state is 
thus defined by a tuple

(30)r = −
rtip

R
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Figure 6.   The confined domain of the point-to-point swimming.
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where θtip is the orientation angle of the swimmer relative to rtip (as defined in Fig. 6), ūcxl and ūcyl are the mean 
swimming velocities over half a period in the xl and yl directions, and ω̄ is the mean angular velocity over half 
a period. For a real fish, rtip and θtip can be directly sensed by the eyes, while ūcxl , ūcyl and ω̄ can be sensed by the 
lateral line system11,70,71. Therefore, it is reasonable to use these quantities to define the state.

The simulation is performed for a Reynolds number of Re = ρUL/µ = 1000 . It should be noted that this 
is not a typical Reynolds number for an adult fish. Instead it is for a juvenile fish less than 5cm swimming in 
this scope. This Reynolds number is used to reduce the computational cost, while such setup is sufficient to 
demonstrate the effectiveness of the coupled DRQN and IB–LBM. The computational domain of 50L× 50L 
is divided into 7 blocks with about 41.3× 103 initial points. The minimum nondimensional grid spacing is 
�x/L = �y/L = 0.01 near the inner boundaries and the nondimensional time step size is �tU/L = 0.01 . The 
simulation requires about 2.52s of CPU time per nondimensional time unit tU/L = 1.0 . The learning parameters 
are set to α = 0.001 and γ = 0.99 , while ǫ decays from 1 to 0.05 gradually. These parameters are chosen to ensure 
the stability of the learning process.

The learning process is divided into a series of episodes. In each episode, the initial position (rtip)0 is randomly 
chosen between L and 5L and the initial orientation (θtip)0 randomly varies between −90◦ and 90◦ . The position 
and orientation of the swimmer are then determined by the FSI with the actions. Once the swimmer exceeds 
the circular area or reaches the center or reaches 200 periods in the area, the episode ends and another starts. 
Figure 8 shows the traces of the head during different learning stages and the total number of swimming periods 
the fish maintains in the swimming area for all episodes considered. As shown in Fig. 8a, the swimmer swims 
randomly in episode 11. Nevertheless, after a trial and error exploration period, it learns to adjust its orientation 
and swims around the center O (episode 338). After learning for 545 episodes, it successfully finds a tortuous 
path to reach the center O. However, at episode 3890, it has learned how to directly swim towards its destination. 
This is further demonstrated by Fig. 8b, from which it is found that in the first 2000 learning episodes, the total 
number of swimming periods decreases rapidly. After around 2000 episodes, the total number of swimming 
periods remains at a low value, indicating the swimmer has found an efficient way to reach its goal.

Figure 9 presents the traces when the fish swims to its destination with different (rtip)0 and (θtip)0 after learning 
for 10,000 episodes. 8 cases are studied. In the first 4 cases, (θtip)0 is fixed at 75◦ while (rtip)0 takes on the values 
1L, 2L, 3L and 4L. In the other 4 cases, (rtip)0 is fixed at 3L while (θtip)0 takes on the values 0◦ , 25◦ , 50◦ and 75◦ . 
In all cases, the fish directly swims to its destination with a very short path.

Figure 10 shows the vorticity contours at different instants while the fish swims to its destination with an 
initial distance of (rtip)0 = 3L and an initial orientation of (θtip)0 = 75◦ . Initially the fish is at rest with the 
destination to its right (see Fig. 10a). Then it undulates with large right amplitude (see Fig. 10b) and small left 
amplitude (see Fig. 10c) to perform a fast right turn. After directly facing the destination, it swims with nearly 
equal left (see Fig. 10e) and right (see Fig. 10d)amplitudes. At around 12 periods, the fish successfully reaches 
the destination (see Fig. 10f).

Rheotaxis.  Here we apply the coupled approach to the rheotaxis swimming of a sub-carangiform swimmer 
in a uniform flow. Its goal is to hold position in a circular area of radius R = 5L as shown in Fig. 11 for more 
than 200 periods. The situation is highly unstable since a small displacement in orientation away from the flow 
direction could lead to high lateral forces making the agent swim away from its original position. This goal is 
reflected by defining a reward as
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Figure 7.   Point-to-point swimming with only the dynamics of the fish considered as the state: (a) the traces of 
the head for at different learning stages; and (b) the total number of periods the fish maintains in the swimming 
area for all episodes considered.
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where ū is the mean translation velocity of the center of the mass in each half a period.
In this case, the swimmer is able to change both the wave period and amplitude every half swimming cycle. 

The period action base is defined as TU/L = 0.3 , 0.4 and 0.5; the amplitude action base is defined as θlmax = 18◦ , 
35◦ and 55◦ , and the wavelength is fixed at � = L . This parameter forms an action base of 9 components. The 
values are chosen carefully so that the fish can perform different maneuvering like acceleration, deceleration 
and yawing.

Note that the information of the position rc and orientation θ is implied in the translational and rotational 
velocities, and thus is not necessary for the fish to sense. Therefore, the state is simplified to be

where ūcx and ūcy are the mean translational velocities of the center of the mass in each half a period parallel and 
perpendicular to the flow orientation.

The simulation is performed for a Reynolds number of Re = ρUL/µ = 1000 . The computational domain of 
50L× 50L is divided into 7 blocks with about 45.6× 103 initial points. The minimum nondimensional grid spac-
ing is �x/L = �y/L = 0.01 near the inner boundaries and the nondimensional time step size is �tU/L = 0.01 . 
The simulation requires about 2.99s of CPU time per nondimensional time unit tU/L = 1.0 . The learning param-
eters are set to α = 0.001 and γ = 0.99 , while ǫ decays from 1 to 0.05 gradually.

The swimmer is initially placed in the center O of the swimming area with its initial orientation angle θ0 ran-
domly varying between −45◦ ≤ θ0 ≤ 45◦ . Figure 12 shows the traces of the center of the mass during different 

(32)r = −|ū|,
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Figure 8.   Point-to-point swimming by considering the influence of the flow dynamics in the states: (a) the 
traces of the head during different learning stages; and (b) the total number of periods the fish maintains in the 
swimming area for all episodes considered.
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Figure 9.   Point-to-point swimming: (a) the traces of the head for different initial distance (rtip)0 ; and (b) the 
traces of the head for different initial orientations (θtip)0.
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learning stages and the total number of swimming periods the fish maintains in the swimming area. As shown 
in Fig. 12a, the fish is not able to hold position at episode 12. At episode 248 and episode 371, the fish has learned 
to hold position for more than 200 periods but it still moves around with a very low speed. However, at episode 
950, the fish is able to hold position without obvious displacement after a initial adjustment period. In the first 

tU/L=0

(a)

tU/L=3.84

(b)

tU/L=4.32

(c)

tU/L=9.84

(d)

tU/L=10.36
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tU/L=12

(f)

Figure 10.   Vorticity contours behind the fish during point-to-point swimming at six typical instants: (a) 
tU/L = 0 , (b) tU/L = 3.84 , (c) tU/L = 4.32 , (d) tU/L = 9.84 , (e) tU/L = 10.36 , and (f) tU/L = 12 . The range 
of the vorticity contours is from −4 to 4. Note that the flow inside the body-occupied region is introduced by 
the IB–LBM which however does not affect the solution in the physical region. Flow visualization is achieved by 
using Tecplot 360 EX 2015 R2 (https​://www.tecpl​ot.com).
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Figure 11.   The confined domain of the rheotaxis swimming.
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approximately 200 episodes (see Fig. 12b), the total number of swimming periods increases rapidly, indicating 
the fish is learning to hold position. After approximately episode 200, the fish is able to maintain in the swimming 
area for more than 200 periods, indicating it has found a policy to hold position.

Figure 13 compares the traces of the center of the mass and the change of the orientation angle θ after learning 
for 1000 episodes. 4 cases are studied with initial oritentation θ0 values of 0◦ , 10◦ , 20◦ and 30◦ . The swimmer holds 
position for more than 200 periods in all cases as shown in Fig. 13a. As shown in Fig. 13b, it rapidly adjusts its 
orientation during the first 10 periods to align its body against the flow, and thereafter tries to hold its position.

The lateral movement of the tail when the swimmer is holding position is presented in Fig. 14. A repetitive 
undulating pattern is apparent that lasts for 4 flapping periods. In this pattern, we can identify two types of 
tail movement: the first is continuously increasing the left amplitude (Pattern 1), the second is continuously 
increasing the right amplitude (Pattern 2). These flapping patterns trigger two types of wake vortices as shown 
in Fig. 15. In the first type of wake vortices (Fig. 15a), the vortices form a jet wake deflected slightly to the right 
side of the swimmer, causing it to move to its left and to rotate clockwise slightly. In the second type of wake 
vortices (Fig. 15b), a leftward deflected jet is formed causing the swimmer to move to the right and to rotate 
anticlockwise. These patterns of vortices happen in turn, realizing a dynamical balance in the hydrodynamic 
forces to hold position in the flow.

Position holding in a Kármán vortex street.  Here we apply the coupled approach to the position hold-
ing behavior in a Kármán vortex street. The Kármán vortex street is an example of a drag wake, characterized by 
a repeating pattern of swirling vortices. It is a complex but mostly predictable flow environment. The abundant 
vortices make the fluid dynamics in different areas highly diverse and unsteady and there is always a certain 
amount of unpredictable variation in the vortex behaviors72. Furthermore, a fish in the Kármán vortex street 
selectively explores the flow and swims back and forth when slaloming around the incoming vortices73, which 
makes the encountered flow field more variable and unpredictable.

Liao and Akanyeti50,72,73 conducted a series of experiments to observe the kinematics of live rainbow trouts 
in the Kármán vortex street, in which the fish were placed in the wake behind a D-shaped cylinder. They found 
that the midline kinematics of the fish could be represented as a superimposition of four midlines generated by 
four motion components: lateral translation, body bending, body rotation and head motion, whose contributions 
were respectively 67.8% , 19.9% , 9.0% and 3.3% in terms of the swept area. The frequencies of the tail beats matched 
the vortex shedding frequency. The body wavelength was approximately 25% larger than the wake wavelength. 
In addition, the peak-to-peak tail beat amplitude was nearly the same as the diameter of the cylinder.

A D-shaped cylinder of diameter D = 0.3L is chosen in our simulation to produce the Kármán vortex street 
for comparison with the experiment of Liao50. The Strouhal number of the vortex street is St = fD/U = 0.1875 
resulting in a non-dimensional vortex frequency fL/U = 0.625 and period TU/L = 1.6 . The wavelength of the 
vortex street is around 1L. The fish is trained in a rectangular area of 8L× 4L . Its goal is to hold its horizontal 
position in the vortex street for more than 200 periods. The goal is reflected by defining a reward as

In this case, the period action base is defined as TU/L = 1.2 , 1.4, 1.6, 1.8 and 2.0; the amplitude action base is 
defined as θlmax = 16◦ , 34◦ , 51◦ , 72◦ and 97◦ ; and the wavelength is fixed at � = 1.5L . These parameter sets are 
within the range of the observation of Liao and Akanyeti50,72,73.

The hydrodynamic forces exerted on the fish are also included in the state to better capture the dynamic 
nature of the flow field. In order to reduce the complexity, body rotation and head motion are not considered, 
which is based on the observation by Akanyeti and Liao72 who found that nearly 90% of the body motion of a 
live rainbow trout will be captured by the present model. Therefore, the state is defined by
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Figure 12.   Rheotaxis: (a) the traces of the center of the mass during different learning stages, and (b) the total 
number of periods the fish maintains in the swimming area for all episodes considered.
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where F̄D and F̄L are respectively the mean longitudinal and lateral force in each half a period. Learning param-
eters are all set the same as in Sect. Point‑to‑point swimming.
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Figure 13.   Rheotaxis: (a) the traces of the center of the mass for different initial orientations θ0 ; and (b) the 
time history of the orientation angle for different initial orientations θ0.
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Figure 14.   The lateral movement of the tail during rheotaxis.
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Figure 15.   Wake vorticity contours during rheotaxis: (a) Pattern 1; and (b) Pattern 2. The range of the vorticity 
contours is from −4 to 4. Flow visualization is achieved by using Tecplot 360 EX 2015 R2 (https​://www.tecpl​
ot.com).
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The simulation is performed for a Reynolds number of Re = ρUL/µ = 1000 or Recylinder = ρUD/µ = 300 . 
The computational domain of 50L× 50L is divided into 7 blocks about 52.1× 103 initial points. The minimum 
nondimensional grid spacing is �x/L = �y/L = 0.01 near the inner boundaries and the nondimensional time 
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Figure 16.   Position holding in a Kármán vortex street: (a) the traces of the head during different learning 
stages; and (b) the total number of periods the fish maintains in the swimming area for all episodes considered.
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Figure 17.   The location of the swimmer swimming in a Kármán vortex street: (a) the current result, and (b) the 
experimental observation in Ref.50.

Table 2.   Comparison of undulation kinematics in our simulation and in the observation by Liao50.

Variables Liao (2006) Present

Recylinder 18,000 300

Tail-beat frequency (fL/U) 0.69± 0.02 0.65± 0.01

Tail tip amplitude ( Amax/L) 0.19± 0.01 0.15± 0.01

Body wavelength ( �/L) 1.71± 0.04 1.5

Wave speed ( f �/U) 1.18± 0.01 0.98± 0.01



16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1691  | https://doi.org/10.1038/s41598-021-81124-8

www.nature.com/scientificreports/

step size is �tU/L = 0.01 . The simulation requires about 3.11s of CPU time per nondimensional time unit 
tU/L = 1.0 . The learning parameters are set to α = 0.001 , γ = 0.99 , and ǫ decays from 1 to 0.05 gradually.

The fish is initially placed in the mid-line of the swimming area with its initial distance between the head and 
the cylinder randomly varying from 1.5L to 2.5L. Figure 16 shows the traces of the head during different learn-
ing stages and the total number of periods the fish maintains in the swimming area for all episodes considered. 
Figure 16a shows the traces of the head at different learning stages. At episode 100, the fish is not able to hold 
position and swims out of the area instantly. At episode 600, the fish hold position for several periods but swims 
out of the area finally. At episode 1980, the fish is able to hold position in a small area for more than 200 periods. 
As shown in Fig. 16b, in the first approximately 500 episodes, the total number of swimming periods increases 
rapidly, indicating the fish is learning to hold position. After approximately 500 episodes, the fish is able to hold 
position in the Kármán vortex street for more than 200 periods, indicating the fish has found an effective swim-
ming policy. Once an efficient swimming policy is achieved, 100 simulations of the swimmer swimming in the 
wake are conducted. The head location of the swimmer is recorded and shown in Fig. 17a with experimental 
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Figure 18.   Vorticity contours and pressure distributions on the body surface when the fish is holding 
position in the Kármán vortex street: (a) vorticity at tU/L = 54.4 , (b) pressure at tU/L = 54.4 , (c) vorticity at 
tU/L = 55.04 , (d) pressure at tU/L = 55.04 , (e) vorticity at tU/L = 55.52 , (f) pressure at tU/L = 55.52 , (g) 
vorticity at tU/L = 56 , and (h) pressure at tU/L = 56 . The range of the vorticity contours is from −4 to 4. Flow 
visualization is achieved by using Tecplot 360 EX 2015 R2 (https​://www.tecpl​ot.com).
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Figure 19.   Vorticity contours and pressure distributions on the body surface when the fish is escaping from the 
vortices: (a) vorticity at tU/L = 86.88 , (b) pressure at tU/L = 86.88 , (c) vorticity at tU/L = 87.2 , (d) pressure 
at tU/L = 87.2 , (e) vorticity at tU/L = 87.52 , (f) pressure at tU/L = 87.52 , (g) vorticity at tU/L = 87.84 , (h) 
pressure at tU/L = 87.84 , (i) vorticity at tU/L = 88.16 , and (j) pressure at tU/L = 88.16 . The range of the 
vorticity contours is from −4 to 4. Flow visualization is achieved by using Tecplot 360 EX 2015 R2 (https​://www.
tecpl​ot.com).
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observation by Liao50 in Fig. 17b. It is found that the fish tends to hold position in a small area within the vortex 
street. Compared with the Kármán gaiting area observed by Liao50 in live rainbow trout, the simulation-predicted 
area where the swimmer tends to stay overlaps the majority of part of that observed in experiment.

The averaged undulation kinematics for 50 successful cases are shown in Table 2 with comparison to the 
experimental observation of Liao50. The Reynolds number of the cylinder in our simulation is 300 compared 
with 18,000 in the experiment. The resultant tail-beat frequency agrees quite well with that of the experiment 
but the tail tip amplitude is slightly lower. The undulation wave speed is also slightly slower than that in the 
experiment due to the smaller wavelength. It should be noted that the typical wake of the D-shaped cylinder in 
the high Reynolds numbers as observed in experiment is the well-organized turbulence vortex street (see Ref.17), 
which is the foundation of the successful comparison between experiment and simulation as shown in Fig. 17.

The vorticity contours and the pressure distributions on the fish surface at different instants when the fish 
is holding its position in the vortex wake are shown in Fig. 18. It is found that there are at least three vortices 
that are interacting with the body at any instant. At tU/L = 54.4 (Fig. 18a and b), vortex 1 is at the left side of 
the tail and vortex 3 is at the left side of the head, generating high leftwards suction force. Meanwhile, vortex 2 
is at the right side of the middle body, generating high rightwards suction force to balance the leftwards suction 
force at the head and tail. At tU/L = 55.04 (Fig. 18c and d), the tail is moving from left to right, which leads to 
a suction force at the left side of the tail, generating leftwards and head-wards thrust. The fish has to balance 
this leftwards force with its muscles. Meanwhile, vortex 2 has moved to the right side of the tail, inducing a high 
suction force at the right side which balances the suction force at the left side. In addition, vortex 3 has moved to 
the left side of the middle body, inducing a backwards drag and a leftwards force which balance the head-wards 
and rightwards force induced by vortex 4. This facilitates the motion of the tail. At tU/L = 55.52 (Fig. 18e and 
f), vortex 3 has moved to the posterior body, inducing a leftwards and a backwards force which balance the 
head-wards force induced by vortex 5 and the rightwards force induced by vortex 4. At tU/L = 56 (Fig. 18e and 
g), the tail is moving from right to left. The leftwards force induced by vortex 3 facilitates this movement. The 
vortex position is similar to the situation at instants tU/L = 55.04 while the leftwards force induced by vortex 
3 and vortex 5 is balanced by the rightwards force generated by vortex 4 and the tail movement. The backwards 
force induced by vortex 3 is balanced by the head-wards force induced by vortex 5 and the tail movement. To 
summarize, the fish can use the vortices to achieve balance and save energy so as to efficiently hold position in 
the Kármán vortex street.

However, the fish could occasionally get trapped in the low pressure area of the vortex center. If the swim-
mer is not able to properly synchronize with the vortices, it would move downstream with the vortex and lose 
its stability. In this case, the fish must find a way to escape from the vortex in order to hold position for a long 
period. Figure 19 shows the strategy of how the fish escapes from the vortices. At tU/L = 86.88 (Fig. 19a and b), 
87.2 (Fig. 19c and d) and 87.52 (Fig. 19e and f), the fish is in close proximity to a left side vortex (vortex 1) which 
induces a high suction force on the left side body. In order to escape from the vortex, the fish performs a fast 
high-amplitude leftwards flapping to generate high rightwards forces on the tail. At tU/L = 87.84 (Fig. 19g and 
h) and 88.15 (Fig. 19i and j), the fish sweeps its tail back to the central area of the vortex street and the leftwards 
suction force of vortex 1 is partly balanced by the rightwards suction force of vortex 2. Afterwards, the tail is 
slowly moving from the left side to the right side to avoid generating high leftwards force on the tail.

Conclusions
The fish adaption behaviors in complex environments have been numerically studied. A recurrent Q-network 
is first coupled with an immersed boundary–lattice Boltzmann method to simulate the adaption behaviors of 
a fully self-propelled smart swimmer. Three different behaviors are studied with this swimmer: point-to-point 
swimming in a quiescent flow, rheotaxis swimming in uniform flow and position holding swimming in a Kármán 
vortex street. The swimmer utilizes only the position, velocity or acceleration information extracted from the 
environment to learn to achieve specific tasks. By considering the historical information, the swimmer learns 
suitable policies to achieve different tasks, demonstrating that deep reinforcement learning is able to extract 
useful characteristics from flow structures with various complexities. During the point-to-point swimming, the 
fish performs rapid turning to face the target and then swims directly to it with different initial distances and 
orientation angles. During rheotaxis swimming, the fish rapidly aligns its body with the uniform flow and holds 
position for more than 200 periods. Two types of wake vortex patterns are identified for rheotaxis swimming. 
The vortex patterns produce jet flow in different directions in the wake to facilitate a dynamic balance of the 
hydrodynamic forces. During position holding in a Kármán vortex street, the fish utilizes the ambient vortices 
to achieve balance and save energy. The robust position holding in the Kármán vortex street only happens in a 
specific flow area which is in reasonable agreement with the experimental observation of Liao50. Highly asym-
metrical corrective undulation is performed when fish is trapped in the vortices, which enables the fish to escape 
from the vortex center and hold its position or maintain its stability.
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