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Abstract
Purpose Surgical workflow recognition is a crucial and challenging problem when building a computer-assisted surgery
system. Current techniques focus on utilizing a convolutional neural network and a recurrent neural network (CNN–RNN) to
solve the surgical workflow recognition problem. In this paper, we attempt to use a deep 3DCNN to solve this problem.
Methods In order to tackle the surgical workflow recognition problem and the imbalanced data problem, we implement a
3DCNN workflow referred to as I3D-FL-PKF. We utilize focal loss (FL) to train a 3DCNN architecture known as Inflated 3D
ConvNet (I3D) for surgical workflow recognition. We use prior knowledge filtering (PKF) to filter the recognition results.
Results We evaluate our proposed workflow on a large sleeve gastrectomy surgical video dataset. We show that focal loss
can help to address the imbalanced data problem. We show that our PKF can be used to generate smoothed prediction results
and improve the overall accuracy. We show that the proposed workflow achieves 84.16% frame-level accuracy and reaches a
weighted Jaccard score of 0.7327 which outperforms traditional CNN–RNN design.
Conclusion The proposed workflow can obtain consistent and smooth predictions not only within the surgical phases but
also for phase transitions. By utilizing focal loss and prior knowledge filtering, our implementation of deep 3DCNN has great
potential to solve surgical workflow recognition problems for clinical practice.
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Introduction

Computer-assisted surgery (CAS) system is one of the cor-
nerstones for modern operating rooms. One essential aspect
of building this system is surgical workflow recognition. Sur-
gical workflow recognition can be used to locate the main
surgical phases from surgical videos. Video clips that contain
main surgical phases can be used in the expert reviewprocess,
whichwill help surgeons further develop their skills. Surgical
workflow recognition can also be used to calculate the oper-
ating time for each surgical phase, which can help surgeons
benchmark their performance. Automatic surgical workflow
recognition not only provides a tool to understand surgeon
performance, but can also enhance coordination among sur-
gical teams, leading to improved surgeon skills and better
patient outcomes.

Computer vision-based automatic surgical workflow
recognition has gained a lot of attention in recent years. Early
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research proposes using deep convolution neural networks
to classify videos frame-by-frame without using tempo-
ral information [1–4]. Other approaches utilize CNN–RNN
(convolutional neural network–recurrent neural network) to
capture both spatial and temporal information for surgical
workflow recognition [5–14]. Typical design choices for
CNN in these approaches are ResNet [15] or Inception [16].
These deep convolutional neural networks can capture spa-
tial information for each frame from the surgical video. A
typical design choice for RNN is long short-term memory
(LSTM) which is used to capture the temporal information
between frames from the surgery video [6,7].With the rise of
3DCNNs, a shallow 3DCNN design like a C3D network was
proposed to solve the surgical workflow recognition problem
[17]; however, the shallow C3D network did not outperform
the CNN–RNN design.

Instead of using a shallow C3D, we choose a deep archi-
tecture known as Inflated 3D ConvNet (I3D) [18] for our
workflow. We implement a 3DCNN workflow referred to
as I3D-FL-PKF. This combines I3D with focal loss (FL)
[19] and prior knowledge filtering (PKF) for surgical work-
flow recognition. The goal of this workflow is to improve
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the results obtained by using a CNN–RNN-based architec-
ture, which is commonly used for similar tasks. The rationale
behind using a 3DCNN is to capture spatial and temporal
information inside surgical videos.

Dataset and annotation

To test our proposed workflow, we collected robotic and
laparoscopic surgical videos for sleeve gastrectomy from 14
institutions. This procedure is used to assist patients with
weight loss and reduce the risk of potentially life-threatening
weight-related health problems. Sleeve Gastrectomy can be
performed for patients who require anti-inflammatory med-
ication or for patients who suffer from conditions such as
cirrhosis, anemia, or severe osteoporosis which preclude
intestinal bypass [20]. According to the literature [20–24],
our medical experts split sleeve gastrectomy procedure into
eight surgical phases: “Exploration/inspection,” “Ligation
of short gastric vessels,” “Gastric transection,” “Bougie,”
“Oversew staple line,” “Liver retraction,” “Hiatal hernia
repair,” and “Gastric band removal.” The parts of the video
that did not get annotated were named as “Not a phase.”
Video segments annotated as “Not a phase” usually are sur-
gical phase transaction segments, undefined surgical phase
segments, out-of-body segments, idle segments, and so on.
Understanding the above-mentioned surgical phases and
locating them in the surgical videos can be valuable for
skill assessments. Early research [25] shows that “Ligation
of short gastric vessels” and “Oversew staple line” are the
two most hazardous surgical phases in sleeve gastrectomy
cases, and where the majority of technical errors were made.
Video clips that contain these surgical phases can be used
in the expert review process to help the surgeon improve on
these complex surgical phases. Locating surgical phases that
are optional in the procedure, such as “Liver retraction,” can
also indicate the need for further clinical research to under-
stand the benefit of completing these phases. This can support
standardizing surgical phases.

In this project, 461 videos were gathered and annotated
with the above-mentioned set of phases. The framerate for
our video is 30 frames per second. The dimensions of our
videos are either 768×480 or 854×480.To train the proposed
deep learningworkflow, 317 videoswere used for the training
dataset, and 82 videos were used for the validation dataset.
A dataset of 62 videos was used to test the workflow after
training.

As shown in Table 1, we calculate the hours of video data
wehave for the training, validation, and test datasets.Wehave
a very imbalanced dataset due to the duration of the surgical
phase varies from each other. Another reason that causes
this dataset imbalance problem is many surgical phases
are optional, for example: “Liver retraction,” “Hiatal hernia

repair,” “Bougie,” and “Gastric band removal.” FromTable 1,
we have a very limited amount of training data for several
surgical phases for example: “Liver retraction,” “Explo-
ration/inspection,” “Bougie,” and “Gastric band removal.”

Method

The overview of our workflow is shown in Fig. 1. We divide
the video into short video clips and then use the I3D architec-
ture to make a prediction for each video clip. We concatenate
the results from the video clips to obtain the initial raw pre-
diction results for the full video. Then, we apply the prior
knowledge filtering algorithm to the raw prediction results
to get the finalized prediction results for the full video. The
final output predictions correspond to either surgical phase
predictions or not surgical phase predictions. The focal loss
is used during the training to solve the imbalanced data prob-
lem and improve the prediction results.

I3D architecture

We consider classifying each short video clip as an action
recognition problem. 3DCNN has always been a typical
method to facilitate spatiotemporal learning for this problem.
To train a 3DCNN from scratch typically requires a large
amount of training data. Carreira and Zisserman [18] pro-
posed to inflate a 2DCNN pretrained from ImageNet along
the temporal dimension to obtain a 3DCNN called inflated
3D ConvNet. Filters and pooling kernels of deep 2D Con-
vNets are expanded into 3D, making it possible to learn
seamless spatiotemporal feature extractors from video, while
leveraging successful ImageNet architectures. Carreira and
Zisserman [18] trained the inflated 3D ConvNet on Kinet-
ics human action dataset [26] to solve the action recognition
problem. Inspired by their work, we adopt Inception-v1 I3D
for our problem and fine-tune it on our dataset. The initial
weights for Inception-v1 I3Dare publicly available,we chose
the RGB stream pretrained weights in this work.

Samplingmethod

Syntheticminority oversampling technique (SMOTE) [27] is
one of the most common ways to solve the dataset imbalance
problem. We upsample the minority class and undersample
the majority class to build a class-balanced dataset. For each
video, each annotation segment is usually visually differ-
ent. Within the same video, annotations segments labeled
as “Not a phase” look different from one another. Consid-
ering the above factors, we proposed a sampling method
focused on balanced sampling for each annotation segment
instead of balanced sampling for each class. For each anno-
tation segment in our video dataset, we randomly sample a
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Table 1 Training, validation
and test datasets (hours of video)

Phase name Training data Validation data Testing data

Not a phase 95.50 24.35 20.03

Ligation of short gastric vessels 70.79 18.03 13.80

Gastric transection 66.47 15.90 11.51

Bougie 5.08 1.07 0.84

Oversew staple line 42.71 13.46 6.63

Exploration/inspection 3.03 0.64 0.45

Liver retraction 1.09 0.43 0.11

Hiatal hernia repair 7.48 1.21 1.71

Gastric band removal 0.88 0.71 0.52

Fig. 1 An overview of the proposed workflow: initial predictions are generated by 3D CNN from image sequences. Prior knowledge filtering is
used to finalize the prediction results

fixed number of training samples. Because each annotation
segment provides the same number of training samples, we
named this training data sampling technique annotation seg-
ment balanced sampling (ASBS).

An example for fine-tuning I3D with ASBS is as follows:
For each video, the total number of annotation segments is
n + m, where n segments belong to surgical phases and m
(m ≤ n + 1) segments do not belong to any surgical phases.
To fine-tune I3D on our dataset, during each training epoch,
five 20-second video clips are randomly selected inside each
annotation segment for each video. Sixty-four frames are
sampled from each video clip as one training sample. For
each training epoch, we roughly have 5v(n + m) training
samples, where v is the total number of the surgical videos
in the training dataset. For data augmentation purposes, we
sample one frame every a frames when we sample 64 frames
from each video clip for each training sample. The constant
interval a is an integer and 4 ≤ a ≤ 9.

Focal loss

Because the duration of the surgical phase varies from each
other and a large amount of the data is annotated as “Not a
phase,” we have an imbalanced dataset. This class imbalance
problem leads our deep learning model to achieve high pre-

diction accuracy for the majority class and poor prediction
accuracy for the minority class. Specifically, the deep learn-
ing model achieves high prediction accuracy in the “Not a
phase” class, and low accuracy in the surgical phase classes.
This was significantly seen in the surgical phase classes that
lacked training data.

In order to solve the data imbalance problem, a new loss
called focal loss [19] is proposed to tackle the foreground–
background class imbalance problem for dense object detec-
tion. By reshaping the standard cross-entropy loss with a
dynamically scaling factor, the loss associated with easily
classifiable examples, which constitute the majority of the
dataset, are down-weighted in focal loss. Because of this,
focal loss gives less importance to easily classifiable exam-
ples and tends to focus on hard examples. In practice, the
focal loss function is defined as

FL(pt ) = −α(1 − pt )
γ log(pt ) (1)

where pt is the model’s estimated probability for the class,
α is the balanced variant, γ is the focusing parameter.

In focal loss,when training samples are correctly classified
with a high estimated probability pt , the value of γ powered
1 − pt is small, and the loss for those correctly classified
samples are significantly down-weighted. Their contribution
to total loss is significantly reduced even if they are large

123



2032 International Journal of Computer Assisted Radiology and Surgery (2021) 16:2029–2036

in number. In contrast, when training samples are wrongly
classified with a low estimated probability pt , the loss is
up-weighted. Therefore, deep learning models can focus on
difficult examples that were incorrectly classified with a low
estimated probability.

Prior knowledge filtering

Most surgical videos contain frames where the surgeon is
idle, frames with slight motions, frames missing important
visual clues, and frames with various artifacts in the middle
of the surgical phase. For such frames in a surgical video,
it is hard for the deep learning model to predict accurately.
Therefore, there is noise in the raw predictions from the deep
learning model.

In order to filter the prediction noise, we investigate in a
post-processfiltering algorithmandpropose thePriorKnowl-
edge Filtering algorithm. We develop the PKF algorithm in
consideration of the below aspects:

(1) Phase order: Although many surgical phases are not
following a specific order, some surgical phases do follow a
specific order. For example, in the sleeve gastrectomy sur-
gical video, the “Exploration/inspection” phase happens at
the beginning of the surgery. It is clear that predictions of
the “Exploration/inspection” phase at the end of the surgical
video are wrong predictions and need correction. We uti-
lize our model to make predictions for the training dataset.
After locating the wrong predictions in the training dataset,
one option to correct these wrong predictions is to replace
them with new surgical phase labels according to phase
order and the model’s confidence. The other option is to cor-
rect these wrong predictions with the “Not a phase” label.
We can compare our corrections with the ground truth and
set up prediction correction rules. In the above-mentioned
example, replacing the wrong predictions labeled as the
“Exploration/inspection” phase with the “Not a phase” label
can correct most of the wrong predictions on both the train-
ing and validation datasets. Therefore, we can correct those
wrong predictions with the “Not a phase” label.

(2) Phase time: In order to calculate the phase time, smooth
prediction results must be obtained first. A sliding window
approach is used to determine the start time and the end time
of each surgical phase prediction segment. We calculate the
set of minimum phase time T with the annotation data for
the training dataset. T = {T1, T2, . . . , TN } where N is the
total number of phases. For each surgical phase i , we set the
sliding window size by

Wi = min(max(Wmin, ηTi ),Wmax) (2)

whereWmin is theminimum slidingwindow size,Wmax is the
maximum sliding window size, η is a weighted parameter.
For our specific case, we have one prediction for each second

of the video. Wmin is set to be 10, Wmax is set to be 60, η is
set to be 0.2. We used grid search to select the parameters
that allowed us to compare between the ground truth and the
workflow predictions in the validation dataset.

For each surgical phase i , the full video prediction results
are fed piece by piece to a sliding window with a length
of Wi . Inside the sliding window, we count the prediction
frequency value for surgical phase i . We set the prediction
threshold value Ji by

Ji = μiWi (3)

where μi is a weight parameter. We set μi to be 0.5 in this
work.

If the prediction frequency value is greater than the predic-
tion threshold value, the prediction result for the middle time
step of the sliding window is set to be phase i . For adjacent
predictions that share the same prediction labels, we connect
them with the threshold value Li which we set to further
solve the discontinuous prediction problem. Threshold value
Li can be calculated by

Li = min(νi Ti , Lmax) (4)

where Lmax is the maximum connection threshold value, νi
is a weight parameter. We set Lmax to be 180 and νi to be 0.4
in this work. Here, grid search was utilized again to pick our
parameters.

For each surgical phase i , we have smoothed predic-
tion results. If prediction segments for different surgical
phases overlap with each other, the prediction for the overlap
segment is determined by the average model’s confidence
calculated by

Ci = 1

f − e + 1

f∑

t=e

p(t,i) (5)

where e is the start time step for the overlap segment, f is the
end time step for the overlap segment, p(t,i) is the predicted
probability at class i at time step t (e ≤ t ≤ f ).

With the smoothed prediction result, phase time can be
calculated for each surgical phase prediction segment. While
many surgical phases vary in phase time, we can still correct
prediction segments that are too short to be a surgical phase.
We can utilize Eq. (5) to calculate the average model’s con-
fidence for each label for those short segments. After that
we can reselect labels for those short segments according
to the average model’s confidence. The limitation of this
approach is that it cannot filter wrong prediction phase seg-
ments that are longer than the correspondingminimum phase
time. In this work, instead of utilizing the average model’s
confidence, we replace those short segments with the “Not a
phase” label.
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(3) Phase incidence: Despite the fact that many surgical
phases happen multiple times in one surgical video, some
surgical phases normally only happen once or less than a
fixed incidence number. We calculate the set of maximum
phase incidence I with the annotation data for the training
dataset. I = {I1, I2, . . . , IN } where N is the total number of
phases. We correct prediction segments according to phase
incidence to further filter the precondition noise. For predic-
tion segments that need corrections, we can utilize Eq. (5) to
calculate the average model’s confidence for each label. We
can reselect labels according to the average model’s confi-
dence. We can locate wrong prediction segments according
to the set of maximum phase incidence I on the validation
dataset. We can further evaluate the reselect labels with the
ground truth annotations. In this work, instead of utilizing
the average model’s confidence, we replace those segments
with the “Not a phase” label.

Experiments

Our experiments are implemented with the Keras deep learn-
ing library using Python. Amazon EC2 P2 Instance is used
for all experiments. An NVIDIA Tesla K80 GPUwith 12 GB
memory is used for all experiments.

Implementation details

We utilize I3D, Focal Loss, and PKF to build our work-
flow and refer to it as I3D-FL-PKF. In order to quantify the
improvement caused by using focal loss during the train-
ing of our deep network architecture, we also train I3D with
cross-entropy loss, this baseline workflow is referred to as
I3D-PKF. During the training of the I3D network, we utilize
the SGD optimizer with an initial learning rate of 4e−3. We
reduce the learning rate by a factor of 0.25 when there is
no improvement for the validation accuracy in the last five
epochs. The batch size is set to be 6. The number of epochs
is set to be 50. The α is set to be 4 and the γ is set to be 2
for focal loss. In order to reduce over-fitting, we utilize the
dropout layer and set the dropout rate as 0.6. The input video
clip length for the I3D network is 64 frames [18].

We also conduct the data augmentation techniques follow-
ing Carreira and Zisserman’s work [18] during the training
process. We resize the resolution according to the smaller
side of the videos to 256 pixels and randomly crop 224 *
224 patches from them. We also utilize rotation, flipping to
achieve further data augmentation for the training dataset.
For each training epoch,we randomly select 10%of the train-
ing samples and apply random rotation to them. The random
rotation angle is randomly selected from a range of − 20
degrees to 20 degrees. We also randomly select 10% of the
training samples to apply random flipping. In order to quan-

tify the improvement caused by data augmentation, we also
train the I3D-FL-PKF pipeline without data augmentation
for comparison.

To compare different data sampling techniques, we utilize
synthetic minority oversampling technique (SMOTE) [27] to
train I3D with cross-entropy loss. We upsample the minority
class and undersample the majority class to build a balanced
dataset. For a fair comparison, the total number of the training
samples generated by SMOTE stays the same with ASBS for
each training epoch.

Inception-v1-based I3D is 27 layers deep and C3D [17] is
15 layers deep.We replace I3Dwith C3D [17] to quantify the
improvement caused by using deep 3DCNN in the pipeline.
We train C3D with cross-entropy loss and refer to this work-
flow as C3D-PKF.We utilize the initial weights pretrained on
Sports-1M Dataset for the experiments. During the training
for the C3D network, we utilize the SGD optimizer with an
initial learning rate of 5e−5. We reduce the learning rate by
a factor of 0.25 when there is no improvement for the vali-
dation accuracy in the last five epochs. The batch size is set
to be 16. The number of epochs is set to be 50. The input
video clip length for the C3D network is 16 frames [17].
For a fair comparison, we conduct similar data augmentation
techniques during the training for the C3D workflow.

In order to quantify the improvement caused by using the
I3D as the deep network architecture, a similar CNN–RNN
workflow was implemented with InceptionV3-BiLSTM as
a replacement for I3D. We select InceptionV3 instead of
ResNet [14,16] as the CNN because it performs better on
multiple datasets in fine-tuning experiments [28]. Very sim-
ilarly to Hirenkumar’s approach [13], the final classification
layer in InceptionV3 was removed, and 2048-dimensional
feature vectors were extracted from InceptionV3 with the
global average pooling layer (GAP). We utilize single-
layered bidirectional LSTM (BiLSTM) with 256 hidden
neurons to capture the temporal information with those
extracted features. The baseline workflow is referred to
as InceptionV3-BiLSTM-FL-PKF when we train the deep
network architecture with focal loss and is referred to as
InceptionV3-BiLSTM-PKF when we train the deep network
architecture with the cross-entropy loss. During the train-
ing for the InceptionV3-BiLSTM network, we utilize the
SGD optimizer with an initial learning rate of 1e−4. Same as
training the I3D network, the learning rate is reduced by a
factor of 0.25 when there is no improvement for the valida-
tion accuracy in the last five epochs. Similar to training the
I3D network, we utilize dropout and the data augmentation
techniques during the training for our CNN–RNNworkflow.
The input video clip length for the InceptionV3-BiLSTM
network is set to be 20 frames due to limited computational
memory. For a fair comparison, we conduct end-to-end train-
ing for our CNN–RNN networks. The batch size is set to be
6. The number of epochs is set to be 50.
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Table 2 Overall accuracy and
weighted Jaccard score using
different training techniques and
different deep learning pipelines

Method Sampling Augmentation Loss PKF Accuracy Jaccard

C3D ASBS
√

CE 0.7548 0.4010

C3D-PKF ASBS
√

CE
√

0.7929 0.6591

I3D ASBS
√

CE 0.7795 0.6506

I3D-PKF ASBS
√

CE
√

0.8257 0.7099

I3D-PKF SMOTE
√

CE
√

0.7892 0.6598

InceptionV3-BiLSTM-PKF ASBS
√

CE
√

0.8078 0.6856

InceptionV3-BiLSTM-FL-PKF ASBS
√

FL
√

0.8161 0.6989

I3D-FL-PKF ASBS FL
√

0.8340 0.7187

I3D-FL-PKF ASBS
√

FL
√

0.8416 0.7327

Results

Table 2 shows the overall accuracy and weighted Jaccard
score for experiments conducted on our test dataset. C3D-
PKF outperforms C3D when we train the models with
ASBS and cross-entropy loss. I3D-PKF also outperforms
I3D. Those results demonstrate that PKF can improve per-
formance. I3D outperforms C3D by around 2.5% from the
accuracy aspect which demonstrates the importance of uti-
lizing deep 3DCNN in the workflow. From the data sampling
aspect, I3D-PKF trained byourASBS technique outperforms
I3D-PKF trained by SMOTE. Our data sampling technique
ASBS is more suitable for our use case. Results demon-
strate our ASBS can alleviate the data imbalanced problem.
The accuracy of our InceptionV3-BiLSTM-PKF workflow
is 0.8078, and the weighted Jaccard score is 0.6856. Simi-
lar to the previous research [17], our shallow C3D workflow
does not outperform the CNN–RNN workflow. This demon-
strates the limits of utilizing shallow 3DCNN to capture
spatial and temporal information for surgical phase recog-
nition. The accuracy of our I3D-PKF workflow is 0.8257,
and the weighted Jaccard score is 0.7099. The accuracy of
our InceptionV3-BiLSTM-FL-PKF workflow is 0.8161, and
the weighted Jaccard score is 0.6989. The accuracy of our
I3D-FL-PKF workflow is 0.8416, and the weighted Jaccard
score is 0.7327. Results show that our 3DCNNworkflow out-
performs CNN–RNN workflow, and networks trained with
focal loss outperform networks trained with cross-entropy
loss. From the data augmentation aspect, data augmentation
can improve accuracy and the weighted Jaccard score for our
proposed workflow.

Table 3 shows our I3D-FL-PKF workflow pipeline per-
formance in detail where we calculate precision, recall, and
F1-score for each surgical phase. From Table 3, our deep
learning model performs well in several surgical phases
like “Oversew staple line,” “Ligation of short gastric ves-
sels,” “Gastric transection,” and so on. The F1-scores for
those phases are over or equal to 0.88. Our deep learn-
ing model does not perform well in surgical phases like

Table 3 Detailed performance for the I3D-FL-PKF workflow pipeline

Phase name Precision Recall F1 score

Not a phase 0.80 0.75 0.78

Ligation of short gastric vessels 0.86 0.93 0.89

Gastric transection 0.89 0.90 0.90

Bougie 0.35 0.30 0.32

Oversew staple line 0.86 0.94 0.90

Exploration/inspection 0.74 0.17 0.28

Liver retraction 0.18 0.68 0.28

Hiatal hernia repair 0.85 0.92 0.88

Gastric band removal 0.85 0.69 0.76

“Exploration/inspection,” “Liver retraction,” and “Bougie.”
The F1-scores for those surgical phases are less than or equal
to 0.32. As shown in Table 1, the reason why those surgical
phases do not performwell is likely due to the lack of training
data.

In order to have a better understanding of the model per-
formance, we plot the confusion matrices in Fig. 2. Adding
PKF in the workflow can improve sensitivity for five surgical
phases including “Ligation of short gastric vessels,” “Over-
sew staple line,” “Gastric transection,” and so on. Utilizing
focal loss during training can help improve sensitivity for
“Liver retraction,” “Hiatal hernia repair,” and “Gastric band
removal.” As shown in Table 1, we lack training data for
those surgical phases. This demonstrates that using focal loss
during training can alleviate the imbalanced data problem.
Surgical phases are misclassified as “Not a phase” in most
prediction errors. This is because some video clips annotated
as “Not a phase” do not have easily distinguishable visual
clues. “Not a phase” class includes many surgical activities
which make it hard for the model to learn well. The “Explo-
ration/inspection” surgical phase is hard for the model to
learn well. The reason might be that video clips annotated
as “Exploration/inspection” look similar to some video clips
annotated as “Not a phase.” The “Bougie” surgical phase is
also hard for the model to learn well. This is likely due to its
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Fig. 2 Confusion matrices for phase recognition results: a I3D predic-
tion results, b I3D-PKF prediction results, c I3D-FL-PKF prediction
results. The X and Y -axis represent predicted label and ground truth,
respectively. The “Not a phase” is denoted as P0. The “Ligation of short
gastric vessels” phase is denoted as P1. The “Gastric transection” phase

is denoted as P2. The “Bougie” phase is denoted as P3. The “Over-
sew staple line” phase is denoted as P4. The “Exploration/inspection”
phase is denoted as P5. The “Liver retraction” phase is denoted as P6.
The “Hiatal hernia repair” phase is denoted as P7. The “Gastric band
removal” phase is denoted as P8

Fig. 3 Color-coded ribbon
illustration for phase recognition
results: a
InceptionV3-BiLSTM-FL
prediction results, b
InceptionV3-BiLSTM-FL-PKF
prediction results, c I3D-FL
prediction results, d
I3D-FL-PKF prediction results,
e Ground Truth

short duration. Both focal loss and PKF fail to improve the
performance in the “Exploration/inspection” phase and the
“Bougie” phase.

As shown in Fig. 3, we visualize the raw prediction results
from I3D-FL model output and InceptionV3-BiLSTM-FL
model output for two test videos as examples as well as
visualize the predictions from I3D-FL-PKF workflow and
InceptionV3-BiLSTM-FL-PKF workflow for those two test
videos. The I3D-FL-PKF workflow output results clearly
have less prediction noise than the InceptionV3-BiLSTM-
FL-PKFworkflowoutput. The results demonstrate the ability
of the I3D-FL-PKFworkflow toobtain consistent and smooth
predictions both within the surgical phases and during the
phase transitions.

Conclusion

In this paper, we implement a 3DCNN-based surgical work-
flow recognition pipeline named I3D-FL-PKF and apply it
to sleeve gastrectomy surgical workflow recognition. Results
show that utilizing focal loss, the prior knowledge filtering,
our proposed annotation segment balanced sampling tech-

nique, and the data augmentation technique can improve the
performance of the pipeline. By utilizing 3DCNN, focal loss,
and the prior knowledge filtering, the proposed workflow
outperforms the traditional CNN–RNN design. It can obtain
consistent and smooth predictions both within the surgical
phases and during the phase transitions. For future work, we
intend to apply the proposed approach to other surgeries like
radical retropubic prostatectomy, sacrocolpopexy, and ven-
tral hernia repair for surgical workflow recognition. We want
to design a weighted focal loss that focuses on the surgical
phases with lower performance. To replace the grid search
method, we want to design a better hyperparameter selection
method for the prior knowledge filtering algorithm. In the
future, we also want to apply the proposed approach to other
vision-based projects, such as detecting surgical tool usage
in surgical videos and identifying when the surgeon is idle
during the surgery.
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