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A new paradigm in modelling 
the evolution of a stand via the 
distribution of tree sizes
Petras Rupšys1,2 & Edmundas Petrauskas1

Our study focusses on investigating a modern modelling paradigm, a bivariate stochastic process, 
that allows us to link individual tree variables with growth and yield stand attributes. In this paper, our 
aim is to introduce the mathematics of mixed effect parameters in a bivariate stochastic differential 
equation and to describe how such a model can be used to aid our understanding of the bivariate 
height and diameter distribution in a stand using a large dataset provided by the Lithuanian National 
Forest Inventory (LNFI). We examine tree height and diameter evolution with a Vasicek-type bivariate 
stochastic differential equation and mixed effect parameters. It is focused on demonstrating how new 
developed bivariate conditional probability density functions allowed us to calculate the evolution, in 
the forward and backward directions, of the mean diameter, height, dominant height, assortments, 
stem volume of a stand and uncertainties in these attributes for a given stand age. We estimate the 
parameters by considering discrete samples of the diameter and height at a given age and by using 
an approximated maximum likelihood procedure. The model performance criteria for the height and 
diameter growth models include statistical indexes and an analysis of residuals.

Foresters seek to predict patterns in the distributions of individual trees within stands, across tree sizes and over 
space. Determining a distribution of tree diameters and heights has been broadly studied since the twentieth 
century1. Originally, the tree diameter and height distribution concept crystallised in assessing standing timber 
value based on merchantable piece sizes and forest structure which are the basis of aboveground forest carbon 
estimates2. The distribution of tree diameters at the breast height (in the sequel – diameter) is one of the most 
investigated subjects of statistical research in forestry. The forestry literature reports that tree diameter distribu-
tions vary across different stands3. In forest research, the univariate tree diameter distribution was introduced by 
Meyer4 and Schnur5 using a discrete probability space methodology. Natural extensions of a discrete diameter 
distribution are the continuous univariate gamma distribution6, log-normal distribution7, Weibull distribution8, 
logit-logistic9 among others. Classical mathematical modelling of tree size distribution is largely concerned with 
the use of a well-known probability density function for fitting to the empirical tree size frequencies and does 
not quantify the evolution of a tree size distribution via a forest stand age. Several authors have analysed the tree 
height distribution in a forest stand. The tree height distribution can be depicted using two mathematical models. 
First, a height distribution can be derived indirectly from a diameter distribution together with the relationship 
between tree height and diameter. The relationship between height and diameter distributions can be accounted, 
provided that the function relating to height and diameter can be inverted10. Second, theoretical height distri-
butions were fitted directly to tree height observations and have included such shapes as the beta11, the Weibull8, 
the Johnson12, the power-normal13 and much more. The construction and applications of bivariate distributions 
of diameter and height are the most used classical fields of research in forest statistics, and it continues to be an 
active field of research in forest mensuration and inventory, where both the diameter and height are measured 
on every tree.

The philosophy of the mean stem volume estimation is based on the modelling of the distributions of the 
volume components of diameter and height instead of the volume itself. The bivariate distribution, as a possible 
relevant model for mean stem volume statistics, provides more physical insights on the validity domain and the 
quantification of the error made by using such a distribution. A bivariate distribution of diameter and height can 
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be developed using several mathematical techniques. First, a theoretical diameter and height distribution can be 
fitted directly to tree diameter and height observations in forms such as the Johnson2,14, the power-normal15 and 
others. Second, a theoretical bivariate diameter and height distribution as an extension of univariate marginal 
distributions can be developed by Plackett’s method16,17, the copula method18 and references therein.

A new paradigm in stand structure, modelling beyond well-defined theoretical distributions, is to use sto-
chastic differential equations (SDEs) techniques. On the other hand, an algebraic structure of SDEs can relate tree 
size distribution and the age of a forest stand. Nowadays, SDEs find applications in many disciplines including 
physics19, information20, biomedicine21 and forestry22. The framework of SDEs can also be adapted to modelling 
theoretical diameter and height distributions23. One motivation for using SDEs for the modelling of the evolution 
of the tree size distribution is that unknown drivers functioning in a stand can be modelled as random processes, 
which lead to a white noise process. The solution to the SDE of the diameter and height dynamics is a bivariate 
random process which leads to a theoretical bivariate probability density function for the diameter and height. In 
this philosophy, the evolution of the probability density function for diameter and height, which behaves accord-
ing to a stochastic differential equation, can be defined by the Fokker-Planck equation. Some models describing 
the evolution of the fixed effect parameters univariate and bivariate probability density functions were discussed 
by Rupšys and Petrauskas22,23. Recently, there were also a number of results on mixed effect parameters using the 
Ornstein-Uhlenbeck family of univariate SDE models of tree height evolution via diameter. Such models gener-
ate the normal, or log-normal, probability density functions for diameter and height in a univariate sense24–27 or 
using the normal copula technique in a bivariate sense28.

The newly developed model based on bivariate mixed effects SDE extend the usual non-linear mixed effects 
regression models through the inclusion of a system noise as an additional source of variation in the first-stage 
model. This extended model describes the variation in the data through two sources of noise: the system noise, 
σ, which reflects the random fluctuations around the corresponding theoretical diameter and height models and 
represents the within-stand variation, and random effect, φ, which represents the between-stand variation in 
the theoretical diameter and height models. If the magnitude of the parameter of the system noise σ is zero, the 
entire system noise term will vanish, and the remaining part of the SDE will simply be the differential form, the 
solution of which is the regression term of the mixed effects model. Random effect, φ, is not parameter but it is a 
random variable. The distribution of random effect captures random variation of the parameter in the population 
of stands and is frequently assumed to be normal.

Nonlinear mixed effect regression models were introduced into forestry management to analyse data from 
several stands simultaneously. The individual tree size variables are assumed to be described by a common struc-
tural model with some of the model parameters varying between the stands (so-called random effects), while 
other parameters are invariant between stands (so-called fixed effect parameters). The mixed effects methodology 
can be of great benefit when the model uses the data of the National Forest Inventory as it is regional and sparse.

In this study, the ultimate objective is to build in some detail the bivariate Vasicek type mixed effect parame-
ters SDEs for the diameter and height at a given stand age to deduce the evolution, via stand age, of the bivariate 
conditional probability density function. This can also be used for predicting stand characteristics (mean tree 
diameter, height, stem volume, stand volume per ha) and their precisions. The technique for estimating mixed 
effect parameters is based on an approximation of the maximum log-likelihood function. This work aims to pres-
ent principal concepts of the newly developed bivariate mixed effect parameters conditional probability density 
function of the diameter and height in simple terms and to illustrate results using large datasets provided by the 
Lithuanian National Forest Inventory. All results are implemented in the symbolic algebra system MAPLE.

Materials and Methods
Data. The data used for the newly developed model estimation and validation were obtained from the 
Lithuanian National Forest Inventory (LNFI) (2007–2010). At plot establishment, the following data were 
recorded for every sample tree: the species, the age, the diameter over bark at 1.30 m height and measured to 
the nearest millimetre. The total tree height was measured for a subsample of trees (no less than 3) to the nearest 
quarter metre. The tree diameters were measured with field callipers in two perpendicular directions. In the main 
500 m2 size circular plot (horizontal radius equals to 12.62 m) all larger than 14.0 cm in diameter trees at 1.3 m 
height were inventoried. A total of 2,108 plots of Scots pine trees were chosen from the LNFI 2007–2010 database. 
The dataset was randomly divided into estimation and validation datasets. A random sample of 1,408 plots (5,220 
trees) was selected for model estimation, and the remaining dataset of 700 plots (2,692 trees) was utilised for 
model validation. Only measurements from live trees without top damage were included in the statistical analysis. 
Summary statistics for the diameter at breast height (d), the total height (h) and the age (A) for all of the trees used 
in model estimation and validation datasets are presented in Table 1. It should be noted that data on the number 
of plots with greater than 10 measured trees (diameter and height) were very limited.

Data Number of trees Min Max Mean St. Dev. Number of trees Min Max Mean St. Dev.

Estimation Validation

d (cm) 5220 15.10 66.10 27.24 8.63 2692 15.10 74.30 27.45 8.83

h (m) 5220 7.10 37.80 22.07 4.42 2692 7.2 34.80 22.26 4.43

A (yr) 5220 17 221 65.78 23.67 2692 17 162 67.70 23.31

Table 1. Datasets summary statistics.
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Bivariate stochastic differential equation framework. In this paper, we take a bivariate 
Ornstein-Uhlenbeck family29 SDE of the Vasicek type22 to study the tree diameter and height bivariate distribu-
tion problem. This results in an exact bivariate conditional probability density function which parameters can 
be estimated by maximum likelihood procedure based on discrete time observations. A bivariate mixed effect 
parameters SDE is set up for describing the tree diameter and height dynamics that extends to a theory of a bivar-
iate conditional probability density function of the tree diameter and height. Proceeding as we have in the fixed 
effect parameters Gompertz-type bivariate case23, the Vasicek type bivariate SDE that describes the development 
of the diameter and height is defined by:

= + ⋅ = …dX t A X t dt B dW t i M( ) ( ( )) ( ), 1, 2, , , (1)i i 1
2

here: M is the total number of stands used for model fitting, t is the time (stand age), X(t) = (D(t), H(t))T, t∈[t0; T], 
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Results and Discussion
The conceptually simplest modelling methodology for complex stands evolves from individual-tree level models 
that are then aggregated to predict consequences at the stand level31. Our developed conditional bivariate prob-
ability density function, defined by Eq. 10, outlines the evolution of the tree diameter and height structure via a 
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stand age and can be used to explain some aspects of stand evolution such as the mean values of diameter, height 
and stem volume and their coefficient of variation, diameter distribution, height distribution, dominant height 
and the mean stand basal area or stand volume (m3/ha).

Estimating results. The maximum likelihood estimator seeks (see Supplement Method) to make the condi-
tional probability density function the most likely fit to the observed diameter and height estimation dataset 

…d h d h d h{( , ), ( , ), , ( , )}i i i i
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i
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i
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likelihood and approximated maximum likelihood technique, respectively, realised by Eqs SM2, SM.8 and SM.9 
(see Supplement Method), using the NLPSolve procedure in MAPLE 1132. The results of the parameter estimates, 
their standard deviations and the Akaike’s Information Index (AIC)33 are summarised in Table 2. The Akaike’s 
Information Index is defined by:
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where LLs(⋅) is defined in the Supplementary Method.
The AIC shows that including the random effects into the univariate and bivariate Vasicek-type SDE models 

improved goodness of fit of the univariate and bivariate conditional probability densities compared with the cor-
responding fixed effect parameters univariate and bivariate densities.
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Bivariate diameter and height distribution at a given age. The newly developed bivariate condi-
tional probability density function for tree diameter and height is attractive for its simplicity and may be justified 
from an application perspective. To demonstrate that the data provided by the LNFI (2007–2010) of Scots pine 
trees do indeed follow the bivariate estimated probability density function defined by Eq. 10 we will use simple 
graphical techniques to illustrate the goodness of fit. Theoretical validation that a height and diameter dataset 
observed at discrete ages follows a bivariate probability density function is not easy and there is no simple statis-
tical test. We graphically illustrate goodness of fit of the estimated bivariate density function (Eq. 10) with fixed 
effect and mixed effect parameters on three randomly selected plots from a validation dataset by plotting the 
estimated bivariate density functions, their contour plots and the observed datasets. Figure 1 shows the estimated 
bivariate mixed effect parameters estimated probability density functions for three randomly selected stands from 
the validation dataset as well as the estimated bivariate fixed effect parameters stationary (time t equates to 

Parameters

AICαd βd σ11 αh βh σ22 σ12 σd σh

Univariate fixed effects models

35.3599 (56*10−3) 0.0280 (1.1*10−5) 1.8947 (4.0*10−4) — — — — — — 36155

— — — 25.1701 (1.8*10−3) 0.0406 (1.1*10−5) 1.1066 (2.0*10−4) — — — 28842

Univariate mixed effects models

36.4617 (3.9*10−3) 0.0285 (7.7*10−6) 1.4869 (2.6*10−5) — — — — 6.6263 (1.8*10−3) — 35320

— — — 26.0732 (1.1*10−3) 0.0362 (4.6*10−6) 0.5841 (9.3*10−5) — — 3.9338 (1.0*10−3) 25831

Bivariate fixed effects model

35.3462 (1.3*10−2) 0.0280 (2.2*10−5) 3.5968 (1.0*10−3) 25.3301 (4.0*10−3) 0.0396 (2.2*10−5) 1.1968 (6.1*10−4) 3.9187 (9.2*10−4) — — 62912

Bivariate mixed effects model

35.9030 (9.8*10−3) 0.0293 (2.0*10−5) 2.3736 (2.2*10−3) 26.0039 (2.9*10−3) 0.0363 (1.2*10−5) 0.3615 (3.0*10−4) 0.6334 (6.6*10−4) 5.9592 (4.5*10−3) 3.6830 (2.6*10−3) 58815

Table 2. Estimates of parameters and AIC.
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infinity) probability density function (estimates of parameters θ α α β β σ σ σ=
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The contour plots of the bivariate estimated mixed effects probability density function for three randomly 

selected stands from the validation dataset and the observed values, together with the contour plot of the bivariate 
estimated fixed effects stationary (t = +infinity) probability density function and the observed values from the 
same three randomly selected stands from the validation dataset are given in Fig. 2. Figure 2 shows that the mixed 
effect and fixed effect parameters bivariate estimated probability density functions well capture the main features 
of the data for three randomly selected stands from the validation dataset. The diameter and height random 
effects ,j

i
j
iφ φ  for these three randomly selected stands were calibrated by Eqs 13 and 14, respectively.
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Figure 1. Bivariate estimated probability density functions defined by Eq. 10. First stand (mean of age – 44.0) – 
top left side; second stand (mean of age – 100.0) – top right side; third stand (mean of age – 145.0) - bottom left 
side; fixed effects stationary density – bottom right; x – diameter (cm); y – height (m).
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In summary, Eqs 16 and 19 show us that the univariate conditional distribution of diameter (height) given 
height (diameter) has an age dependent variance, which is the same for each height (diameter). It is worth men-
tioning that the result on the height (diameter) independent variance of this study is influenced by properties of 
bivariate normal distribution. Figures 3 and 4 show the univariate conditional mixed effect parameters proba-
bility density functions at a given height and age (diameter and age) for three randomly selected stands from the 
validation dataset with the observed values, and the univariate conditional fixed effects parameters stationary 
(t = +infinity) probability density function at a given height and age (diameter and age).

Models of diameter and height. Diameter and height evolution can be formulated using a wide range of 
mathematical relationships from linearised fixed effect parameters regression equations to nonlinear mixed effect 
parameters generalised relationships. The mathematical technique for a system of uniform diameter and height 
regional functions is the approach known as the generalised model. The mixed effects regression models are able 
to achieve the same results as the generalised model34.

Next, we summarise the results concerning the evolution of the diameter or height using univariate and bivar-
iate fixed effects and mixed effects for the Vasicek-type growth models. Recall the models for the diameter and 
height growth:

univariate fixed effect parameters
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Figure 2. Contour plots (levels: 10−3, 10−6, 10−9) of the estimated bivariate probability density function defined 
by Eq. 10. First stand (mean of age, diameter and height: 44.0, 20.5, 21.68) – top left side, observed values in red 
(cross); second stand (mean of age, diameter and height: 100.0, 35.4, 24.9) – top right side, observed values in 
blue (circle); third stand (mean of age, diameter and height: 145.0, 48.6, 25.6) - bottom left side, observed values 
in black (box); fixed effects stationary density – bottom right.
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bivariate fixed effect parameters

= = = + −d h t D t H t h d t
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( ( )),

(24)
d h

h
3 1

,
2

2 1

Figure 3. Univariate conditional probability density functions for diameters. First stand (mean of age and 
height: 44.0, 21.68) – top left side, observed values in red (cross); second stand (mean of age and height: 100.0, 
24.9) – top right side, observed values in blue (circle); third stand (mean of age and height: 145.0, 25.6) - bottom 
left side, observed values in black (box); fixed effects stationary density – bottom right.

Figure 4. Univariate conditional probability density functions for heights. First stand (mean of age and 
diameter: 44.0, 20.5) – top left side, observed values in red (cross); second stand (mean of age and diameter: 
100.0, 35.4) – top right side, observed values in blue (circle); third stand (mean of age and diameter: 145.0, 48.6) 
- bottom left side, observed values in black (box); fixed effects stationary density – bottom right.
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Table 3 shows the predictive ability for all newly developed fixed- and mixed effect parameters diameter and 

height models for both estimation and validation datasets (using the estimates of parameters θ α α β=
∧

∧ ∧ ∧
{ , , ,d h d

1  

, , , }h 11 12 22β σ σ σ
∧ ∧ ∧ ∧

 and θ α α β β σ σ σ σ σ=
∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
{ , , , , , , , , }d h d h d h

2
11 12 22  presented in Table 2, and the random effects for 

diameter and height calibrated by Eqs 13 and 14, respectively). The estimated diameter evolution defined by 
Eq. 26 and the estimated height evolution defined by Eq. 27 were the best functions, with an increase in the coef-
ficient of determination (R2) and decreases in the absolute prediction bias (AB) and the error (AE) for both esti-
mation and validation datasets.

The estimated evolution of the diameter, d d h t( , )i
4= , subject to the height and age, and the estimated evolu-

tion of the height, h h d t( , )i
4= , subject to the diameter and age, for a randomly selected stand from the validation 

dataset are shown in Fig. 5, where we have assumed that the values of the predictor variable height (diameter) lie 
within a band around the mean t( )h

iμ  μ t( ( ))d
i  with a width of three standard deviations t( )h

2ν  ν( )t( )d
2 .

In Supplementary Fig. S1, the residuals of the diameter models defined by Eqs 20, 22, 24 and 26, and the 
LOWESS line (Locally Weighted Scatterplot Smoothing line) are plotted against the predicted diameter values. 
In Supplementary Fig. S2, the residuals of the height models defined by Eqs 21, 23, 25 and 27, and the LOWESS 
line are plotted against the predicted height values. Supplementary Figs S1 and S2 show that the residuals that 
were calculated using the bivariate mixed effects scenario are distributed more symmetrically around zero, with 
approximately constant variance, compared with the other scenarios. Therefore, the bivariate models incorporat-
ing the random effects of the stands were the best models for predicting diameter and height growth of individual 
Scots pine trees in the study area (see Supplementary Figs S1 and S2). A non-parametric smoothing line, called a 

Model

Estimation Validation

B, m (PB, %) AB, m (PAB, %) AE, m R2 B, m (PB, %) AB, m (PAB, %) AE, m R2

Diameter

1 0.0346 (−7.1912) 6.0611 (23.6162) 7.7593 0.1915 −0.1944 (−8.3678) 6.1214 (23.9642) 7.8347 0.2136

2 0.0147 (−4.5528) 4.2463 (16.4927) 5.4387 0.6027 −0.0025 (−3.7089) 4.0124 (15.5738) 5.2636 0.6447

3 0.0186 (−4.5137) 4.8389 (18.3712) 6.3144 0.4642 −0.1555 (−5.2887) 4.8765 (18.4629) 6.3604 0.4809

4 0.0212 (−2.3160) 3.0770 (11.6959) 3.9890 0.7863 −0.0009 (−1.8057) 3.0381 (11.5048) 4.0440 0.7903

Height

1 0.0070 (−3.5060) 3.0014 (14.9750) 3.8506 0.2405 −0.0359 (−3.7091) 3.0078 (14.8898) 3.8385 0.2491

2 0.0018 (−1.0817) 1.4248 (6.9093) 1.8698 0.8209 −0.0004 (−0.8606) 1.4514 (6.8880) 1.9351 0.8091

3 −0.0005 (−2.5673) 2.4610 (12.3000) 3.1442 0.4932 0.0177 (−2.4110) 2.4405 (12.0220) 3.1192 0.5034

4 −0.0060 (−0.6738) 1.0835 (5.2324) 1.3934 0.9005 6.2*10−6 (−0.5133) 1.1291 (5.3267) 1.4832 0.8876

Table 3. Statistical indexes for all models applied to the estimation and validation datasets. The best values of 
the statistical indexes are in bold, the mean prediction bias = ∑ −=
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. Here p is the number of parameters in the model (for fixed effects scenario p = 7 

and for mixed effects scenario p = 9), n ni
M

i1= ∑ =  is the total number of observations used to fit the model, M is 
the number of stands, ni is the number of measured trees in the ith stand, yi, 

∧
yi and y  are the measured, 

estimated and average values of the dependent variable (diameter or height).
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LOWESS line, shows a clear trend of predicted height; however, at the predicted diameter extremes the deviations 
are dictated by relatively little data.

The derived univariate conditional distribution of a diameter at a given height and age, and the derived uni-
variate conditional distribution of a height at a given diameter and age, have normal distributions 
N m h t w t( ( , ), ( ))d

i
d
2  and N m d t w t( ( , ), ( ))h

i
h
2 , respectively, and describe the knowledge of the predicted mean and 

uncertainty about the mean completely. These distributions can be used to describe the accuracy of predicted 
values by calculating the confidence intervals.

Stem structure. The bivariate conditional probability density function defined by Eq. 10 allows us to find 
the evolution of the percentage of trees in a particular stand that achieve fixed sizes for the diameter and height. 
Figure 6 shows the evolution of the percentage of two assortments for three randomly selected stands from the 
validation dataset.

Slenderness ratio. The slenderness coefficient is an important characteristic for indexing tree resistance to 
wind throw and snow damage. Figure 7 shows the evolution of the mean slenderness coefficient for three ran-
domly selected plots. The slenderness of trees decreases with increasing stand age. For the bivariate fixed effect 
and mixed effect SDEs height and diameter distribution models the evolution of the slenderness is defined as 
follows:

SR t h
d

f d h t dd dh( ) , , , , 0, 0 , , , ,
(28)

d h
1 2∫ ∫ θ θ θ θ φ φ= ⋅





|


 ⋅ ⋅ ∈

































−∞

+∞

−∞

+∞ ∧ ∧ ∧ ∧ ∧ ∧

Mean and coefficient of variation of stem volume. For forestry applications, the most commonly used 
approach is to derive measures to estimate forest variables such as mean tree diameter, height and stem volume.

Figure 5. Estimated evolution of diameter and height for randomly selected stand (mean of age, diameter 
and height: 44.0, 20.5, 21.68). Left – diameter versus height and age (x – age, y – height); right – height versus 
diameter and age (x – age, y – diameter).

Figure 6. Estimated evolution of percentage of trees for three randomly selected stands and two scenarios. First 
stand – red on dash (mean of age, diameter and height: 44.0, 20.5, 21.68); second stand – blue on solid (mean of 
age, diameter and height: 100.0, 35.4, 24.9); third stand – black on dot (mean of age, diameter and height: 145.0, 
48.6, 25.6); left scenario – diameter > 25, height > 20; right scenario – diameter > 30.
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First, the bivariate fixed effects and mixed effects conditional probability density function of the diameter and 
height allows us to calculate the evolution of the mean stem volume in the following form:

V t V d h f d h t dd dh( ) ( , ) , , , , 0, 0 , , , ,
(29)

d h
1 2∫ ∫ θ θ θ θ φ φ= ⋅
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+∞ ∧ ∧ ∧ ∧ ∧ ∧

where V(d, h) is the individual stem volume regression function of power form35:

β= .β βV d h d h( , ) (30)1
2 3

Estimates of the parameters β1 β2, and β3 were calculated by a weighted least squares technique36. The estima-
tors and their standard deviations (in parenthesis) are, β = . ∗ . ∗

∧
− −5 8 10 (5 8 10 )1

5 6 , β = . .
∧

1 8801 (0 028)2 , 
β = . .
∧

0 9723 (0 045)3 . The estimated evolution of the mean stem volume in a stand for the fixed effect and mixed 
effect models and ± . ⋅ SD t1 65 ( )V  confidence bands (if we assume normality then they covers 90%) are shown in 
Fig. 8 for all stands (fixed effect scenario) and three randomly selected stands (mixed effect scenario) from the 
validation dataset, respectively. Observed values of mean stem volumes in all stands were defined by the average 
of stem volumes calculated by the regression (Eq. 30). For the mixed effect scenario the mean stem volume esti-
mate proves satisfactory, with the mean prediction bias (the percentage mean prediction bias) −0.0158 m3 
(−3.28%) and with the mean prediction absolute bias (the percentage mean prediction absolute bias) 0.0322 m3 
(5.07%). For the validation dataset the percent of the mean stem volume variation explained attains high levels 
too, 99.51%, for the mixed effect methodology.

Figure 7. Estimated evolution of mean slenderness ratio for three randomly selected stands. Left –fixed effects 
scenario; right – mixed effects scenario; first stand – red on dash (mean of age, diameter and height: 44.0, 20.5, 
21.68), observed values in cross); second stand – blue on solid (mean of age, diameter and height: 100.0, 35.4, 
24.9), observed values in circle; third stand – black on dot (mean of age, diameter and height: 145.0, 48.6, 25.6), 
observed values in box.

Figure 8. Estimated evolution of mean stem volume and mean ± 1.65*standard deviation (confidence bands). 
Left – fixed effect scenario: mean stem volume trend – solid; confidence bands – dash; observed mean stem 
volumes in cross. Right – mixed effect scenario for three randomly selected stands: first stand – red (mean of 
age, diameter and height: 44.0, 20.5, 21.68) and observed mean stem volume – cross; second stand – blue (mean 
of age, diameter and height: 100.0, 35.4, 24.9) and observed mean stem volume – circle; third stand – black 
(mean of age, diameter and height: 145.0, 48.6, 25.6) and observed mean stem volume – box. Mean stem volume 
trend from initial age to observed stand age – solid and from this age forward (forecast) – dot. Confidence 
bands – dash.
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Second, the bivariate fixed effects and mixed effects conditional probability density functions of the diameter 
and height allow us to estimate stem volume variability by the coefficient of variation. We estimate the evolution 
of the standard deviation of the stem volume in the following form:

∫ ∫ θ θ θ θ φ φ= ⋅
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SD t V d h f d h t dd dh V t( ) ( , ) , , ( ) , , 0, 0 , , ,

(31)
V d h

2 2 1 2

Hence, the coefficient of variation takes the following form:

CV t SD t
V t

( ) ( )
( )

100
(32)

V= ⋅ .

The coefficient of variation of stem volume defined by Eq. 32 is a statistical measure of the dispersion of the 
volumes calculated by Eq. 30 data points around the mean stem volume calculated by Eq. 29. The coefficient of 
variation of stem volume is a useful statistic for comparing the degree of variation of stem volume from one stand 
to another, even if the means are drastically different from one another. Figure 9 shows a plot of the coefficient 
of variation as a function of stand age using the mean trend and standard deviation functions of stem volume. 
The coefficient of variation of the stem volume evolves into a stationary coefficient of variation. The coefficient of 
variation based on stem volume decreases with an increase in stand age.

Stand volume per ha. Estimation of stand volume per ha is important for sustainable forest management. 
Methods to forecast stand volume per ha (or stem volume structure) for a short or long time period are necessary 
to ensure forest management schemes. Traditionally, estimating stand volume per ha includes several steps, such 
as the choice of stem volume regression model, the choice of a height-diameter model when tree height data are 
incomplete, the expansion of a sample volume to the number of trees it represents per unit area or the choice of 
stand volume per ha model developed by replacing the original tree variables into equivalent stand variables37 
(tree height are replaced by dominant height and diameter at breast height by quadratic mean diameter). The 
SDEs framework enables us to characterise a stand volume per ha as a function of any specified stand age, t, in 
the following form:

∫ ∫ θ θ θ θ φ φ= ⋅ ⋅
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(33)
S N d h

1 2

here mN(t) is the number of trees per ha at a given age, t. The Vasicek-type univariate SDE that describes the devel-
opment of the number of trees per ha, Ni(t), is defined by dN t N t dt W t( ) ( ( )) ( )i

N
i i iβ α φ σ= + − ⋅ + ⋅ , i =  

1, 2, …, M, P(Ni(200) = δ) = 1, here δ is unknown parameter representing the number of trees at the age of the 200 
years, N

iφ , is normally distributed random variable with zero mean and constant variance, φ σ~ N(0; )N
i

N
2 . The 

conditional distribution of the number of trees per ha at a given age has a univariate normal distribution 
μN t w t( ( ); ( ))N

i
N
2 , with mean t e( ) ( ( )N

i
N
i

N
i t( 200)μ α φ δ α φ= + − − + ⋅ β −  and variance w t( )N

e2 (1 )
2

t2 2 ( 200)
= σ

β
− β −

. 
The estimates of the parameters and their standard deviations (in parenthesis) are: for the fixed effects scenario 
α̂ = 41215.9217 (74.6637), β̂ = 8.84 * 10−5 (1.62 * 10−7), σ̂ = 18.9385 (0.0029), δ̂  = 10.0 (0.1744); for the mixed 
effects scenario α̂ = 2547.4181 (0.4148), β̂ = 0.0012 (8.86 * 10−8), σ̂ = 5.8849 (0.0015), δ̂  = 94.7886 (0.0540), 
σ = . .
∧

1516 9969 (0 4449)N . Figure 10 shows the evolution of the stand volume per ha as a function of a stand age 
using the fixed effects scenario and the mixed effects scenario (for three randomly selected stands from the valida-
tion dataset).

Conclusions
We focus on discussion of the bivariate Vasicek-type stochastic process that drives the density evolution of the 
tree diameter and height structure via stand age. In this study, principal concepts of the bivariate mixed effect 

Figure 9. Coefficient of variation of stem volume for three randomly selected stands. Left –fixed effects 
scenario; right – mixed effects scenario; first stand – red on dash (mean of age, diameter and height: 44.0, 20.5, 
21.68); second plot – blue on solid (mean of age, diameter and height: 100.0, 35.4, 24.9); third stand – black on 
dot (mean of age, diameter and height: 145.0, 48.6, 25.6).
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parameters Vasicek-type SDE in simple terms are presented and results of the diameter and height distribution, 
mean diameter, mean height, mean stem volume and stand volume per ha evolution via stand age are illustrated 
using the Lithuanian National Forest dataset from 2007 to 2010 for Scots pine trees. A new SDE framework for 
bivariate diameter and height distribution modelling is demonstrated using stand-level random effects. The newly 
developed conditional probability density functions are easy applied for the modelling of the evolution of the 
stand attributes via stand age.

The newly developed bivariate conditional probability density functions allowed us to calculate the evolution, 
in the forward and backward directions, of the mean diameter, height, dominant height, stem volume, stem 
volume of a stand and the uncertainties in these characteristics completely for a given stand age. The derived 
conditional probability density can be used to describe the accuracy of the predicted values (diameter, height and 
stem volume) in the sense of confidence bands.

It is easy to estimate fixed and random effects of the bivariate SDE using large datasets, which in this case was 
provided by the National Forest Inventories (one cycle). Moreover, the newly developed bivariate mixed effects 
conditional probability density function is an appropriate model for examination of diameter and height distri-
butions of uneven-aged forest stands.

The present paper attempts to expand the scientific knowledge related to the evolution of tree diameter and 
height distributions in a forest stand by using SDEs, random effect technique and their possible applications to 
the modelling of the mean diameter, height, stem volume and stand volume per ha of a stand. Although this 
study has some limitations (e.g. estimation and validation datasets are not provided with remeasurement cycles 
of plots), these findings contribute to a better understanding of how stand growth and yield attributes be related 
to the stand age. Therefore, in our opinion, this study represents one of the first attempts to examine the evolution 
of growing stock resources, their structure and changes using the bivariate random process methodology and 
utilizing the data from one cycle of the LNFI. For a better understanding of the tree number and stand volume per 
ha dynamics remeasurement data from permanent plots (LNFI) could be utilized.

The trivariate (diameter, height and number of trees per ha) distributional model would be superior to the 
bivariate (diameter and height) distributional model in accordance to the underlying covariance structure driving 
changes in the tree diameter, height and number of trees per ha.

The number of trees per ha plays a central role for stand growth, but it’s representation in the LNFI dataset is 
limited by data availability. Missing data on initial density of stand (number of trees per ha at the age of t0 = 5), 
restricted ability to develop a trivariate model.

Further research on the interplay between tree diameter, height and number of trees per ha using trivariate 
diffusion process and remeasurement data (2 or 3 cycles) from the LNFI would improve the consequences for the 
tree number and stand volume per ha evolution.

The analysis of the mixed effect SDE bivariate model by the specification of one random effect structure that 
used estimation based on a maximum likelihood procedure is not properly supported by the LNFI dataset. On the 
other hand, the model with the structure of all possible random effect components included may not converge.
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