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A B S T R A C T

The modern medical field faces two critical challenges: the dramatic increase in data complexity and the explosive
growth in data size. Especially in current research, medical diagnostic, and data processing devices relying on
traditional computer architecture are increasingly showing limitations when faced with dynamic temporal and
spatial processing requirements, as well as high-dimensional data processing tasks. Neuromorphic devices provide
a new way for biomedical data processing due to their low energy consumption and high dynamic information
processing capabilities. This paper aims to reveal the advantages of neuromorphic devices in biomedical appli-
cations. First, this review emphasizes the urgent need of biomedical engineering for diversify clinical diagnostic
techniques. Secondly, the feasibility of the application in biomedical engineering is demonstrated by reviewing
the historical development of neuromorphic devices from basic modeling to multimodal signal processing. In
addition, this paper demonstrates the great potential of neuromorphic chips for application in the fields of bio-
sensing technology, medical image processing and generation, rehabilitation medical engineering, and brain-
computer interfaces. Finally, this review provides the pathways for constructing standardized experimental
protocols using biocompatible technologies, personalized treatment strategies, and systematic clinical validation.
In summary, neuromorphic devices will drive technological innovation in the biomedical field and make sig-
nificant contributions to life health.
1. Introduction

Biomedical engineering, as a cross-disciplinary subject, has made
great development in recent decades, which has greatly contributed to
the advancement of the medical and healthcare fields.1,2 From the
development of artificial hearts to the popularization of telemedicine
systems, these achievements have not only significantly improved the
efficiency of diagnosis and treatment of diseases, but also fundamentally
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improved people's quality of life.3,4 In the field of medical sensing, smart
wearable devices such as heart rate monitoring bands and blood glucose
monitoring patches are becoming an important part of modern health
management.5,6 By integrating high-precision sensors and advanced al-
gorithms, these devices are able to monitor a patient's physiological pa-
rameters, such as heart rate, blood pressure, and blood glucose levels, in
real-time and accurately. This ability to monitor in real time provides
valuable early warning information for doctors and personalized health
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Fig. 1. Schematic diagram of diversify clinical diagnostic techniques for different diseases. Copyright 2024, The American Association for the Advancement of
Science.61 Copyright 2020, American Chemical Society.62 Copyright 2023, Springer Nature.63 Copyright 2024, Springer Nature.64 Copyright 2024, Springer Nature.65

Copyright 2024, Springer Nature.66 The figure was drawn by Figdraw.
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management programs for patients, thus helping to prevent the onset or
progression of disease.7 In terms of medical image diagnosis,
high-resolution medical imaging technologies, such as X-ray,8,9 magnetic
resonance imaging (MRI) and computed tomography (CT),10,11 provide
physicians with a high level of visual insight. These technologies clearly
show the body's internal anatomy and functional status, thus helping
doctors to more accurately identify and analyze lesions. Combined with
advanced image processing algorithms, doctors can further quantify and
analyze the imaging data to develop more precise and effective treatment
plans.12,13 However, with the rapid development of the field of
biomedical engineering, the challenges it faces are becoming obvious,
especially the increase in the complexity and real-time requirements of
data processing, which makes the traditional computer architecture
gradually expose the limitations. The serial processing of traditional
computer architecture is difficult to effectively respond to the parallel
computing needs of such massive data. This not only limits the speed of
data processing, but also affects the depth and breadth of biomedical
research.14,15 Therefore, exploring new smart chips, especially
2

neuromorphic chips with highly parallel processing capability, has
become a key path to solve this challenging problem. Neuromorphic
chips mimic the workings of neurons in the human brain and are capable
of realizing highly efficient parallel computation, thus dramatically
increasing the speed and efficiency of data processing.16,17 Such chips
have great potential for application in the biomedical field and are ex-
pected to provide strong technical support for early diagnosis of diseases,
precise treatment, and health management.

In recent years, neuromorphic chips have seen significant develop-
ment at both the device and architectural levels, encompassing cutting-
edge technologies such as memristor-based neuromorphic systems,18,19

convolutional neural network (CNN) chips,20,21 and application-specific
integrated circuits (ASICs) specifically designed to simulate neuronal and
synaptic functions.22,23 By simulating the operation principle of biolog-
ical neural networks, these devices have successfully broken through the
inherent limitations of traditional computer architectures in handling
complex parallel tasks, and have demonstrated higher energy-efficiency
ratios and lower power consumption in handling complex tasks, which
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will provide strong support for the development of future intelligent
devices. In particular, it excels in integration and algorithm acceleration.
At the integration level, neuromorphic chips, with their highly integrated
neuronal and synaptic network architectures, are able to deal with neural
computation challenges, thereby significantly reducing system power
consumption.24,25 In terms of algorithm acceleration, these chips are able
to efficiently execute complex algorithms such as deep learning and
reinforcement learning with the help of bio-inspired advanced learning
mechanisms, such as Spike Timing Dependent Plasticity (STDP), which
dramatically improves computational speed and accuracy.26,27 For
example, Wu et al. developed an all-hardware convolutional neural
network (CNN) neuromorphic chip based on memristors.21 This chip
integrated 8 arrays, each containing 2048 memristors, and successfully
constructed a five-layer CNN. It demonstrates excellent image recogni-
tion capability under low power consumption conditions. achieving a
recognition accuracy of over 96 %. This achievement not only breaks the
bottleneck of the traditional von Neumann architecture to a certain
extent but also realizes a significant increase in arithmetic power and a
significant reduction in power consumption and hardware cost. In
addition, Goswami et al. reported a molecular memristor cross-switching
matrix that can be integrated into CMOS circuits.28 This matrix exhibits
14-bit analog accuracy, near-perfect linear and symmetric weight
updating properties, and offers one-step programmability at each
conductance level. In particular, it reduces energy consumption by a
factor of 460 compared to conventional electronic computers. Given the
numerous advantages of neuromorphic chips, an increasing number of
researchers are actively exploring their potential for biomedical appli-
cations to address the complex problems faced in this field.

The purpose of this review is to explore the potential of neuromorphic
chips in biomedical applications. First, the urgent need of biomedical
engineering for diversified technologies is highlighted based on clinical
diagnostic techniques for various parts of the human body and related
diseases, including the central nervous system, heart conditions, lung
disorders, bone issues, skin problems, muscle conditions, immune system
disorders, and viral infections. Second, the feasibility of applying neu-
romorphic chips in biomedical engineering is demonstrated through a
systematic and comprehensive literature survey on the development of
neuromorphic devices from basic modelling to multimodal signal pro-
cessing, as well as mainstream applications in biomedicine. Thirdly, the
high-precision, parallel processing, and powerful human-computer
interaction capabilities of neuromorphic devices, when applied in
biomedical engineering, are demonstrated through specific practical so-
lutions in four mainstream application areas: biomedical sensing tech-
nology, medical image processing and generation, rehabilitation medical
engineering, and brain-computer interfaces. Finally, the challenges and
future trends of neuromorphic devices in biomedical engineering are
outlined, including biocompatible technologies, personalized therapeutic
strategies and systematic clinical validation, to provide scientific guid-
ance for the clinical application of neuromorphic chips in biomedical
engineering.

2. Diversified needs for disease diagnosis

2.1. Central nervous system diseases

Central nervous system (CNS) diseases, as a major category of dis-
eases affecting human health and quality of life, cover a wide area from
the brain to the spinal cord, and their causes are complex and diverse,
involving genetics, environment, trauma, and other aspects.29,30 These
causes interact with each other, leading to abnormalities in the structure
and function of the central nervous system, which in turn lead to a series
of clinical symptoms.31,32 For example, epilepsy (Fig. 1), a chronic
neurological disorder, is mainly caused by abnormal discharges of neu-
rons in the brain.33 Genetic factors play an important role in the devel-
opment of epilepsy, with some types of epilepsy having a familial
predisposition.34 In addition, head injury, metabolic disorders and
3

abnormal brain function are also important causes of epilepsy.35,36 In
terms of testing methods, Electroencephalogram (EEG) is the tool of
choice for evaluating the functional state of the brain and abnormal
discharges, which can aid in the diagnosis of epilepsy.37,38 Meanwhile,
imaging tests such as cranial magnetic resonance imaging (MRI) and
computed tomography (CT) can also provide detailed structural infor-
mation about brain tissue, which can help to identify the underlying
causes of epilepsy.39,40 Parkinson's disease, a degenerative disorder of the
central nervous system commonly observed in the elderly, is character-
ized by symptoms such as slowed movement and postural instability.41,42

As individuals age, the aging of the nervous system and neuronal
degenerative changes become important factors contributing to the onset
of Parkinson's.43 In terms of diagnostic methods, a physical examination
is typically employed to initially assess motor function and coordination.
Kaveh et al. proposed a novel wireless ear EEG sensor fabrication method
that was integrated with an existing wireless data collection platform and
validated on 9 subjects using an machine learning classification method.
The experimental results show an accuracy of 93.3 % in evaluating
never-before-seen users using the optimal model of Support Vector Ma-
chines. The application of this system and its offline classifier lays the
foundation for future covert, completely wireless, long-term, longitudi-
nal brain monitoring.44 However, conventional computing architectures
face high energy consumption and low energy efficiency bottlenecks due
to the separate memory-computing design, and have inherent limitations
in processing high-dimensional neural signals and integrating multi-
modal data. These limitations make EEG abnormalities not fully consis-
tent with clinical manifestations, which hampers the diagnostic accuracy
and therapeutic efficacy of CNS disorders. The integrated
memory-computer architecture of neuromorphic chips provides an
obvious advantage for parallel processing of multidimensional biological
data, and provides a physical carrier for constructing a new computing
paradigm adapted to the complex information processing mechanism of
the human brain. Such capabilities are critical for resolving in-
consistencies between EEG abnormalities and clinical symptoms, thereby
improving diagnostic accuracy for epilepsy and other CNS disorders.

2.2. Heart disease

Heart diseases, such as congenital heart disease and hypertrophic
cardiomyopathy, exhibit obvious familial aggregation, as shown in
Figs. 1.45,46 Additionally, poor living habits, including smoking,47

excessive alcohol consumption,48 and fat,49 are also significant triggers of
heart diseases. Immunological diseases such as rheumatic heart disease
and myocarditis are caused by the immune system mistakenly attacking
its own tissues,50 leading to destruction of heart valves and damage to
cardiac muscle cells, thereby causing heart diseases. Electrocardiogram
(ECG),51 as a non-invasive, convenient, and sensitive test for detecting
heart diseases, reflects the electrophysiological state of the heart by
recording the weak electrical signals generated by cardiac activity,
thereby assessing the function and rhythm of the heart. For heart diseases
such as arrhythmia, myocardial ischemia, and myocardial infarction,
ECG is able to capture abnormal electrical signals and provide direct
evidence for diagnosis. Some doctors also use palpation to feel and detect
the pulse beat by pressing directly on the radial artery.52 Meanwhile,
increasing numbers of people are focusing on adopting portable pulse
diagnostic devices or functional watches. These devices capture pulse
information through sensors and convert it into digital signals for pulse
measurement, data recording, and analysis, thus reflecting the health
status of the heart.53 Hu et al. report a wearable cardiac ultrasound
imager that improves the mechanical coupling between the device and
human skin through innovations in design and material fabrication,
allowing the left ventricle to be examined from different perspectives
during exercise. The study also developed a deep learning model that
automatically extracts left ventricular volumes from continuous image
recordings, generating waveforms of key cardiac performance metrics
such as heartbeats, cardiac output, and ejection fraction. The technology
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enables dynamic wearable monitoring of cardiac performance in a vari-
ety of environments, significantly enhancing the accuracy of moni-
toring.54 Nevertheless, the dynamic nature of cardiac electrical activity
and inter-individual variability demand computational systems capable
of adaptive learning. Neuromorphic chips, with their ultra-low power
consumption and temporal signal processing capabilities, are uniquely
suited to decode personalized cardiac electrophysiological patterns from
continuous ECG/ultrasound data streams. This technology could enable
real-time detection of transient arrhythmias that conventional methods
might miss, while reducing the computational burden of deep learning
models.

2.3. Lung disease

The causes of lung diseases are closely related to infections. In clinical
practice, bacterial pneumonia, caused by Streptococcus pneumoniae and
Staphylococcus aureus, is the most common type.55,56 On the other hand,
viral pneumonia is most commonly seen in infections caused by viruses
like influenza virus and adenovirus.57 Besides infectious factors, physical
and chemical factors are also important causes of lung diseases.58 Pro-
longed exposure to harmful chemicals, fumes, dust, etc. can cause dam-
age to lung tissues and increase the risk of developing lung diseases.
These physical and chemical factors can directly cause irritation and
damage to lung tissue, disrupting the barrier function of the respiratory
tract and increasing the risk of pathogen infection. Imaging techniques
play a crucial role in the detection of lung diseases. One of the first
choices for the diagnosis of lung diseases is CT,59 which clearly shows the
structure of the lungs and has a high sensitivity and specificity for
detecting inflammation, tumors, nodules, and other lesions, as shown in
Fig. 1. MRI can clearly show the soft tissue structure of the lungs,60 which
is important for determining whether a lung tumour has invaded blood
vessels, nerves, and other structures in the mediastinum. In addition,
ultrasound imaging can scan human organs using ultrasound probes that
emit ultrasound beams. As these beams propagate inside human tissues,
they generate reflection and scattering phenomena. The reflected ultra-
sound signals are then received by the probe, and after transmission,
amplification, and processing, an image is formed and displayed on the
screen. However, since the lungs contain a large amount of air, this air
appears as a low signal on MRI images, affecting the observation of the
lungs' fine structures. This fundamental physical limitation demands
innovative computational approaches for pulmonary image reconstruc-
tion. Neuromorphic chips with in-memory computing capabilities can
implement compressed sensing algorithms directly at the sensor inter-
face, reconstructing high-fidelity lung MRI images.

2.4. Bone disease

Fractures, i.e., disruption of the integrity of the bone, are usually
caused by external forces acting on the bone, such as falls, traffic acci-
dents, and sports injuries.67 These external forces may act directly on the
bone, causing it to break, or they may cause the bone to fracture at a site
remote from the point of action of the force, through conduction or
leverage. In addition, osteoporosis is an important cause of fractures in
the elderly.68 As bone density gradually decreases with age, bones
become fragile and brittle, and the slightest external force may lead to
fractures. Furthermore, Imaging technology plays a pivotal role in the
detection of fractures and orthopaedic diseases. X-ray is one of the most
commonly used methods of fracture detection.69 It can clearly show the
morphology, structure, and position of the bones, helping doctors to
determine whether there is a fracture, as well as the type and extent of
the fracture. For complex fractures or fractures involving joints, CT
scanning provides more detailed information. CT can generate
three-dimensional images and observe the details of the fracture from
multiple angles, including the direction of the fracture line and the
displacement of the fracture block, which provides important reference
for doctors in formulating a surgical plan.70 MRI is also widely used in the
4

diagnosis of orthopaedic diseases, and has unique advantages in assess-
ing soft tissue injuries.71 In addition, MRI can detect bone marrow
oedema, bone contusion, and other lesions that are not easily visible on
X-rays and CTs, providing strong support for early diagnosis and treat-
ment. Wu et al. developed a highly simplified ultra-low-field whole-body
MRI scanner using a compact 0.05 T permanent magnet, incorporating
active sensing and deep learning techniques to address electromagnetic
interference. Healthy volunteers were imaged, and images of the brain,
spine, abdomen, lungs, musculoskeletal system, and heart were obtained.
Imaging of these organs and structures in healthy volunteers was ach-
ieved. In addition, the deep learning-based image formation method
effectively suppressed noise and artifacts, improved image spatial reso-
lution, and significantly enhanced the quality of 0.05 T MRI images when
imaging the brain, spine, abdomen, and knee. These findings are ex-
pected to pave the way for the realization of low-cost, patient-centered,
deep learning-driven ultra-low-field MRI scanners.61 However, to meet
the demand for better image quality and higher imaging speeds, the
number of MRI radiofrequency coils and CT detectors has increased
dramatically, leading to an explosive growth in raw data to be processed.
Against the backdrop of slowing Moore's Law driven scaling, such
computationally intensive tasks pose severe challenges to traditional von
Neumann architecture - based computing hardware, which in turn limits
its energy efficiency. Consequently, the speed and energy consumption of
image reconstruction have become critical bottlenecks in the develop-
ment of portable medical imaging systems. Fortunately, the
computing-in-memory technology of neuromorphic devices can provide
an ultra-efficient alternative solution for medical image reconstruction,
breaking the von Neumann bottleneck. In this paradigm, computations
are performed where data is stored, governed by physical laws, thereby
significantly reducing energy intensive data movement.

2.5. Skin diseases

Infectious skin diseases are the most common type of skin diseases,
mainly caused by microbial infections such as bacteria, fungi, and vi-
ruses.72 For example, folliculitis and boils are usually caused by bacterial
infections like Staphylococcus aureus and (possibly) Streptococcus pyo-
genes in bacterial skin diseases. Allergic skin diseases,73 such as eczema
and urticaria, are mainly caused by the patient's abnormal immune
response to certain substances. Allergens may include food, medication,
pollen, dust mites, and other similar substances.74,75 Furthermore, when
patients come into contact with these allergens, symptoms such as
redness and itching of the skin will promptly appear. Moving on to dis-
eases, those with abnormalities of the immune system, like psoriasis and
lupus erythematosus, usually exhibit family clusters.76 Notably, the im-
mune system plays a pivotal role in their development. Moreover,
physical or chemical factors, such as sunlight,77 can directly cause skin
damage. These external influences further illustrate the complexity and
sensitivity of our skin. Dermatoscope is a non-invasive method of skin
examination that clearly shows the fine structure and lesions on the skin
surface through high magnification and illumination with a special light
source.78 Skin tissue biopsy, on the other hand, is an invasive examina-
tion method typically used for diagnosing suspected infections, tumors,
and other diseases.79 This method is particularly important for diag-
nosing challenging skin conditions such as skin cancer and lupus ery-
thematosus. It involves various procedures, including eosinophil count
and IgE level measurement, which can aid in the diagnosis of skin dis-
eases related to the immune system. Xu et al. report an e-skin for stress
response that noninvasively monitors three vital signs (pulse waveform,
skin current response, and skin temperature) and six molecular bio-
markers (glucose, lactate, uric acid, sodium ion, potassium ion, and
ammonium) in human sweat. The e-skin provides continuous multimodal
physicochemical monitoring over a 24-h period and during different
daily activities. With the help of a machine learning pipeline, the plat-
form can differentiate between the three stressors with 98.0 % accuracy
and quantify the psychological stress response with 98.7 % confidence,
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enabling long-term, continuous stress monitoring.66 In practical appli-
cations, doctors will select the appropriate examination method based on
the patient's specific situation and clinical manifestations, in order to
achieve an accurate diagnosis and effective treatment. These traditional
diagnostic approaches find it challenging to correlate these heteroge-
neous datasets (such as biomarkers, pulse waveforms, and temperature)
in real time. Neuromorphic computing architectures, with their inherent
capability to process sparse, event - based sensor data, could facilitate on
- device fusion of multimodal dermatological signals. This offers a
promising avenue for achieving accurate diagnosis and effective
treatment.

2.6. Muscle diseases

Myasthenia gravis is a complex autoimmune disease that primarily
affects the transmission function at the neuromuscular junction, resulting
in muscle weakness.80 Prolonged physical or mental overexertion, along
with sleep deprivation, may lead to a decrease in the body's immunity,
potentially triggering myasthenia gravis.81 This occurs because over-
exertion impacts the transmission function at the neuromuscular junc-
tion, causing damage to acetylcholine receptors. Abnormalities within
the autoimmune system represent a common and significant cause of
myasthenia gravis. The patient's body produces antibodies against the
acetylcholine receptor, which bind to the receptor and disrupt normal
signaling at the neuromuscular junction, leading to weak muscle con-
tractions.82 In diagnosing myasthenia gravis, repetitive nerve stimulation
via electromyography, which observes abnormalities between nerve
conduction and muscle contraction, serves as an important tool to
confirm the diagnosis.83 Recently, Gao et al. reported a fully integrated
wearable acoustic electromyography (EMG) system, consisting of a
customized transducer, a wireless circuit for data processing, and an
on-board battery for power supply. The system can be attached to the
skin to provide accurate, long-term wireless monitoring of muscles. It is
used to detect diaphragm activity, enabling the recognition of different
breathing patterns. The authors also developed a deep learning algorithm
to correlate single-transducer RF data from forearm muscles with hand
gestures, accurately and consistently tracking 13 hand joints with an
average error of only 7.9�. This result demonstrates the potential of
wearable EMG systems for applications in health monitoring and
human-computer interaction.65 Additionally, an acetylcholine receptor
antibody test is employed to ascertain whether an antibody-mediated
immune response is occurring and to detect the onset of myasthenia
gravis.84 While electromyography and acetylcholine receptor antibody
testing are crucial in diagnosing myasthenia gravis, the causes of the
disease are complex andmultifaceted, and each diagnostic method has its
inherent limitations. The complex temporal dynamics of neuromuscular
signals require specialized processing beyond conventional digital signal
processing techniques. Neuromorphic chips implementing spiking neural
networks can directly process raw EMG spikes with nanosecond temporal
precision, enabling real-time detection of myasthenic crisis precursors
through synaptic plasticity-based learning mechanisms.

2.7. Immune diseases

Immune system disorders are complex and varied, associated with
abnormal activation or dysfunction of the immune system.85 This results
in the body's ability to mount an attack response against its own tissues or
fail to fight off external pathogens effectively. Normally, the body's im-
mune system recognizes and eliminates foreign pathogens while avoid-
ing an immune response to its own tissues.86 However, in some cases, the
immune system becomes disordered, mistakenly identifying its own tis-
sues as foreign and initiating an attack, leading to the production of
autoimmune antibodies that cause tissue damage and disease. Blood tests
are one of the commonly used and crucial tools in detecting immune
system disorders.87 Routine blood tests, C-reactive protein tests, immu-
noglobulin measurements, lymphocyte counts, and classification tests,
5

among others, can assess the immune function status of the body, aiding
in the diagnosis of immune system diseases. Besides blood tests, cellular
imaging technology also plays a significant role in detecting immune
system diseases.88 This technique allows for the observation of the
morphology, distribution, and functional status of immune cells,
providing vital information for the diagnosis and treatment of immune
system disorders. However, the temporal and spatial heterogeneity and
nonlinear dynamic regulation exhibited by immune response systems
pose a serious challenge to traditional computational architectures. For
example, T lymphocyte mediated adaptive immune response involves
multi - scale signal integration. The ultrafast temporal resolution and
micrometer level spatial localization accuracy of this process require
computing platforms with dynamic response capabilities adapted to
biological speed. In this context, neuromorphic chips show unique ad-
vantages: their event driven information processing mechanism can
accurately simulate the formation process of immune response. By con-
structing antibody functionalized interfaces based on memristor, this
kind of biomimetic computation not only realizes the dynamic simulation
of the T cell receptor signaling pathway with nanojoule energy con-
sumption but also simulates the behavior of T cells through synaptic
plasticity, providing a hardware foundation for the construction of a
digital immune system with autonomous learning capabilities.

2.8. Viral diseases

Viruses are an extremely diverse group of microorganisms that invade
the human body through different modes of transmission, such as res-
piratory tract infections, gastrointestinal tract infections, blood trans-
fusions, mother-to-child transmission, direct contact, and insect and
mosquito bites.89 For example, influenza viruses and neo-coronaviruses
are mainly transmitted through the respiratory tract,90 while nor-
oviruses and rotaviruses are mainly transmitted through the digestive
tract.91 Nucleic acid tests and blood tests play a crucial role in the
detection of viral diseases. The nucleic acid test is one of the most
important means of diagnosing viral diseases today.92 It uses molecular
biology techniques such as polymerase chain reaction (PCR) to amplify
and detect viral nucleic acids (DNA or RNA) to determine the presence of
viral infection. This test is highly sensitive and specific, and is capable of
detecting very small amounts of the virus. Blood tests are also important
in the detection of viral diseases. Through routine blood tests,93 changes
in the number of blood cells and their morphological distribution can be
observed, thus determining the condition of the blood and the disease.
Seo et al. reported a field-effect transistor (FET)-based biosensing device
for detecting the SARS-CoV-2 virus in clinical samples. The study
demonstrated that the prepared FET device could detect the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) spiking protein at a
concentration of 1 fg/mL in phosphate-buffered saline and 100 fg/mL in
clinical transfer medium. Consequently, the authors successfully fabri-
cated a promising FET biosensor for SARS-CoV-2 detection.62 However,
the detection of viral diseases also faces a number of challenges. First, the
diversity of viruses complicates detection. Different types of viruses
require different detection methods and reagents, which increases the
difficulty and cost of detection. Second, the sensitivity and specificity of
detection methods need to be balanced. Too much sensitivity may lead to
false positive results. To overcome these challenges, the medical com-
munity is constantly striving to improve and refine viral disease detection
methods, develop new detection techniques and reagents, and increase
the sensitivity and specificity of detection. Neuromorphic biosensors,
grounded in their biomimetic analog computing architecture, spearhead
a revolutionary paradigm in biosensing technology. By mimicking the
neural pulse coding mechanisms and event driven attributes of biological
nervous systems, this cutting-edge innovation facilitates highly precise
antigen antibody detection directly at the device hardware level, yielding
substantial enhancements in real-time responsiveness and energy con-
servation. The integrated reservoir computing architecture further pre-
sents a novel approach for ultra-precise detection. This hardware
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algorithm co-design philosophy completely reshapes traditional passive
detection into an intelligent, proactivemonitoring systemwith predictive
prowess, paving the way for promising new technological strategies in
early epidemic alert and disease prevention.

It is evident that themodernmedicalfield faces two critical challenges:
the dramatic increase in data complexity and the explosive growth in data
size. These challenges not only elevate the complexity of disease diagnosis
but also set stringent standards on traditional diagnostic methods. Espe-
cially in current research, medical diagnostic and data processing devices
relying on traditional computer architecture are increasingly showing
limitations when dealing with flexible and dynamic temporal and spatial
demands, as well as high-dimensional data processing tasks. This, in turn,
hinders the enhancement of diagnostic efficiency. Therefore, innovating
artificial intelligence technology anddevelopingnewelectronic devices to
create diversified solutions, such as high-performance biosensing tech-
nology, medical image analysis, rehabilitation medical equipment, and
brain-computer interface technology, has become the pivotal path to
improving diagnostic accuracy and efficiency. Neuromorphic chips
address these dual challenges through their fundamental architectural
advantages: Event driven computation eliminates redundant data pro-
cessing in time varying biomedical signals, thus reducing power con-
sumption compared to von Neumann architectures; Massively parallel
analog processing enables real time analysis of high dimensional medical
images (CT/MRI) by means of in memory computing, thereby bypassing
thememorywall limitation. By integrating these chipswithAI systems,we
can achieve closed loop diagnostic platforms that continuously adapt to
patient - specific pathophysiological patterns.

3. Neuromorphic device

Neuromorphic devices, which integrate sensing, storage, and
computation functions, can achieve highly sensitive detection of
Fig. 2. Historical development of neuromorphic chips. Memristor model. Memristo
computing system. Photo-memristor chip. Synaptic transistor model. Ionic/electron
organic field-effect synaptic transistor. Synaptic transistor array. Copyright 2008, Spr
Springer Nature.100 Copyright 1996, IEEE.101 Copyright 2010, WILEY-VCH Verlag Gm
KGaA, Weinheim.103 Copyright 2023, Springer Nature.104.
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biomolecules, as well as storage and computation of the detection data by
means of high speed, low energy consumption, and parallel data pro-
cessing. This innovative technology opens up new development paths in
the field of biomedical engineering.94,95 Neuromorphic device, which is
mainly composed of electrodes and a functional layer, is a new type of
electronic device that simulates a biological synapse.96 The electrodes at
the two ends of the functional layer can be analogous to the presynaptic
and postsynaptic membranes in a biological synapse. The electrical signal
conduction and regulation characteristics of these electrodes are highly
similar to those of neural signal transmission in a biological synapse,
enabling the artificial synaptic device to effectively simulate biological
neural signal transmission. From the perspective of device structure,
current neuromorphic devices are mainly divided into two types: syn-
aptic transistors and memristors, as shown in Fig. 2. Memristors excel in
high-density integration and non-volatile memory capabilities, making
them ideal for parallel computing. However, their switching endurance
and cycle-to-cycle variability pose challenges for long-term stability.
Synaptic transistors, on the other hand, offer precise analog modulation
of synaptic weights through gate voltage control and demonstrate su-
perior CMOS compatibility, though they are constrained by Moore's Law
compared to memristors. Ultimately, the choice between these two ar-
chitectures often depends on specific application requirements: mem-
ristors are favored for memory-centric neuromorphic systems, while
synaptic transistors are preferred for scenarios demanding dynamic
synaptic plasticity emulation. Below is a brief description of their typical
structures and their applications.

3.1. Memristor

Memristors have a 'sandwich' structure consisting of a top electrode, a
functional layer, and a bottom electrode. The resistance value of mem-
ristors is regulated by current signals and they possess amemory function.
r crossbar. 2D materials based memristor. Fully hardware-integrated memory-
ic hybrid synaptic transistor. 2D materials based synaptic transistor. Flexible
inger Nature.97 Copyright 2010, American Chemical Society.98 Copyright 2024,
bH & Co. KGaA, Weinheim.102 Copyright 2017, WILEY-VCH Verlag GmbH & Co.
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In 2008, HP published an article in Nature proving the existence of
memristors.97 In 2009, the company further proved that memristors can
be formed into interlocking stacks through the Crosslantch system, and
demonstrated that the theoretical speed of operation is much higher than
that of DRAM.Additionally, the lattice-like design of the structure exhibits
a high degree of logical coherence. This represents a theoretical coexis-
tence of computing and memory functions, formally demonstrating the
potential of memristors to serve as brain-like chips. Furthermore, scien-
tists at Hewlett-Packard Labs concluded in their research that
Resistance-RevolutionaryMemory (RRAM)was indeed thememristor and
provided the original theoretical foundation for it. From then on, research
on memristors gradually gained momentum and flourished. In 2010, Lu
et al. presented a nanosilicon-based memristor, and demonstrated that a
hybrid system consisting of a CMOS device and a memristor could
accomplish the simulation of the basic properties of neural synapses, such
as Spike-Timing Dependent Plasticity (STDP).98 In this experiment, the
memristor was used as a synapse mimicking device in neuromorphic cir-
cuits, providing an efficient computational approach and high density.
Wang et al. report a van der Waals heterojunction memristor that utilizes
two-dimensional layered molybdenum disulfide (MoS2), as well as gra-
phene, to form a sandwich structure.99 Test results indicate that this fully
2D material-based heterojunction exhibits extremely stable switching
behavior, including over ten million (107) erasable cycles, an erasure rate
of less than 100 ns, and excellent non-volatility. The structure is capable of
stable operation at temperatures up to 340 �C and maintains good
switching performance, marking an important step forward in promoting
the application of memristors in high-temperature electronics and related
technologies. Wu et al. have built a fully hardware-integrated memo-
ry-computing system utilizing multi-array memristor technology.21 This
system not only achieves architectural innovation but also successfully
deploys and efficiently runs convolutional neural network algorithms on
its platform. This breakthrough not only validates the superior perfor-
mance of the system in image recognition tasks but also achieves a sig-
nificant two-order-of-magnitude improvement in energy efficiency
compared to traditional graphics processor chips. This achievement sig-
nifies that, through their innovative design, computing devices are able to
significantly reduce power consumption and hardware costs while sub-
stantially increasing computing power, thereby providing amore efficient
and cost-effective solution for complex computing tasks.

In 2024, Huang et al. reported a novel double-layer oxide photo-
memristor featuring a Pd/TiOx/ZnO/TiN structure, in which a TiOx
interfacial layer was introduced to enhance the stability of the resistive
switching and to improve the photoelectric response.100 Furthermore,
the research team successfully integrated a 128 � 8 array comprising
1024 1T-1OEM photoelectric memristor units onto the top of a
silicon-based CMOS decoder circuit, utilizing a CMOS back-channel
compatibility process. Through photoelectric testing, they verified that
the array exhibits good uniformity and stability, and simultaneously, it
can realize the integration of multibit programming and
sense-storage-calculation functions. For the first time, an all-optical
memristor-based reserve pool computing system has been constructed.
This system consists of 18 D-OEMmode devices forming the reserve pool
layer and 1024 � 5 EM mode devices comprising the readout layer. It
achieves an accuracy of 91.2 % with very low energy consumption in the
human motion recognition task, thereby providing a high-efficiency
hardware platform for intelligent vision applications in complex
scenes. The key advantages of memristors lie in their nanoscale scal-
ability, ultra-low power consumption, and ability to simultaneously store
and process data. Nevertheless, challenges persist in achieving uniform
resistive switching across large arrays, ensuring low leakage current, and
mitigating sneak current paths in crossbar architectures.

3.2. Synaptic transistor

The synaptic transistor shares a similar basic structure with the tradi-
tional field-effect transistor.105 It mainly consists of a functional layer, as
7

well as a metal gate, source, and drain. The signal connection strength be-
tween the source and drain can be altered by adjusting the gate voltage,
thereby simulating synaptic plasticity behavior. Compared to memristors,
synaptic transistors generally show better linearity in weight updates but
face trade-offs in power efficiency during analog operation. A plethora of
research results indicate that synaptic transistors exhibit great potential and
advantages in large-scale preparation, long-term data storage, and neural
network computation.106 Diorio et al. have developed a novel floating-gate
silicon MOS transistor specifically for analogue learning applications.101

They have derived amemory-update rule based on the physics of tunneling
and injection processes, and have investigated synapse learning in a pro-
totype. Unlike conventional EEPROM devices, the synaptic devices they
prepared allow simultaneous memory reads and writes. This lays the
foundation for the development of dense, low-power silicon-based learning
systems. Chen et al. designed and fabricated a synaptic transistor based on
an ionic/electronichybridmaterial by integrating a layer of ionic conductor
anda layer of ion-doped conjugatedpolymeronto thegate of a silicon-based
transistor.102 The device is capable of generating EPSCs at intervals of a few
milliseconds and achieving synaptic plasticity behaviors, such as STDP, by
varying the pulsewidth and interval of the pulse train. This provides a novel
approach to constructing neuromorphic circuits that closely mimic the
nerves and functions of the brain. Sun et al. prepared a three-terminal
resistive change device, utilizing a thin single-crystal sheet of the
two-dimensional material α-MoO3 as the channel material.103 By employ-
ing an ionic liquid as the gate and applying an electric field to inject
hydrogen ions into the interstitial layer of the 2Dmaterial, the polymorphic
reversible change in the resistance of the α-MoO3 channel was achieved
under low-energy conditions. Furthermore, behaviors such as neural syn-
apticweight enhancement, inhibition, and the transition from short-term to
long-term memory were successfully simulated using the changes in the
resistive states of the device. This work demonstrates the feasibility of uti-
lizing solid-stateelectrochemical processes in the two-dimensionalmaterial
α-MoO3 to simulate neural synaptic behaviors. It also provides a techno-
logical reference for the development of neural synaptic-like transistors and
memory devices with low-power consumption and good scalability,
enabling the construction of highly efficient neural network computers.
Inspired by the structure of the Merkel cell-axon complex, Lee et al. devel-
oped a bionic afferent neural device utilizing a flexible organic field-effect
synaptic transistor (AiS-TSO), which was selected based on its friction
capacitive coupling effect.107 The synaptic transistor is capable of
perceiving external tactile stimuli through the friction capacitive coupling
effect and generating bionic neuroelectric signals by leveraging its intrinsic
synaptic properties, thereby achieving the memory of external tactile
stimuli. The capacitive coupling effect induced by touch stimulation alters
the composition of nanocomposites within the gate dielectric layer and
modulates the synaptic currents, thus enabling the memory of the intensity
of external stimuli. Qing et al. report an electrochemical synaptic transistor
that operates by transporting protons between a tungsten hydroxide
channel and a gate, facilitated by a zirconiumdioxide proton electrolyte.104

The device can be programmed over a frequency range approaching
megahertz and exhibits anenduranceof over 100million read/write cycles.
Furthermore, it is compatiblewithCMOS technologies and can be scaled up
to a lateral dimension of 150 x 150 nm2. Through monolithic integration
with silicon transistors, this work demonstrates the feasibility of creating
pseudo-crossover switch arrays for energy-efficient deep learning acceler-
ator applications.

The development of neuromorphic devices begins with initial stages
involving mathematical and computational modeling, gradually tran-
sitioning to the realization of complex functionalities, thereby laying a
solid theoretical foundation for subsequent practical exploration. On this
basis, neuromorphic devices implement the simulation of biological syn-
aptic plasticity,marking an important step towards intelligent simulation.
As a crucial juncture in biological neural networks, the dynamic adjust-
ment capability of synapses is vital for the transmission and processing of
information. Researchers subsequently focused on optimizing the device's
structure and exploring physical mechanisms to enhance its endurance
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and performance. Through a combination of carefully designed structures
andmaterials, the endurance and stability of the deviceswere significantly
enhanced, while energy consumption was reduced.98,108 Additionally,
with the application of advanced nanotechnology and 2D materials, the
integration and flexibility of the device have been significantly improved,
making the neuromorphic system more compact, flexible, and adaptable
to awide varietyof application scenarios. In recent years, the development
of neuromorphic devices has taken a qualitative leap, achieving a break-
through in multimodal sensing and CMOS compatibility. Multimodal
sensing technology allows devices to simultaneously capture and process
information from various senses, such as vision, hearing, and touch,
significantly enhancing the system's perceptual ability and intelli-
gence.109,110 On the other hand, CMOS compatibility enables neuro-
morphic devices to integrate seamlessly with existing semiconductor
processes. These technological advancements have laid a solid foundation
for the application of neuromorphic devices in biomedical engineering.

4. Neuromorphic device based biomedical engineering
technology

Currently, the application of neuromorphic devices in biomedical
engineering mainly focuses on four areas: biomedical sensing technol-
ogy, medical imaging diagnosis, rehabilitation medical engineering, and
neural and brain-computer interface technology, as shown in Fig. 3. The
following introduces neuromorphic devices within the context of these
four biomedical engineering domains.
Fig. 3. Applications of neuromorphic devices in biomedical engineering. Divided in
bilitation medical engineering, and brain-machine interface technology. Copyright 20
Springer Nature.116.
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4.1. Biomedical sensing technology

Biomedical sensing technology employs aptamers specific to bio-
molecules (e.g., proteins, nucleic acids) as sensitive interfaces to achieve
signal conversion and detection analysis through interaction with target
molecules.111,112 This detection technology typically comprises three
components: a sensitive signal detection interface, a biosensor, and a
signal processing system. The sensitive signal detection interface is
responsible for initiating specific reactions with the analyte, while the
biosensor translates these biochemical reactions into detectable electrical
signals. The signal processing system then handles amplification and
analog-to-digital signal conversion. Biomedical sensing technology
demonstrates extensive application prospects across various fields,
including medical diagnosis, environmental monitoring, food safety, and
industrial process control. In medical diagnosis, it is primarily utilized for
point-of-care testing (POCT), early disease detection, and home moni-
toring. Instant diagnostic devices, such as blood glucose meters, cardiac
marker detectors, and rapid detection tools for the novel coronavirus,
along with implantable or wearable biosensors, are capable of moni-
toring changes in physiological parameters and disease indicators of
patients, thereby providing doctors with a timely diagnostic foundation.
The low-power consumption characteristics of neuromorphic devices
render them promising for a diverse range of applications in biosensing
technology, particularly in scenarios that demand prolonged monitoring
and the use of portable devices.113,114 In wearable biosensors, low-power
neuromorphic devices can extend the device's endurance and enhance
to four areas: biomedical sensing technology, medical image diagnostics, reha-
21, Wiley-VCH GmbH.105 Copyright 2024, Springer Nature.115 Copyright 2022,
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user comfort and convenience. Furthermore, by leveraging the highly
sensitive characteristics of carrier transport, these devices can more
accurately detect and respond to weak biological signals, thereby
enabling precise monitoring and analysis of subtle physiological signals
in living organisms.

Oh et al. developed a dual-gate organic synaptic transistor platform,
which incorporates a photoconductive polymer semiconductor, a ferro-
electric insulator of P(VDF-TrFE), and an extended-gate electrode
Fig. 4. (a) dual-gate organic synaptic transistors with dopamine-responsive extende
matic illustration of the surface functionalization step achieved by exposing Au th
dopamine-detection process. (c)–(f) Bottom-gate (c, d) and top-gate (e, f) transfer curv
concentrations in PBS of 10 � 10�9

– 1 � 10�3
M. Copyright 2021, Wiley-VCH GmbH

solution-MXene interfaces. (h) The linearly fitted curves of ΔR/R0 versus Con. ACh for
The shifted voltages of Dirac points (ΔVDirac) versus Con. ACh curves. (j) The schema
neuronal severity is produced, then the normal responding (muscle contract, as an
GmbH.94 (k) Schematic illustrations of the structures of the artificial and biological
functions as the synapse, and PEDOT:PSS channel functions as the postsynaptic neur
responses of the device with the adrenaline solution. Copyright 2022, Wiley-VCH G
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functionalized with boronic acid. This platform is designed for simulta-
neously detecting neurotransmitters (dopamine) and light, as illustrated
in Fig. 4(a).105 Fig. 4(b) depicts the experimental steps necessary to form
a boronic acid self-assembled monolayer (SAM) on the extended gate
electrode. DREGE functionalized with BA terminal groups was able to
detect dopamine via the esterification process between diols and dopa-
mine on the BA groups. Fig. 4(c) and (e) display the results of operating
the bottom gate electrode (Vpre ¼ �1 V) and top gate electrode (VBGS ¼
d-gate electrodes that can be modulated by both dopamine and light. (b) Sche-
in film to CA and BA solutions in sequence. The upper-left panel presents a
es and the summarized factors of the electrical changes with respect to dopamine
.105 (g) The illustrations for the captured ACh molecules on the different kinds of
the AChR modified devices, in contrast to the scattered data of the bare ones. (i)
tic diagram for the damaged neuron. More AChR are injured by AChR-ab, more
example) to the increased ACh will be inhibited. Copyright 2021, Wiley-VCH
synapses. The gate electrode functions as the presynaptic neuron, the solution
on. (l) Excitatory responses of the device with the acetylcholine. (m) Inhibitory
mbH.118.



Fig. 5. (a) Illustration of the modular biosensor with distinct functions. (b) Single-layer neural network (perceptron) with sensor inputs and linear classification for
trained and retrained input values. (c) Depiction of the IS-OECT sensors manipulated with and without an ion-selective membrane for measuring the K and Clþ�

concentrations. Sensor output versus ion concentration after the current-to-voltage module. (d) EC-RAM as part of a small neuromorphic array and the conductance
values for the three EC-RAM devices used as synaptic weights. Copyright 2023, Springer Nature.119.
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�1 V) when exposed to varying dopamine concentrations in PBS. In the
presence of increasing dopamine concentrations, the postsynaptic cur-
rent (Ipost) and threshold voltage increased slightly at both the bottom
and top gate biases, as illustrated in Fig. 4(d) and (f) This suggests that
potentiometric detection of dopamine results in a change in the charge
10
density on the extended top gate electrode. Consequently, specific
binding based on esterification is achieved at this electrode, enabling the
specific recognition of dopamine. A novel three-terminal artificial syn-
aptic device (NR-S), mediated by neurotransmitter receptors, was pro-
posed by Wang et al.94 By modifying the acetylcholine receptor (AChR)



K. Wang et al. Mechanobiology in Medicine 3 (2025) 100133
at the solid-liquid interface of the newly constructed third terminal
MXene-PBS, a biologically inspired simulation of synaptic plasticity
behavior was achieved. As shown in Fig. 4(g), the electrical and sensing
properties of the device were significantly enhanced by crumpled MXene
nanosheets. Inspired by the biological synaptic signaling mode, AChR
was used for testing the sensing property of the NR-S device by modifying
it at the third-terminal MXene-PBS electrode interface, as illustrated in
Fig. 4(h). It was found that NR-S devices based on crumpled MXene
nanosheets could produce resistivity changes at ultra-low acetylcholine
(ACh) concentrations (1 aM) after AChR modification, which was 103

times lower than that of NR-S devices based on flat MXene nanosheets.
With increasing ACh levels (from 1 aM to 1 μM), the device conductivity
shows an increasing trend. This sensing property of NR-S-based devices is
similar to the plastic behavior of neural synapses. When continuing to
modify the damaging autoreceptor antibody (AChR-ab), as the amount of
antibody increased, the sensing range of the NR-S device for neuro-
transmitters decreased, and the sensitivity for neurotransmitter detection
also decreased, as shown in Fig. 4(i). This result is similar to the neuronal
damage behavior observed in neuromuscular transmission disorders
(Fig. 4(j)), and provides a viable strategy for future detection of myas-
thenia gravis.117 Overall, this work provides an important reference for
the diversification of neuromorphic chips.

Lee et al. reported a synaptic transistor that contains an aqueous so-
lution of neurotransmitter, Nafion, PEDOT:PSS, and electrodes, as shown
in Fig. 4(k).118 Two neurotransmitters, acetylcholine and epinephrine,
were subsequently used to model the excitatory and inhibitory features,
respectively. As shown in Fig. 4(l), when a positive gate voltage is
applied, cations from the epinephrine solution intercalate into the
PEDOT:PSS channel. Due to the presence of these intercalated ions, the
distance between the PEDOT:PSS backbones increases, leading to a
decrease in conductance. Therefore, an excitatory response is observed
when exposed to acetylcholine solution. On the other hand, the device
exhibited an inhibitory response to epinephrine solution. Inhibitory
synapses were simulated when a positive voltage pulse (ranging from 6 to
9 V, with a step size of 150 mV and a pulse width of 0.1 s) was applied to
the gate electrode, as shown in Fig. 4(m). As depicted in Fig. 4(n), when
excitatory and inhibitory presynaptic inputs are balanced, the post-
synaptic neuron's response remains within the saturated range. In this
saturated state, the synaptic inputs applied to the postsynaptic neuron,
both excitatory and inhibitory, are of comparable strength. These excit-
atory and inhibitory responses counteract each other, establishing a state
of equilibrium. When the amplitude of the excitatory stimulus increases,
the postsynaptic neuron transmits an excitatory signal, as illustrated in
Fig. 4(o). Meanwhile, when the inhibitory stimulus is stronger than the
excitatory stimulus, the postsynaptic neuron transmits an inhibitory
signal, as illustrated in Fig. 4(p). To simulate these excitatory-inhibitory
equilibrium properties, acetylcholine and epinephrine solutions were
used to represent excitatory and inhibitory presynaptic neurons,
respectively, which were then dropped into the PEDOT:PSS channel.
Positive and negative voltage pulses were applied to the solutions con-
taining acetylcholine and epinephrine, respectively, to obtain the equi-
librium properties, as shown in Fig. 4(q). The inhibitory dominance
operation was simulated by applying an excitatory input at an amplitude
of -2V, while gradually increasing the amplitude of the inhibitory pulse
from 1V to 4V (Fig. 4(r)). As the strength of the inhibitory presynaptic
input increased, the device transitioned from transmitting an excitatory
to an inhibitory signal. These equilibrium properties can also be modeled
under conditions where excitatory inputs dominate, as illustrated in
Fig. 4(s). This makes neuromorphic devices promising candidates for
building complex computational systems with balanced excitatory and
inhibitory functions.

In the biomedical field, post-analysis, in addition to single-target and
dual-target molecular detection, can offer robust support for early diag-
nosis of diseases, prognostic evaluations, and monitoring of drug effi-
cacy.120 A neuromorphic biosensing platform capable of on-chip learning
and classification is reported by Burgt et al.119 The modular biosensor
11
consists of a sensor input layer, an integrated array of organic neuro-
morphic devices that form the synaptic weights of a hardware neural
network, and an output classification layer, as shown in Fig. 5(a).
Fig. 5(b) shows a single-layer neural network with sensor inputs and
linear classification of the input values used for training and retraining.
The classification is based on a perceptron algorithm for supervised
learning of binary data and defines a set of ‘high’ and ‘low’ concentra-
tions of chlorine and potassium to represent the labeled sweat samples
(Fig. 5(c)). Commercially available ion-selective electrodes and
ion-selective organic electrochemical transistors (OECTs) were used to
detect physiological levels of potassium and chloride, and served as input
signals to the neural network on the biosensor chip, as shown in Fig. 5(d).
The OECTs are in contact with an electrolyte immersed in the gate
electrode, and through the gate potential, ions can be injected into the
channel to change the doping state of the film, thereby altering the
conductivity of the device. To further demonstrate the versatility of
hardware neural network circuits and their potential as modular neuro-
morphic biosensors, a fully trained system was retrained on-chip after
reorganizing the various inputs, as shown in Fig. 5(e).

To reduce the number of updates needed for the training process, the
input signals were scaled such that 0.1 V represented a high input and
�0.1 V represented a low output. In the first training cycle (Cycle I), the
chloride sensor and potassium sensor served as inputs X1 and X2,
respectively. Once the neuromorphic circuit was fully trained to correctly
classify cystic fibrosis, the neuromorphic device exhibited electrical
conductance such that the weights accurately separated the different
cases. Immediately thereafter, in the second training cycle (Cycle II), the
sensors were connected to different inputs of the neuromorphic circuit,
with the potassium sensor serving as input X1 and the chloride sensor
serving as input X2. However, in this scenario, the system once again
produced incorrect outputs. The weights are readjusted to further train
the circuit until the disease can be correctly classified once again,
ensuring that all input samples produce accurate outputs. This demon-
strates the versatility of on-chip learning, which can utilize any type of
sensor in combination with labeled data. Furthermore, this approach can
be extended to classify signals even when data separation is not readily
apparent. Similarly, the same neuromorphic circuit can be configured to
form arbitrary logic gates (e.g., AND and NOR) based on their respective
truth tables. In Fig. 5(e), the author continue to sequentially train the
programming of multiple logical operators. This means that they are first
programmed to exhibit AND-gate behaviors (as shown in Fig. 5(e), cycle
III) and are subsequently reprogrammed to exhibit NAND-gate behaviors
(as shown in Fig. 5(e), cycle IV). Importantly, all training cycles were
conducted without the use of a computer or software program, entirely
on-chip, thereby highlighting the versatility of locally programmable
neuromorphic devices for both classification tasks and dynamic logic
circuits. This work underscores the versatility of low-power and easily
tunable organic neuromorphic devices in real hardware arrays and cir-
cuits, which can be utilized to develop adaptive biosensors and opti-
mizable edge computing devices. However, current neuromorphic
devices still face considerable challenges in signal processing, including
the need for higher temporal resolution and adaptive noise rejection.
Furthermore, while these devices can compensate for shortcomings
through event-driven processing and parallel computing, they still need
to address the bottleneck of optimizing on-chip integration for inter-
facing with traditional biosensors.

4.2. Medical image processing and generation

4.2.1. Medical image processing
Diagnostic medical imaging is a widely utilized technology in the

medical field today. It employs advanced imaging techniques and
equipment, such as X-rays, CT, MRIs, and positron emission tomography
(PET), to generate detailed images of the body's internal structures and
tissues.121,122 By analyzing these images, doctors can accurately diagnose
diseases, assess the severity of conditions, and plan effective treatment



Fig. 6. (a) Memristive ANNs. The matrix entries of ANNs are obtained by training and they are usually quantized before being mapped to memristor arrays, resulting
in quantization errors. Besides, most ANNs are computed in real number fashion. (b)–(d) Memristive medical imaging system. (b) Medical signal acquisition. Explosive
amount of raw data is acquired from medical scanners such as magnetic resonance imaging (MRI) and computed tomography (CT). (c) Memristive image recon-
struction. The matrix entries used in signal processing algorithms here are pre-calculated without training, making them more susceptible to the non-ideal device
characteristics of memristors. In addition, their entries are usually expressed in analogue manner with both real and imaginary parts, requiring a completing different
mapping strategy onto memristor arrays. (d) Results for medical diagnosis. Medical images of human body are reconstructed from raw data and then further seg-
mentation and diagnosis can be performed. The cartoon pictures of human organs and medical equipment used in b and d was partly generated using Servier Medical
Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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options. For instance, using equipment like X-rays, CT, and MRIs, doctors
can non-invasively examine patients and obtain pertinent information on
issues such as organ function, tumors, infectious diseases, and bone
fractures. Neuromorphic devices have demonstrated numerous advan-
tages in medical image diagnostics, not only in terms of high speed and
accuracy, but also in their exceptional ability to process complex image
data and significant improvements in energy efficiency. Compared with
12
traditional computer processors, neuromorphic devices are able to
identify and analyze features in images more quickly, thereby reducing
diagnostic time and enhancing diagnostic efficiency. Especially when
processing complex medical images, such as MRIs, neuromorphic devices
are capable of identifying the area and type of lesion with greater ac-
curacy, providing doctors with a more reliable basis for diagnosis. In
recent years, memristors have been widely utilized to implement



Fig. 7. (a) Schematic of CT image reconstruction with MIR followed by AI segmentation. (b) Illustration for the CT image reconstruction task. Sub-figures, from left to
right, are actual human organ (the pink disc represents the section where the CT slice is acquired), projections from CT X-ray scanner, 2D Fourier space signal
(intermediate results) and reconstructed CT image. (c), (d) Software-reconstructed and MIR-reconstructed 3D CT image and its segmentation results from nnU-Net (the
spleen is labeled in blue and red). Sub-figures, from left to right, are sagittal plane image, transverse plane image, coronal plane image and 3D model (segmented
spleen only). (e) Comparison between the segmented spleens with software-reconstructed (blue) and MIR-reconstructed (red) 3D CT images. (f) Comparison of image
quality reconstructed by software (S.) and MIR (M.). (g) DICE score of nnU-Net segmented results from software-reconstructed and MIR-reconstructed images. (h) The
comparison of energy efficiency of GPU and MIR. (i) The comparison of the normalized image reconstruction speed of GPU and MIR. In this context, the authors
utilized the spleen dataset sourced from the Sloan-Kettering Cancer Center, which comprises 61 CT scans taken during the portal phase. Within this dataset, the spleen
was initially segmented semi-automatically and then refined manually by an abdominal radiologist. Fig. 7(c) and (d) exhibit the CT images reconstructed by the
software and MIR, respectively. In Fig. 7(e), the segmented 3D spleen models derived from both the software and MIR are combined and examined from four diverse
angles. Only pixel-level differences can be observed on the spleen surface, indicating excellent consistency. Quantitatively, in Fig. 7(f) and (g), the PSNR values of the
CT images reconstructed by the software and MIR are 22.52 dB and 22.38 dB, respectively. Similarly, the DICE scores for the segmentation results are 0.985 and 0.977,
respectively. These results further confirm that MIR exhibits excellent robustness to cumulative errors and memristor device noise. Furthermore, the benchmark
presented in Fig. 7(h) and (i) demonstrates that MIR is again 153 times more energy efficient than the GPU.
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Artificial Neural Networks (ANNs), demonstrating significant advantages
in terms of energy efficiency and speed compared to conventional
hardware, as illustrated in Fig. 6(a).123,124 It also has the ability to pro-
cess complex MRI and CT images, as shown in Fig. 6(b). Zhao et al.
proposed a memristor-based image reconstructor (MIR),125 which ac-
celerates the process of image reconstruction for the Discrete Fourier
Transform (DFT) by utilizing an array of memristors, as depicted in
Fig. 6(c). To efficiently implement the Discrete Fourier Transform (DFT)
on a memristor array, the authors developed two strategies:
quasi-analogue mapping (QAM) and complex matrix transfer (CMT)
13
schemes. These schemes improve the mapping accuracy and transfer
efficiency, respectively. When using QAM, the memristor-based DFT re-
sults are consistent with those obtained through software computation,
in contrast to the conventional quantized mapping (QM) approach. With
CMT, the memristor-based DFT requires fewer peripheral circuits
compared to the traditional real-virtual separation scheme. This suggests
that it holds great potential for low-power and high-speed portable
medical imaging systems in future medical scenarios, as illustrated in
Fig. 6(d). The authors utilized a cardiac dataset provided by King's Col-
lege London,126 which encompasses 30 three-dimensional (3D) MRI



Fig. 8. (a) The framework for lesion detection using convolutional neural networks. (b) Schematic of conventional process for medical image data handling. (c)
Schematic illustration of StyleGAN2-ADA using random numbers generated from mTRNG. Representative chest X-ray images (d) without and (e) with pneumothorax
generated by StyleGAN2-ADA harnessing random numbers generated from mTRNG. (f) FID and (g) KID scores against the full dataset achieved by SyleGAND2-ADA
using TRNG and PRNG-based random numbers during the repeated network training. The bold lines represent the median values, and the light lines show min/max
scores at the each training point. Copyright 2024 Wiley-VCH GmbH.129.
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Fig. 9. Low-voltage-driven, soft circuit system for generating biomimetic pulse trains. (a) Schematic diagram showing the natural perception process. (b) Optical
microscopic image of a stretchable seven-stage RO-ED circuit. GND, ground; VSS, negative power voltage. (c) Transistor circuit diagram of the biomimetic sensor-
circuit system for sensory information encoding. (d) Photo of a soft e-skin attached to a finger. (e) Circuit diagram and working mechanism of the sensing
inverter. (f) Panel (i) presents transfer curves showing the amplitude-decoupled frequency modulation of a seven-stage RO with different loading resistor values. The
RO output frequency changed from 16 Hz at 0 Ω to 1.8 Hz at 2 gigohms. Panel (ii) shows the oscillation frequencies and amplitudes for a five- and a seven-stage RO
while loading different resistors. (g) Panel (i) presents input (top) and output (bottom) signals from an ED that produces a pulse width of ~4 ms. Panel (ii) shows the
averaged pulse widths (squares) and amplitudes (circles) from three different individual pulses of an ED under different input signal frequencies. Inputs are as follows:
square wave, amplitude 5 V, and 50 % duty cycle. (h) Panel (i) contains a photo and magnification showing a pressure sensor with pyramidal structures. Resistance (R)
changes of a pressure sensor and a temperature sensor under stimuli are shown in panels (ii) and (iii), respectively. (i) Pulse train output (bottom) from a pressure
sensor–RO-ED (five-stage) system during a pressing-releasing cycle (top). (j) Output frequency of the sensor-RO-ED system under different pressures from data shown
in (I). (k) Comparison of previously reported intrinsically stretchable circuits with our RO-ED circuit in terms of the integration scale level (number of transistors and
logic gates). The different shapes and patterns of the symbols are used to mark the number of transistors involved in circuits from previous works, which are indicated
by the reference numbers. The dashed line represents the trend of the degree of integration of stretchable electronics over time. All circuits were operated under VDD
¼ 5 V and VSS ¼ �5 V. Copyright 2023, The American Association for the Advancement of Science.134.
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images of the entire human heart. An expert segmented one of the left
atrial images using an automated tool, followed by manual corrections.
Fig. 6(e) displays the raw data sampled in K-space from the MRI scanner.
A series of sagittal images were reconstructed using our memristor-based
DFT (Fig. 6(f)), leading to the acquisition of the final 3D MRI images.
Fig. 6(g) and (h) exhibit MRI images (cross-sectional and coronal views)
observed from different angles, demonstrating good consistency across
15
various sagittal planes. High-quality image reconstruction was then
carried out by the MIR. The reconstructed MRI images and segmentation
results (left atrium) are presented in Fig. 6(i) (software-based) and
Fig. 6(j) (MIR-based), showing excellent agreement.

As shown in Fig. 6(h)- 6(g), the average peak SNR of MIR is 40.21 dB,
while the SNR is 24.14 dB. Similar values were obtained from the other
20 MRI datasets (as shown in Fig. 6(k)), validating the high-fidelity
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Fig. 10. (a) Schematics of SNEN based on organic electronic synapses that bypass the damaged nerves and relay neural signals to the muscle. (b) Photographs of
anaesthetized mouse with SNEN attached to the leg. Flexors and extensors of the legs are electrically stimulated by post-synaptic signals through soft electrodes or
needle electrodes. (c) Stimulation of an extensor and flexor of a hind leg with two artificial efferent nerves; one nerve was connected to an extensor and the other nerve
was connected to a flexor. Conceptual design (d) and schematic (e) of an artificial muscle spindle-based proprioceptive feedback loop that prevents damage of muscle
caused by overstraining. (f) Block diagram of the real-time hardware closed-loop feedback system of artificial proprioception. g) Photograph and (h) schematic of a
paralysed mouse afflicted by SCI or MND (left) and a mouse that had recovered voluntary motor function by using SNEN (right). Practical locomotion is demonstrated
with coordinated stimulation of the muscles by post-synaptic signals of the SNEN and patterned pre-synaptic AP inputs. (i) Kinematic trajectory of a hind leg with
different moving speeds. (j) Photochronography of a hind leg during walking. Copyright 2022, Springer Nature.136.
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image reconstruction capability of MIR. In addition, as depicted in
Fig. 6(l), the scores of images reconstructed by MIR and by software are
equally high after segmentation using nnU-Net. These results suggest that
MIR can exhibit excellent performance in MRI image reconstruction
tasks, even in the presence of read noise and mapping errors in the
memristor.

Fig. 6(m) - 6(o) further demonstrate that MIR is 112 times more en-
ergy efficient and 36 times faster in normalized image reconstruction
compared to the Nvidia Tesla V100 GPU. To further check the calculation
accuracy and noise robustness of MIR, author completed a more complex
task: CT image reconstruction based on the Fourier center slice theorem,
which involves three DFT/IDFT steps. The data processing procedure is
illustrated in Fig. 7(a). During the CT scanning process, X-ray projections
of a human body taken from different angles are processed to produce
cross-sectional images for diagnostic and therapeutic purposes. Each
projection vector is sent to MIR for DFT processing to generate a fre-
quency domain signal in the 2D Fourier space. The reconstructed CT
image can then be obtained by performing 2D IDFT on the 2D Fourier
space. In the entire CT image reconstruction process, a total of three DFT
steps are required to convert the original projection data into a CT image.
Finally, nnU-Net can be used to segment organs or tissues from the
reconstructed CT image. Finally, nnU-Net can segment organs or tissues
from the reconstructed CT image. For instance, Fig. 7(b) displays the
original human organs alongside the reconstructed CT images, along
with intermediate results.127

4.2.2. Medical image generation
High-quality medical image data plays a crucial role in the medical

field, as it can realistically reproduce medical scenarios and pathological
features, providing doctors with an accurate and reliable basis for diag-
nosis, treatment, and surgical planning. By utilizing publicly available
chest X-ray images and radiology report datasets, the model is able to
generate diverse and visually plausible synthetic X-ray images. This en-
ables visual-verbal models, which have been pre-trained on natural im-
ages, to generate diverse and realistic medical images, thereby alleviating
the shortage of high-quality medical image datasets.128

Kim et al. reported a generative adversarial network (GAN) based on
a memristor cross-switch array, which is capable of generating a large
number of annotated and realistic chest X-ray images.129 Fig. 8(a) illus-
trates the main framework for lesion detection utilizing a convolutional
neural network (CNN), a technology that has been widely adopted for
classification tasks related to medical image diagnosis.130 The lesion
detection system aids radiologists in accurately identifying diseases and
facilitates automated lesion diagnosis when the patient's X-ray images are
fed into a pre-trained CNN. The development of a lesion detection system
using medical datasets, as well as for other research purposes, involves
numerous steps, as depicted in Fig. 8(b).

To demonstrate the feasibility of generating and enhancing labeled
medical images without requiring additional labeling, StyleGAN2 with
adaptive discriminator augmentation (ADA) was utilized, employing
random numbers generated by a memristor-based random number
generator (mTRNG), as illustrated in Fig. 8(c). Fig. 8(d) and (e) display X-
ray images, one with and one without pneumothorax, generated by
StyleGAN2 with ADA using the random numbers supplied by the
mTRNG.131 Without using additional labeling techniques, labeled chest
X-ray images were generated by simply applying the real chest X-ray
images corresponding to each category to StyleGAN2 with adaptive
17
discriminator augmentation (ADA). The StyleGAN2 ADA, trained with
class 0 real chest X-ray images, generated only chest X-ray images
without pneumothorax, whereas the network trained with class 1 real
images generated chest X-ray images with pneumothorax. The authors
then used the Fr�echet Inception Distance (FID) and Kernel Inception
Distance (KID) to quantitatively evaluate the performance of the network
and the fidelity of the generated images. As shown in Fig. 8(f) and (g),
StyleGAN2 with adaptive discriminator augmentation (ADA) using
mTRNG demonstrates superior FID and KID scores compared to images
generated using a pseudorandom number generator (PRNG), suggesting
that mTRNG has the advantage of producing more diverse and
high-quality medical images than PRNG. Furthermore, due to the highly
random nature of the random numbers generated by mTRNG, the
network trained with mTRNG not only converged quickly but also
steadily maintained low FID and KID scores. In contrast to the network
based on mTRNG, the neural network based on PRNG exhibits a rela-
tively slower convergence speed and higher volatility, as the slight reg-
ularity in the random numbers generated by PRNG hinders the
convergence results. Thus, the results indicate that mTRNG has great
potential for generating privacy-sensitive real medical images and
eliminates the need for labeling in the development of AI-based auto-
mated lesion diagnosis. Although neuromorphic devices show great po-
tential in medical image processing and generation, they are still limited
by the challenge of dynamically balancing device homogeneity and
algorithmic accuracy. This challenge necessitates both addressing the
trade-off between dynamic range compression and time-series fidelity for
artificial neural networks and developing bio-inspired adaptive sampling
controllers to match organmotion rhythms. In medical image generation,
neuromorphic-based neural networks lack pathological knowledge,
thereby generating images with spurious pathological features and
compromising credibility—a gap that demands synergistic optimization
across device-algorithm-system levels.

4.3. Rehabilitation medical engineering

As a comprehensive discipline, Rehabilitation Medical Engineering
deeply integrates the essence of biomedical engineering and rehabilita-
tion medicine, and is committed to the development of various types of
rehabilitation medical equipment and appliances, such as prosthetics,
orthopedic supports, functional examination and exercise equipment,
etc. Its aim is to provide comprehensive rehabilitation services and
support for the disabled, the injured, the sick, and other groups.132,133 As
medical demand continues to rise, the types of technologies and their
implementation methods in the field of rehabilitation engineering are
gradually showing a more diversified trend. This change not only reflects
the continuous progress and innovation in rehabilitation engineering
technology but also aligns with the contemporary medicine's re-
quirements for individualized and efficient patient rehabilitation. Bao
et al. reported a monolithic soft prosthetic e-skin that has the ability of
multimodal perception, neuromorphic pulse signal generation, and
closed-loop actuation.134 In the natural perception process, somatosen-
sory receptors convert the input stimuli into FM pulse trains with con-
stant amplitude, ensuring efficient and high-fidelity signal transmission,
as shown in Fig. 9(a). To implement this process, the authors developed a
circuit system comprising a sensor for collecting external stimuli, a ring
oscillator (RO) for frequency modulation of the sensor signal, and an
edge detector (ED) for action potentials, as depicted in Fig. 9(b)-9(d). To
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Fig. 11. (a) Schematic of a biohybrid neurointerface where artificial neurons chemically communicate with biological neurons, forming a complete neuromorphic
communication loop. A biological neuron comprising neurotransmitter receptors on the dendrite to specifically recognize neurotransmitters, followed by the spiking of
action potential based on ion-fluctuation-induced membrane potential changes, and the triggering of neurotransmitter release in the vesicle at the terminal of the axon.
(b) An artificial neuron comprising neurotransmitter detection via an electrochemical sensor, sensory signal processing with synaptic plasticity using a resistive
switching memristor device and signal-triggered neurotransmitter release based on a hydrogel component. (c) In-sensing memory based on the combination scheme of
the DA sensor with the memristor. (d) Response of DA electrochemical sensor and the corresponding response of the memristor following the DA period. (e) Schematic
of an artificial neuron that simulates the function of an interneuron including pre-neurotransmitter recognition, synaptic plasticity and post-neurotransmitter release.
(f) Dynamic release of DA from the hydrogel induced by DA stimuli when the memristor is in the initial HRS and LRS. The inset shows the digital image of a flexible
artificial neuron that contains a CNT/GO-based DA sensor, Ag NPs–silk fibroin/Au memristor, heater and PDMS-based microfluidic film. The data are presented as
mean values (s.d.). The error bars are obtained from n ¼ 3 different artificial neurons examined in independent measurements. (g) Visualization of DA-triggered
releasing behaviour using methylene blue as the indicator. Copyright 2023, Springer Nature.116.
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mitigate large amplitude variations within the limited dynamic range of
the frequency tuning, the sensor was positioned in the second stage of the
inverter, as illustrated in Fig. 9(e). By integrating this design with the
transistor's high on-off current ratio, a modulation frequency range
associated with physiological signals (i.e., 0–100 Hz) was achieved,
alongside a stable amplitude across a varying load resistance between
0 and 5 GΩ, as shown in Fig. 9(f). In order to better simulate the bio-
logical coding process of pulse sequences, the ED circuit was further
developed to remodel the RO output signal. With a properly designed
delay network and AND gate, the ED can efficiently capture the rising
edge of the input signal to generate sharp pulses, as shown in
Fig. 9(g)-9(i). With the optimal geometrical design of the delay network,
the AND gate, and the corresponding circuits, a stretchable ED is realized
that can generate stable pulse signals with a duration of 4 ms and an
amplitude of 5V in response to square wave inputs of different fre-
quencies (up to 50Hz), as depicted in Fig. 9(g). Using all the developed
components, a monolithic integrated electronic skin patch as soft as
human skin was fabricated to mimic natural sensory processes with
driving voltages less than�5 V, as shown in Fig. 9(b) and (c). In addition,
carbon nanotube-based stretchable pressure sensors and thin-film tem-
perature sensors with a 3D pyramidal structure were developed and in-
tegrated into the system to mimic natural mechanoreceptors and
thermoreceptors, respectively, as shown in Fig. 9(h).

When applying a pressure from 0 to 50 kPa or changing the tem-
perature from 22 �C to 90 �C, burst signals are generated and emitted
faster depending on the pressure and temperature stimulus levels, as
shown in Fig. 9(i) and (j). The above e-skin circuit, consisting of 54
stretchable transistors, achieves medium-scale integration of stretchable
organic electronics, as shown in Fig. 9(c) and (k). A biological sensori-
motor circuit was simulated using the e-skin. When a progressively
increasing pressure stimulus is applied, the solid-state synaptic transis-
tors generate a stronger driving current, while the induced motor signals
simultaneously stimulate the sciatic nerve. Through the artificial syn-
apses, these signals will activate the downstreammuscles, completing the
artificial sensorimotor loop. This loop shows significant potential for
next-generation robots and medical devices.

In order to achieve complex movements, organisms have evolved
complex nervous systems. Damaged nervous systems can lead to poor
transmission of biological signals, resulting in the loss of some or all
bodily functions.135 Repairing the damaged nervous system in humans
has long been a challenge in medicine and the biological sciences.
However, conventional functional electrical stimulation (FES) has limi-
tations and often requires complex digital circuits and computers to
control the stimulation model and stimulate gentle muscle movements. It
also requires the patient to carry the appropriate equipment during the
computation process and is not suitable for long-term use by patients in
their daily life. Lee et al. designed a stretchable, low-power artificial
neural synaptic device with feedback function by modelling the neural
feedback structure of biologically controlled muscle movements.136 The
concept of the stretchable neuromorphic efferent nerve (SNEN) is to
avoid the damaged nerve and send neuromorphic electrical signals to the
muscle, thus replacing the damaged nerve, as shown in Fig. 10(a). The
SNEN consists of stretchable components, including carbon nanotube
(CNT) strain sensors, organic semiconductor nanowires, and ion-gel
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stretchable synaptic transistors, as well as soft hydrogel electrodes. To
demonstrate the concept, the SNEN was attached to the legs or backs of
mice, as shown in Fig. 10(b). To simulate synchronous movements, two
synaptic transistors were connected to the flexor and extensor muscles,
respectively, as shown in Fig. 10(c). Alternating input action potentials
with a frequency of 50 Hz (fAP ¼ 50 Hz) were applied to the synaptic
transistors at 1-s intervals. Each muscle was stimulated to stretch and flex
alternately, enabling leg displacement. Subsequently, an artificial
homeoreceptor was demonstrated for detecting leg movements and
preventing muscle overstretching, as shown in Fig. 10(d) and (e). The
artificial homeoreceptor, in conjunction with the artificial synapses,
formed a closed-loop feedback system, as depicted in Fig. 10(f). The
feasibility of using SNEN in actual exercise was subsequently tested, as
demonstrated by a mouse suspended by a vertical brace, as shown in
Fig. 10(g). The input signal was applied to the synaptic transistor of the
right hind leg extensor muscle, and this signal was modulated to control
the leg swing and induce a sharp contraction of the extensor muscle
through the EPSC. A bipedal walkingmotion was also achieved, as shown
in Fig. 10(h). After connecting one synaptic transistor to the flexor
muscle of the left leg and the other to the extensor muscle of the right leg,
and similarly connecting the second transistor to the extensor muscle of
the left foot and the flexor muscle of the right foot, bipedal walking
movement was induced by alternating input signals from each SNEN.

By adjusting the input action potentials (APs), the movement ranged
from slow walking to running on a treadmill, as shown in Fig. 10(i) and
(j). The power required for this artificial synaptic control of muscle
movement is just 1/150 of that required by the functional electrical
stimulation method. By utilizing stretchable artificial nerves, the motor
function of the legs of a mouse suffering from a neuromotor disorder can
be restored, enabling it to kick a ball, walk, or run. This represents a
significant breakthrough in overcoming nerve damage and opens up new
avenues for enhancing the quality of life for patients with related dis-
eases. The technological evolution of rehabilitation medical engineering
has posed multidimensional challenges to neuromorphic devices: at the
hardware level, this requires both the construction of millisecond-level
motion-sensing closed-loop systems for precise bionic control of pros-
theses and breakthroughs in maintaining synaptic plasticity under sus-
tained mechanical loading. Meanwhile, the fundamental conflict
between biocompatibility and high-density sensing integration continues
to hinder the clinical translation of haptic interfaces. In the algorithmic
dimension, the imbalance between nociceptive inhibition and proprio-
ceptive enhancement in neurofeedback systems risks misaligning motion
perception during prolonged use, while bottlenecks in cooperative
learning between EMG signals and neuromorphic networks have stalled
the dynamic adaptation of rehabilitation devices. This multilevel tech-
nical challenge not only catalyzes cross-disciplinary integration among
materials science, biomechanics, and neuroengineering but also drives
the development of innovative paradigms such as bionic tactile interfaces
and adaptive closed-loop regulation in rehabilitation medicine.

4.4. Brain-machine interfaces

Brain-machine interface (BMI) captures brain signals and converts
them into electrical signals, thereby realizing visual detection of these
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Fig. 12. (a) Schematic of the memristor-based system to identify epilepsy-related brain state. Normal, interictal, and ictal neural activities are filtered by the
memristor array to obtain oscillation waves in δ, θ, α, and β frequency bands. Biomarkers extracted from the filtered waves are used to identify the brain state through
a single-layer neural network, which is implemented in another memristor array. (b) Implementation of the filter bank for neural activities in a memristor array.
Continuous analog neural signal is conditioned and sampled as voltage pulses, which are applied to the input columns of the memristor array. Here Gpositive and
Gnegative represent the memristor conductance for positive and negative weights, respectively. (c) Input voltages transformed from the extracted biomarker vectors to
be applied on the memristor array-implemented neural network. (d) Conductance map of the memristor array for the single-layer perceptron neural network. (e)
Output current of the neural network. The output neuron with the largest current value shows the input signal type. (f) Overall accuracies of the software-simulated
and memristor array-implemented neural networks in the identification of the brain state. Here, error bars represent the standard deviations. S.S. represents the
network trained using software-calculated results. For M.S. and M.M., the networks are trained using memristor array-filtered results, and M.S. uses the software-
simulated network while M.M. uses the memristor-implemented network for inference. (g) Comparison of the power efficiency for CMOS-based and memristor-
based systems.
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brain signals.137 BMI can be categorized into two types: implantable BMI
and non-implantable BMI. For implantable BMI, the signal acquisition
device (electrode) is directly implanted into the patient's cerebral cortex
through surgery or other means. This method boasts high accuracy, high
temporal resolution, and a high information transmission rate, among
other advantages. However, it also poses challenges such as high surgical
risk, a high infection rate, and significant implantation trauma.
Non-implantable BMI does not require surgery and can collect brain
signals directly from outside the brain. However, at the same time, due to
the signal attenuation caused by the skull and the blurring effect of
electric field dispersion, the signal resolution is low, making it difficult to
identify the brain area or individual neurons associated with the signal
emission. Additionally, the signal cannot be transmitted if the conductive
paste fails.138 Therefore, the development of new BMIs becomes partic-
ularly important for the transmission of neural signals. Chen et al. re-
ported on a chemically mediated artificial neuron that can receive and
release the neurotransmitter dopamine.116 As shown in Fig. 11(a), neu-
rons in the human brain communicate with each other through synapses,
and neurotransmitter-mediated synaptic plasticity behaviors occurring in
the synaptic gap induce emotional and memory behaviors.139,140 To
enable chemical communication between biological neurons, bio-
electronics must possess at least three fundamental functions: neuro-
transmitter identification, synaptic plasticity simulation, action potential
excitation, and neurotransmitter release. For the implementation of such
chemically mediated artificial neurons, three modules, a DA electro-
chemical sensor, a resistive switching memristor, and a thermally
induced DA release hydrogel, were constructed, as illustrated in
Fig. 11(b). Electrochemical sensors convert chemical signals into elec-
trical signals and affect the memristor. The resistive state of the mem-
ristor is modulated by DA as a signal, which can mimic the STP and LTP
of synapses. A polymer hydrogel with temperature-dependent properties
was used to simulate how interneurons release DA. In this artificial
neuron, the DA electrochemical sensor in combination with the mem-
ristor constitutes a neurotransmitter-mediated artificial synapse, as
shown in Fig. 11(c), which enables both neurotransmitter recognition
and memory capabilities. To verify the perceptual memory ability,
different concentrations of DA were used as presynaptic stimuli, and the
electrical response of the artificial synapse was monitored. After stimu-
lation with a low concentration of 10 μMDA, the sensor current increased
to 5.21 μA, as shown in Fig. 11(d). The current change of the memristor
was negligible, indicating that the low concentration of DA was unable to
form Ag-conducting filaments (CFs) in it. When the DA concentrationwas
increased to 40 μM, the sensor current rose to 22.82 μA, and the mem-
ristor current also increased. Upon removing the DA stimulus, the
memristor current returned to the high-resistance state (HRS), implying
that moderate DA signals induced STP (short-term plasticity) behaviors
and the formation of unstable CFs in the memristor. When the DA con-
centration was further increased to 200 μM, both the memristor and
sensor currents increased in parallel. The current does not return to HRS
even when DA is removed, indicating that the memristor undergoes LTP
behavior under high DA concentration stimulation, accompanied by the
formation of a stable CF internally.

This low-resistance state (LRS) induced by strong DA stimulation can
subsequently trigger the release of DA, sending out artificial neuronal
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electrical discharge signals. To mimic interneurons, DA sensors, mem-
ristors, and thermo-responsive DA hydrogels were integrated to perform
or exhibit pre-neurotransmitter recognition, synaptic plasticity, and post-
neurotransmitter release functions, respectively, as shown in Fig. 11(e).
PDMS-based microfluidic channels were integrated with the chip to
implement the flow of neurotransmitters. The inset of Fig. 11(f) shows
the integrated chip. When the concentration of DA was gradually
increased from 0 to 50 μM, the sensor response and hydrogel release were
monitored, as shown in Fig. 11(f). To visualize the flow of hydrogel
release in microfluidics, methyl blue was encapsulated in a hydrogel, as
shown in Fig. 11(g). When a continuous DA stimulus of 20 μM was
applied, a continuous flow of the dye solution into the microfluidic
channel was observed—confirming the stimulus-triggered release
behavior. This process mimics the excitation of action potentials and the
release of neurotransmitters into the synaptic gap of biological neurons,
thereby forming a chemical communication circuit that is analogous to
the one found in interneurons. Liu et al. present a memristor-based neural
signal analysis system that leverages the biologically plausible properties
of memristors to efficiently analyze analog signals.141 To demonstrate the
system's proof-of-concept, an array of memristors is used to enable the
filtering and identification of epileptic signals. Specifically, the authors
constructed a memristor-based FIR filter as a preprocessor; and a
memristor-based single-layer perceptron neural network as a deco-
der—to perform the typical BMI task of identifying epilepsy-related brain
states from recorded neural signals, as shown in Fig. 12(a).
Frequency-dependent information in neural signals aids in distinguishing
between different brain states. Therefore, a FIR filter array with four
bands of bass filters was designed and implemented using memristors to
generate waveforms in the corresponding frequency bands, as shown in
Fig. 12(a). Fig. 12(b) shows how the neural signal is filtered in the
memristor array. The coefficients of the filter are first mapped onto the
memristor array as device conductance values. Fragments of analogue
voltage signals containing information about the state of the brain (i.e.,
normal, interictal, or ictal) are then applied to the memristor array. The
sum of the output currents is the result of filtering by the filter bank at
each time step. In this way, the memristor array filters the input neural
signal into four frequency bands (δ, θ, α, and β) with waveforms reflecting
the corresponding brain states. Several biomarkers, such as waveform
amplitude and energy per frequency band, were subsequently extracted
as feature parameters and input into a single-layer perceptron neural
network to identify epilepsy-related brain states. To verify that the
filtering results retained sufficient information for identifying brain
states, the authors further constructed a single-layer perceptron neural
network consisting of 21 input neurons, with output neurons located in
another array of memristors. To compare the performance of software
computation with that of the memristor-based filter set, the authors
created two datasets: dataset S, consisting of all biomarkers extracted
from software computation results, and dataset M, consisting of all bio-
markers extracted from the filtered waveforms of the memristor array.
Fig. 12(c) shows the input feature vectors for the 540 test samples. The
conductance map of the neural network based on the memristor array,
using 126 devices for 63 synapses with differential weights and trained
by dataset M, is shown in Fig. 12(d). Fig. 12(e) displays the output values
for the 540 test samples. The identification accuracies of the neural
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Fig. 13. (a) The schematic representation of the stimulus–response model of a pH-sensitive SCN, wherein the presence of hydrogen ions elicits oscillatory spiking
behavior characterized by pH levels. The substrate refers to Si/SiO2. The depicted device mirrors the excitatory and inhibitory phenomena akin to biological neurons,
illustrating the nuanced dynamics of pH-induced spiking behaviors within the SCN. (b) and (c) The current spiking characteristics (IOUT–t) for various pH ranging from
3 to 10, showing spiking current patterns of a pH-sensitive SCN in both alkaline and acidic environments. The spiking frequency exhibits an ascending trend in alkaline
conditions. Conversely, within an acidic milieu, the frequency initially rises, followed by a subsequent decrease correlated with the ascending concentration of Hþ. (d)
The frequency response corresponding to different pH levels. (e) The schematic depiction of the stimulus–response model of an ion-selective SCN, specifically
responsive to the Na þ concentration. The substrate refers to Si/SiO2. The Na þ -selective SCN exhibits oscillatory spiking behavior, characterized by Naþ levels. The
device shows the integration of both frequency coding and TTFS coding mechanisms, mirroring the modulation induced by Naþ. TTime represents the time window of
the programmed measurement. The TTFS time, denoted as t, is measured as the time interval between the onset of the stimulus and the occurrence of the first spike. (f)
The representative spiking firing behavior of the Na þ -selective SCN across various Naþ concentrations. The spiking frequency initially demonstrates a monotonic
increase, ranging from 7 to 439 kHz, with an improvement in Naþ concentration from 1 to 160 � 10�3 m. However, upon further elevation to 200 � 10�3 m Naþ, the
spiking frequency declines to 0 Hz. (g) Spiking frequency as a function of the various ion concentrations for Na þ -selective SCN. (h) The TTFS coding from 138 to 3 μs
with an increase in Na þ concentration from 1 to 160 � 10�3 m in Na þ -selective SCN. (i) Ion-selective SCN inducing ion-specific oscillations, which produce spikes
exclusively in Naþ solution but not in Kþ or NH4

þ solutions. Copyright 2024, Wiley-VCH GmbH.143.
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networks with software-trained weights using dataset S (S.S.),
software-trained weights using dataset M (M.S.), and experimentally
mapped weights after training on dataset M (M.M.) are compared in
Fig. 12(f).

It can be observed that the accuracy of the M.S. simulation is almost
the same as the S.S. simulation. This result confirms that the filter bank
based on the memristor array retains sufficient recognition information
and performs as well as the software implementation. In contrast, the
M.M. experimental results show a slight decrease in accuracy, which can
be attributed to the non-ideal device characteristics of the memristor
array. It is expected that this problem can be mitigated by using larger
neural networks or adopting new training strategies. In addition to
achieving high accuracy, the memristor-based analogue computing sys-
tem offers an attractive platform for designing low-power, high-effi-
ciency BMI neural signal analysis systems. To compare the performance
of the memristor-based systemwith that of a state-of-the-art CMOS-based
ASIC, the authors evaluated the power efficiencies of both systems, as
shown in Fig. 12(g). The memristor array-based system achieves an
excellent power efficiency of 1.4 μW/level, where most of the power is
consumed by the filter bank due to the relatively small size of the per-
ceptron network used for recognition. In comparison, the power effi-
ciency of a typical CMOS system is estimated to be 551.0 μW/level. Thus,
compared to state-of-the-art CMOS systems, memristor-based systems
exhibit an approximately 400-fold advantage in power efficiency. These
unique advantages render memristor arrays an attractive candidate for
future high-throughput analogue neural signal analysis in fully implanted
BMIs.

In addition to transmitting information, brain-computer interfaces
and implantable devices need to be able to interpret and transmit basic
chemical and physiological signals from humans to computers.142 This
ability can restore or enhance bodily functions related to sensation,
movement and control. To address this challenge, hardware-based neu-
romorphic devices have emerged to provide brain-like, energy-efficient
solutions for processing biological signals. Zhu et al. report a
bio-integrated spiking chemical neuron (SCN) that implements
ion-mediated spiking behavior via an oxide field-effect transistor
(FET)-type chemical sensor and a niobium oxide Mott memristor.143

Initially, the authors investigated pH-mediated spiking in SCN, where an
Al2O3/In2O3-based FET sensor was used as the pH-sensitive element.
Fig. 13(a) illustrates a schematic of the pH response model characterizing
pH-sensitive SCNs, where different Hþ concentrations can trigger
different spiking patterns in SCNs. Fig. 13(b) and (c) further explore the
behavior of the pH-sensitive SCN. Under alkaline conditions, there is a
clear trend of increasing spike frequency. In contrast, in acidic environ-
ments, the frequency decreases after an initial rise, and these fluctuations
are closely correlated with the rising Hþ concentration. Fig. 13(d) shows
the highest spike frequency (125 kHz) observed at pH ¼ 5.0, which in-
dicates a critical point for the modulation of neuron-like spiking
behavior. Thus, the prepared SCN can achieve excitatory and inhibitory
behaviors under the modulation of Hþ, reflecting the subtle dynamics
inherent in biological neurons. In addition, by modifying the field effect
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transistor sensor with an ion-selective ionophore, the SCN can realize
spiking pulses mediated by Naþ, as shown in Fig. 13(e). The authors
investigated the spiking dynamics of SCN at different Na þ concentra-
tions. Fig. 13(f) demonstrates the spiking pattern of Naþ selective SCN at
different concentrations. As the Naþ concentration increases from 1 to
160 � 10�3

M, the spike frequency shows a monotonic increase. How-
ever, when the Na þ concentration was increased further to 200 � 10�3

M, the spiking ceased, which resembles the excitatory and inhibitory
properties of biological neurons. Under the 130� 10�3

M Na þ condition,
the peak energy consumption of SCN was about 3.4 nJ per spike, as
shown in Fig. 13(g). Interestingly, as shown in Fig. 13(h), a
stimulus-response spike latency was observed in the Naþ-selective SCN,
similar to the TTFS encoding in biological neurons. Fig. 13(i) demon-
strates the spike current of SCN in different solutions. It produces spike
currents only in Naþ solution and not in Kþ or NH4

þ solution, which in-
dicates that SCN shows high Naþ selectivity. The ion-mediated SCN of-
fers a pathway to emulate the spiking dynamics of biological neurons in a
manner that is more biologically plausible. Neuromorphic devices face
multifaceted biotechnological challenges in brain-computer interface
applications: implantable systems suffer from impedance drift induced by
electrodes, which continuously degrades precision, while mechanical
rigidity mismatches with cortical tissue provoke chronic inflammatory
responses. Non-invasive systems circumvent surgical risks yet face signal
dispersion limitations. Furthermore, emerging neurochemical coupling
interfaces reveal critical limitations—the neurotransmitter regulation
cycle lags behind biological neural conduction rates, and a lack of dy-
namic regulatory mechanisms for electrochemical-pulse signal coordi-
nation severely constrains closed-loop adaptability in brain-machine
symbiotic systems.

5. Summary and outlook

In summary, this paper focuses on the application of neuromorphic
devices in biomedical engineering and provides a comprehensive over-
view of the latest research results and developments in this field. Firstly,
this study summarizes and analyzes in depth the pathogenesis of diseases
affecting different parts of the human body and their conventional/novel
detection methods. The core aim is to comprehensively analyze the po-
tential root causes of these diseases and to provide useful references for
medical research and clinical practice. The article then reviews the wide
range of applications of neuromorphic devices in the field of biomedical
sensing technology and the remarkable results they have achieved.
Thanks to their unique neuromorphic structure, these devices have
exhibited exceptional ability to accurately capture biological signals,
thereby providing powerful technical support for biomedical research.
Additionally, this paper delves into the application prospects of neuro-
morphic devices in the field of medical image processing. By processing
and analyzing various common medical image types, including X-rays,
MRI, CT, and others, neuromorphic devices demonstrate great potential
in medical image recognition, diagnosis, and assisted treatment. Mean-
while, this review underscores the innovative applications of



Fig. 14. The research line of neuromorphic chips in the field of biomedical engineering includes three aspects: biocompatibility, Individual-based treatment and
clinical validation. The figure was drawn by Figdraw.
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neuromorphic devices in rehabilitation medical engineering and the
breakthroughs they have accomplished. Notably, in the areas of afferent
neural network construction and e-skin design, neuromorphic devices
have infused new vitality into the progress of rehabilitation medical
engineering, leveraging their unique advantages to provide more precise
and efficient solutions for patients' rehabilitation treatment and func-
tional recovery. Finally, the article also comprehensively examines the
latest research findings and development trends of neuromorphic devices
in the fields of neuroscience and brain-computer interfaces. These studies
have demonstrated that neuromorphic devices possess significant po-
tential for achieving seamless connections between the brain and
external devices. They offer new insights and directions for neuroscience
research, the advancement of brain-computer interface technology, and
future innovations in human-computer interaction. Furthermore, all
these studies indicate that neuromorphic devices exhibit lower power
consumption and higher performance compared to conventional elec-
tronic devices. This renders them more promising for a broader range of
applications in biomedical engineering, particularly in scenarios that
necessitate prolonged monitoring and treatment. The low power con-
sumption aids in extending the device's lifespan while minimizing
disruption to the patient's daily life. The research of neuromorphic de-
vices in the field of biomedical engineering has made great progress.
However, with the improvement of people's living standards and medical
needs, as well as the increasing importance of cross-disciplinary disci-
plines such as biomedical engineering, the development of neuromorphic
devices is still faced with many challenges, including device biocom-
patibility, personalized demand handling, and clinical validation, which
urgently require further in-depth research and solutions(Fig. 14).144,145

(1) Biocompatibility refers to the ability of biomaterials to come into
contact with living biological tissues and body fluids without
causing a decline in the function of cells and tissues, or inducing
24
inflammation, cancerous changes, rejection reactions, and other
adverse effects.146,147 In biomedical engineering, the biocompat-
ibility of neuromorphic devices is crucial for their successful
clinical application. To reduce the occurrence of immune re-
actions and rejection, materials with excellent biocompatibility
are selected. Emerging generative AI models are accelerating this
process by predicting novel biocompatible material combinations
through multi-parameter optimization of chemical properties and
biological interaction profiles. The surface of neuromorphic de-
vices is modified using chemical, physical, or biological methods
to enhance their compatibility with biological tissues. Addition-
ally, flexible materials and techniques can be employed to design
neuromorphic devices that possess flexibility. Such designs can
better accommodate morphological changes in biological tissues
and minimize damage and discomfort during implantation,
thereby improving the biocompatibility of the devices. Further-
more, during the preparation process, researchers must strictly
control the experimental environment to ensure the sterile fabri-
cation of neuromorphic devices. This helps to decrease the risk of
infection after implantation and further enhances biocompati-
bility. By integrating these approaches, the widespread adoption
of neuromorphic devices in biomedical engineering can be facil-
itated, thereby making a significant contribution to the advance-
ment of the medical field.

(2) In the field of biomedical engineering, personalized needs pertain
to the characteristics of a treatment plan or rawmedical device
that is tailored to each patient based on factors such as individual
differences, physiological status, disease type, and severity.148

This concept of customization aims to maximize treatment effec-
tiveness, minimize side effects, and enhance the quality of life and
satisfaction of patients. For neuromorphic devices, enhancing
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their ability to meet patients' personalized needs entails not only
considering the functionality and biocompatibility of the device,
but also accounting for the specific conditions of the patient to
achieve precision medicine. AI-powered digital twin technology
creates patient-specific physiological models to simulate device
performance, enabling virtual prototyping of customized neuro-
morphic solutions before physical implantation. First, a modular
design concept is adopted, allowing the functions of each part of
the neuromorphic device to be replaced or upgraded indepen-
dently. In this manner, doctors can flexibly select or adjust the
functional modules of the device according to the patient's specific
conditions, thereby achieving a more personalized treatment plan.
Second, an effective patient feedback mechanism is established,
incorporating information such as pain perception. This infor-
mation is crucial for adjusting the design, function, and parame-
ters of the neuromorphic device, enabling the achievement of
customized treatments that are even more tailored to the patient's
needs.

(3) Clinical validation is the systematic and scientific evaluation of a
treatment, medical device, or drug to determine its safety, effi-
cacy, and applicability in medical research and clinical practice.
For neuromorphic devices, clinical validation is a critical step to
ensure their safe and effective use in biomedical engineering.
Based on the intended use and performance characteristics of the
neuromorphic device, the objectives of clinical validation are
clearly defined, including assessing the device's safety, efficacy,
stability, and patient acceptance. AI-driven predictive modeling
significantly enhances trial design efficiency by identifying
optimal patient cohorts and predicting potential adverse event
probabilities through retrospective analysis of historical medical
datasets. Collect basic patient data and follow up on treatment
outcomes and patient feedback after the neuromorphic device is
used. Establish a control group to compare patients using the
neuromorphic device with those not using it, in order to assess the
therapeutic effect of the device. Conduct clinical validation in
various medical centers to expand the sample size and enhance
the representativeness and credibility of the validation results. A
comprehensive data collection system should also be established
to ensure the completeness, accuracy, and traceability of the data.
This system should include the collection of patients' baseline
data, physiological indicators during treatment, imaging results,
and patients' subjective feedback. Meanwhile, researchers need to
refer to relevant regulations, guidelines, and standards both
domestically and internationally to formulate clinical validation
criteria and evaluation indexes for neuromorphic devices.
Through the comprehensive application of these methods, the
safety and effectiveness of neuromorphic devices in clinical ap-
plications can be ensured, thereby promoting their widespread
application and development in the field of biomedical
engineering.
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