
Journal of Advanced Research 25 (2020) 1–10
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
New discrete-time fractional derivatives based on the bilinear
transformation: Definitions and properties
https://doi.org/10.1016/j.jare.2020.02.011
2090-1232/� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Cairo University.
⇑ Corresponding author.

E-mail addresses: mdo@fct.unl.pt (M.D. Ortigueira), jtm@isep.ipp.pt (J.A.
Tenreiro Machado).
Manuel D. Ortigueira a,⇑, J.A. Tenreiro Machado b

aCTS–UNINOVA and NOVA Faculty of Sciences and Technology of Nova University of Lisbon, Campus da FCT da UNL, Quinta da Torre, 2829 – 516 Caparica, Portugal
b Institute of Engineering, Polytechnic of Porto, Dept. of Electrical Engineering, Porto, Portugal
h i g h l i g h t s

� The paper introduces new discrete-
time derivative concepts based on the
bilinear transformation.

� Forward and backward derivatives
having a high degree of similarity
with the usual continuous-time
Grunwald-Letnikov derivatives are
introduced.

� Corresponding linear discrete-time
systems are defined.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 18 December 2019
Revised 12 February 2020
Accepted 16 February 2020
Available online 25 February 2020

Keywords:
Discrete-time
Fractional derivative
Time scale
bilinear transformation
a b s t r a c t

In this paper we introduce new discrete-time derivative concepts based on the bilinear (Tustin) transfor-
mation. From the new formulation, we obtain derivatives that exhibit a high degree of similarity with the
continuous-time Grünwald-Letnikov derivatives. Their properties are described highlighting one impor-
tant feature, namely that such derivatives have always long memory.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The continuous/discrete unification introduced by Hilger [3] led
to the definition of two discrete-time fractional derivatives, nabla
and delta, that are essentially the usual incremental ratia. In [11]
the fractional versions of such derivatives were proposed together
with the corresponding differential equations for discrete-time lin-
ear systems. These versions have stability domains that are defined
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by the Hilger circles [11]. Such domains do not coincide with the
stability domain of traditional causal discrete-time systems that
is defined relatively to the unit circle. As it is well known, the sta-
bility domain of causal continuous-time system is the right half
complex plane (HCP). Therefore, there is a relation between the left
(right) HCP and the interior (exterior) of the unit disk that can be
expressed by a particular case the bilinear (or, Möbius) transforma-
tion. Such map was proposed by Tustin [17] and used since then
for the discrete-time approximation of continuous-time linear sys-
tems without considering the definition of any discrete-time
derivative [18,13,14]. Hereafter we formulate a discrete-time frac-
tional calculus that mimics the corresponding continuous-time
version, but that is fully autonomous. The motivation for this study
is to have in the discrete-time domain the tools and results avail-
able for the continuous-time fractional signals and systems [10].
Another important characteristic of the proposed derivatives is
that they are suitable to be implemented through the FFT with
the corresponding advantages, from the numerical and calculation
time perspectives.

The new derivatives

On the Z and Discrete-Time Fourier Transforms

In the following we consider that our domain is the time scale

Th ¼ ðhZÞ ¼ . . . ;�nh . . . ;�2h;�h;0;h;2h; . . . ;nh; . . .f g
with h 2 Rþ, that is called graininess [1,11]. In the following the
symbol nwill represent any generic point in T. In engineering appli-
cations where discrete signals are result of sampling continuous-
time signals, h is the sampling interval.

Let xðnÞdenote any function defined on T, leaving implicit the
graininess, unless it is convenient to display it. The Z transform
(ZT) is defined by

XðzÞ ¼ Z xðnÞ½ � ¼
X1
n¼�1

xðnÞz�n; z 2 C: ð1Þ

In some scientific domains, as Geophysics, z instead of z�1 is used. In
some domains, the ZT is often called ‘‘generating function” or ‘‘char-
acteristic function”. Definition (1) is the bilateral ZT that leads to the
particular case of the unilateral ZT, defined by

XuðzÞ ¼
X1
n¼0

xðnÞz�n;

often adopted in the study of systems. The existence conditions of
the ZT are similar to those of the bilateral Laplace transform (LT)
[7,15,16]

YðsÞ ¼ L yðtÞ½ � ¼
Z 1

�1
yðtÞe�st dt; s 2 C: ð2Þ

Therefore, the existence conditions can be stated as follows.
If function xðnÞ is such that there are finite positive real num-

bers, r� and rþ, for which

X1
n¼0

jxðnÞjrn� < 1

andX�1

n¼�1
jxðnÞjrnþ < 1;

ð3Þ

then the ZT exists and the range of values for which those series
converge defines a region of convergence (ROC) that is an annulus.

We must have in mind that this condition is sufficient, but not
necessary. The signals that verify (3) are the exponential order sig-
nals [16].
Definition 1. A discrete-time signal xðnÞ is called an exponential
order signal if there exist integers n1 and n2, and positive real
numbers a; b;A, and B, such that Aan1 < jxðnÞj < Bbn2 for
n1 < n < n2.

For these signals the ZT exists and the ROC is an annulus cen-
tred at the origin, generally delimited by two circles of radius r�
and rþ, such that r� < jzj < rþ. However, there are some cases
where the annulus can become infinite:

� If the signal is right (i.e., xðnÞ ¼ 0; n < n0 2 Z), then the ROC is
the exterior of a circle centered at the origin (rþ ¼ 1): jzj > r�.

� If the signal is left (i.e., xðnÞ ¼ 0; n > n0 2 Z), then the ROC is the
interior of a circle centered at the origin (r� ¼ 0): jzj < rþ.

� If the signal is a pulse (i.e., non null only on a finite set), then the
ROC is the whole complex plane, possibly with the exception of
the origin. In the ROC, the ZT defines an analytical function.

It should be noted that the ROC is included in the definition of a
given ZT. This means that we may have different signals with the
same function as ZT, but different ROC.

If the ROC contains the unit circle, then by making
z ¼ eix; xj j < p; i ¼

ffiffiffiffiffiffiffi
�1

p
, we obtain the discrete-time Fourier

transform, which we will shortly call Fourier transform (FT). This
means that not all signals with ZT have FT. The signals with ZT
and FT are those for which the ROC is non-degenerate and contains
the unit circle (r� < 1; rþ > 1). For some signals, such as sinusoids,
the ROC degenerates in the unit circumference (r� ¼ rþ ¼ 1), and
there is no ZT.

Definition 2. The inverse ZT can be obtained by the integral
defined by

xðnÞ ¼ 1
2pi

I
c
XðzÞzn�1dz; ð4Þ

where c is a circle centred at the origin, located in the ROC of the
transform, and taken in a counterclockwise direction.

In such situation the integral in (4) converges uniformly. The
calculation uses the Cauchy’s theorem of complex variable func-
tions [16].

Definition 3. For functions that have a ROC including the unit
circle or for functions having a degenerate ROC, as it is the case of
the periodic signals, it is preferable to work with the discrete-time
Fourier transform that can be obtained from the Z transform
through the transformation z ¼ eix; xj j < p

XðeixÞ ¼
X1
n¼�1

xðnhÞe�ixn ð5Þ

with the inversion integral

xðnÞ ¼ 1
2p

Z p

�p
XðeixÞeixndx ð6Þ

meaning that a discrete-time signal can be considered as a synthe-
sis of elementary sinusoids XðeixÞeixndx.
Remark 1. In fractional applications, we have branchcut points at
z ¼ �1. Therefore, we have to avoid them by using an integration
circle in (4) having a radius, r, greater (smaller) than 1 for the cau-
sal (anti-causal) cases. We have then

f ðnÞ ¼ rn

2p

Z p

�p
XðreixÞeixndx ð7Þ
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Forward and backward derivatives based on the bilinear
transformation

The Tustin transformation is usually expressed by

s ¼ 2
h
1� z�1

1þ z�1 ; ð8Þ

where h is the sampling interval, s is the derivative operator associ-
ated with the (continuous-time) Laplace transform and z�1 the
delay operator tied with the Z transform.

Definition 4. Let xðnhÞ be a discrete-time function, we define the
order 1 forward bilinear derivative DxðnhÞ of xðnhÞ as the solution of

DxðnhÞ þ Dxðnh� hÞÞ ¼ 2
h

xðnhÞ � xðnh� hÞ½ � ð9Þ
Definition 5. Similarly, we define the order 1 backward bilinear
derivative DxðnhÞ of xðnhÞ as the solution of

Dxðnhþ hÞ þ DxðnhÞ ¼ 2
h

xðnhþ hÞ � xðnhÞ½ � ð10Þ
Definition 6. The bilinear exponential esðnhÞ is the eigenfunction
of Eq. (9) or (10). If we set xðnhÞ ¼ esðnhÞ; yðnhÞ ¼ sesðnhÞ; s 2 C,
with esð0Þ ¼ 1, then

esðnhÞ ¼ 2þ hs
2� hs

� �n

; n 2 Z; s 2 C: ð11Þ
Properties of the bilinear exponential esðnhÞ.

� When n ! 1, this exponential is

– Increasing, if ReðsÞ > 0,
– Decreasing, if ReðsÞ < 0,
– Sinusoidal, if ReðsÞ ¼ 0, with s – 0,
– Constant equal to 1, if s ¼ 0,

� It is real for real s,
� It is positive for s ¼ jxj < 2

h ; x 2 R,
� It oscillates for s ¼ jxj > 2

h ; x 2 R.

Following the procedure in [11] we could use this exponential
to construct a bilinear discrete-time Laplace transform. However,
formula (8) suggests having z ¼ 2þhs

2�hs that leads to the Z transform,
since such transformation sets the unit circle jzj ¼ 1 as the image
of the imaginary axis in s, independently of which value of h is
used. Therefore, the exponential has the usual properties.

� When n ! 1, this exponential is

– Increasing, if jzj > 1,
– Decreasing, if jzj < 1,
– Sinusoidal, if jzj ¼ 1, with z – 1,
– Constant equal to 1, if z ¼ 1,

� It is real for real z,
� It is positive for z ¼ x > 0; x 2 R,
� It oscillates for z – Rþ

0 .

In what concerns to the derivative definitions, instead of con-
sidering (9) or (11), as in [1,11] where the nabla (causal) and delta
(anti-causal) derivatives were introduced, we start from the ZT
formulations.

Definition 7. Let z 2 C and h 2 Rþ. Consider the discrete-time
exponential function, zn; n 2 Z. We define the forward bilinear
derivative (Df ) as a discrete-time linear operator such that
Df zn ¼ 2
h
1� z�1

1þ z�1 z
n: ð12Þ

The operator Hf ðzÞ defined by

Hf ðzÞ ¼ 2
h
1� z�1

1þ z�1 ; zj j > 1; ð13Þ

will be called foward transfer function (TF) of the derivative, bor-
rowing the nomenclature used in signal processing [7,16].
Definition 8. The backward bilinear derivative (Db) is defined as a
discrete-time linear operator verifying

Dbzn ¼ 2
h
z� 1
zþ 1

zn: ð14Þ

where HbðzÞ is the operator

HbðzÞ ¼ 2
h
z� 1
zþ 1

; zj j < 1; ð15Þ

called backward transfer function of the derivative.
By the repeated application of the above operators we obtain

the forward and backward derivatives for any positive integer
order. However, we introduce the corresponding fractional deriva-
tives, valid for any real order.

Definition 9. Let a 2 R. The a-order forward bilinear fractional
derivative is a discrete-time operator with TF

Hf ðzÞ ¼ 2
h
1� z�1

1þ z�1

� �a

; jzj > 1 ð16Þ

such that

Da
f z

n ¼ 2
h
1� z�1

1þ z�1

� �a

zn; jzj > 1: ð17Þ
Definition 10. The backward bilinear fractional derivative has TF

HbðzÞ ¼ 2
h
z� 1
zþ 1

� �a

; jzj < 1 ð18Þ

such that

Da
bz

n ¼ 2
h
z� 1
zþ 1

� �a

zn; jzj < 1: ð19Þ
Having defined the derivative of an exponential we are in con-

ditions of defining the derivative of any signal having ZT.
Definition 11. From (4) and (17) we conclude that, if xðnÞ is a
function with Z transform XðzÞ, analytic in the ROC defined by
z 2 C : jzj > a; a < 1; then

Da
f xðnÞ ¼

1
2pi

I
c

2
h
1� z�1

1þ z�1

� �a

XðzÞzn�1dz; ð20Þ

with the integration path outside the unit disk. This implies that

Z Da
f xðnÞ

h i
¼ 2

h
1� z�1

1þ z�1

� �a

XðzÞ; jzj > 1: ð21Þ
Definition 12. Let xðnÞ be a function with Z transform XðzÞ,
analytic in the ROC defined by z 2 C : jzj < a; a > 1: We define

Da
bxðnÞ ¼

1
2pi

I
c

2
h
z� 1
zþ 1

� �a

XðzÞzn�1dz; ð22Þ
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with the integration path inside the unit disk and the branchcut line
is a segment joinning the points z ¼ �1. This implies that

Z Da
bxðnÞ

� � ¼ 2
h
z� 1
zþ 1

� �a

XðzÞ; jzj < 1: ð23Þ
Fig. 2. Integration path modification for causal derivative.
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Remark 2. We must note that:

1. In (16) and (17) we have two branchcut points at z ¼ �1. The
corresponding branchcut line is any line connecting these val-
ues and being located in the unit disk. The simplest is a straight
line segment (see Fig. 1).

2. In (18) and (19) we have the same branchcut points, but with
branchcut line(s) lying outside the unit disk. For simplifying,
we can use two half-straight lines starting at z ¼ �1 on the real
negative and positive half lines, respectively (see Fig. 1).

3. In both previous cases, we can extend the domain of validity to
include the unit circumference, z ¼ eixn; xj j 2 ð0;pÞ, with
exception of the points z ¼ �1. In these cases the integration
path in (4) must be deformed around such points, as it can be
seen at Fig. 2 for the causal case.
This deformation is very important in applications where we
use the fast Fourier transform (FFT). In such cases a small
numerical trick can be used: push the branchcut points slightly
inside (outside) the unit circle, that is, to z ¼ �1þ e and
z ¼ 1� eð�1� e;1þ eÞ, with e being a small positive real
number.

4. The ROC is independent on the scale graininess, h, and conse-
quently we can establish a one to one correspondence between
the unit disk, in z, and the left half-plane, in s ¼ 2

h
1�z�1

1þz�1.
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Fig. 3. Derivative of order a ¼ 0:5 of a triangle function with h ¼ 1.
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Example 1. In Figs. 3 and 4 we represent the bilinear causal
derivatives of orders a ¼ 0:5 and a ¼ 0:8 of a triangle function.

According to what we just wrote we can extend the above def-
initions to include sinusoids. We define the derivative of
xðnÞ ¼ eixn; n 2 Z, through

Df ;b eixn ¼ 2
h
tan

x
2

� �	 
a
eixn; jxj < p; ð24Þ

independently of considering the forward or backward derivatives.

Definition 13. For a function having discrete-time Fourier trans-
form (6), the bilinear derivative is expressed as:
Fig. 1. ROC for causal and anti-causal derivatives and branchcut points and lines.
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Fig. 4. Derivative of order a ¼ 0:8 of a triangle function with h ¼ 1.
Df ;b xðnÞ ¼ 1
2p

Z p

�p
XðeixÞ 2

h
tan

x
2

� �	 
a
eixndx ð25Þ
that is suitable for implementations with the FFT. According to the
existence conditions of the FT, we can say that, if xðnÞ is absolutely
sommable, then the derivative (25) exists.
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Properties of the derivatives

We present the main properties of the above derivatives. The
proofs are easily obtained from the corresponding FT.

1. Linearity
The linearity property of the fractional derivative is straightfor-
ward from the above formulae.

2. Time shift
The derivative operators are shift invariant:
Df ;bxðn� n0Þ ¼ Df ;bxðmÞ��m¼n�n0

This property is immedately obtained from (20) or (22) as a con-
sequence of the shift property of the Z transform
Z xðn� n0Þ½ � ¼ XðzÞz�n0 ; n0 2 Z

3. Additivity and Commutativity of the orders
Let a and b be two real values. Then
Da DbxðnÞ
h i

¼ Db DaxðnÞ� � ¼ DaþbxðnÞ
To prove this relation it is enough to observe that, in the forward

case, we have 2
h

1�z�1

1þz�1

� �a
2
h

1�z�1

1þz�1

� �b
¼ 2

h
1�z�1

1þz�1

� �aþb
and that the

product is commutative. For the backward derivative, the situa-
tion is identical.

4. Neutral element
This comes from the additivity property by putting b ¼ �a,
Da
f ;b D�a

f ;b f ðnÞ
h i

¼ D0f ðnÞ ¼ f ðnÞ:

This result is very important because it states the existence of
inverse derivative.

5. Inverse element
The existence of neutral necessarily implies that there is always
an inverse element: for every a order derivative, there is always
a �a order derivative given by the same formula and so it does
not need joining any primitivation constant. We adopt the des-
ignation ‘‘derivative” for positive orders and ‘‘anti-derivative”
for negative ones.

6. Associativity of the orders
Let a; b, and j be three real values. Therefore, we can write:
Dj DaDb
h i

xðnÞ ¼ DjþaþbxðnÞ ¼ Daþbþjf ðnÞ ¼ Da Dbþj
h i

xðnÞ

as a consequence of the additivity.
7. Derivative of the convolution

Let xðnÞ � yðnÞ ¼ P1
k¼�1xðkÞyðn� kÞ be the discrete-time convo-

lution. Its ZT is XðzÞYðzÞ. Since we can write
2
h

1�z�1

1þz�1

� �a
XðzÞYðzÞ½ � ¼ 2

h
1�z�1

1þz�1

� �a
XðzÞ

n o
YðzÞ

¼ XðzÞ 2
h

1�z�1

1þz�1

� �a
YðzÞ

n o
;

we conclude that

Df xðnÞ � yðnÞ½ � ¼ Df xðnÞ
� � � yðnÞ ¼ xðnÞ � Df yðnÞ

� �
:

For the backward derivative of the convolution, we obtain an
identical result.

Time formulations

In the previous sub-section, we introduced the derivatives using
a formulation based on the ZT. Here we obtain the corresponding
time framework, getting formulae similar to the Grünwald-
Letnikov derivatives. From the binomial series [2]

ð1�wÞa ¼
X1
k¼0

ð�1Þkð�aÞk
k!

wk; jwj < 1;
we conclude that the TF in (16) and (18) can be expressed as power
series,

1� z�1

1þ z�1

� �a

¼
X1
k¼0

wa
kz

�k; jzj > 1;

where wa
k ; k ¼ 0;1; � � �, is the inverse ZT of 1�z�1

1þz�1

� �a
and represents

the impulse response (IR) corresponding to the TF.
Let the discrete convolution be defined by

xðnÞ � yðnÞ ¼
X1
k¼�1

xðkÞyðn� kÞ; n 2 Z:

The IR, wa
k ; k ¼ 0;1; � � �, is obtained as the discrete convolution of the

binomial coefficients sequence:

wa
k ¼ ð�aÞk

k!
� ð�1ÞkðaÞk

k!
¼

Xk

m¼0

ð�aÞm
m!

ð�1Þk�mðaÞk�m

ðk�mÞ! ; k 2 Zþ
0 : ð26Þ

Performing this discrete convolution we obtain the following
results

1. The sequence wa
k ; k ¼ 0;1; � � �, that is obtained as the discrete

convolution of two causal sequences, is causal and, there-
fore, is null for k < 0. We will assume it below.

2. For any a 2 R, we have
w�a
k ¼ ð�1Þkwa

k k 2 Zþ
0 ð27Þ

The proof is immediate from (26).
3. Initial value

From the initial value theorem of the ZT, it is immediate that
wa

0 ¼ 1 independently of the order.
4. Final value

Let a 6 0. From the final value of the ZT,
wa
1 ¼ lim

z!1
z� 1ð Þ 1� z�1

1þ z�1

� �a

that is 0, if �1 6 a 6 0, and 2, if a ¼ �1. For a < �1 the sequence
grows up to 1. For a > 0 we apply (27).
5. If a 2 R but a R Z�, then
wa
k ¼ ð�1Þk ðaÞk

k!

Xk

m¼0

ð�aÞmð�kÞm
ð�a� kþ 1Þm

ð�1Þm
m!

; k 2 Zþ
0 ð28Þ
6. Letting a ¼ N in (28), we get
wN
k ¼ ð�1Þk ðNÞk

k!

Xminðk;NÞ

m¼0

ð�NÞmð�kÞm
ð�N � kþ 1Þm

ð�1Þm
m!

; k 2 Zþ
0 ð29Þ
7. If a 2 Z�, set a ¼ �N; N 2 Zþ. We use
w�N
k ¼

Xk

m¼0

ð�1Þm ð�NÞm
m!

ðNÞk�m

ðk�mÞ!
to obtain

w�N
k ¼ ðNÞk

k!

Xminðk;NÞ

m¼0

ð�NÞmð�kÞm
ð�N � kþ 1Þm

ð�1Þm
m!

; k 2 Zþ
0 : ð30Þ

Comparing (30) with (29), we conclude that they differ only in

the factor ð�1Þk; k 2 Zþ
0

8. A recursion

Let WðzÞ ¼ Z wa
k

� � ¼ 1�z�1

1þz�1

� �a
. As DWðzÞ ¼ �P

nðn� 1Þwa
n�1z

�n

and DWðzÞ ¼ a 1�z�1

1þz�1

� �a
1þz�1

1�z�1

� �
D 1�z�1

1þz�1

� �
, after some algebraic

manipulation we obtain:
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wa
k ¼ �2a

k
wa

k�1 þ 1� 2
k

� �
wa

k�2; k P 2; ð31Þ

with wa
0 ¼ 1 and wa

1 ¼ �2a.
This recursion shows that, if a < 0, then wa

k is a positive sequence.
As consequence, attending to (27), the sequence corresponding
to positive orders is always oscillating: successive values have
different sign.
9. Relation with the Hypergeometric function

The first factor in (28), namely ð�1Þk ðaÞk
k! , represents the bino-

mial coefficient, while the second is a sequence from the
Gauss Hypergeometric function
f n ¼
Xk

m¼0

ð�aÞmð�kÞm
ð�a� kþ 1Þm

ð�1Þm
m!

¼2F1ð�a;�k;1� k� a;�1Þ; n 2 Zþ
0 :

ð32Þ

This sequence verifies a second order recurrence [18]:

ð�a� nþ 2Þð�a� nþ 1Þf n
¼ �2að�a� nþ 2Þf n�1 þ ðn� 1Þðn� 2Þf n�2; n P 2;

ð33Þ

with initial values f 0 ¼ 1 and f 1 ¼ 2.
We can rewrite (33) as

f n ¼ 2a
aþ n� 1

f n�1
ðn� 1Þðn� 2Þ

ðaþ n� 1Þaþ n� 2
f n�2: ð34Þ

If we consider gn ¼ ðaþ1Þn�1
ðn�1Þ! f n; n P 1; g0 ¼ 0 and g1 ¼ 2, then we

obtain [18]

gn ¼ 2a
n� 1

gn�1 þ gn�2; n P 2; ð35Þ

that is a polynomial of degree n� 1 in a. Inserting (35) into (34)
and the resulting expression in (28), we obtain

wa
k ¼ ð�1Þk a

k
gk; k > 0; ð36Þ

where wa
0 ¼ 1 and gn is given by (35) with g1 ¼ 2.

Substituting (35) in (36) we obtain (31), as expected.
10. For a fixed k 2 Z;wa

k is a polynomial in a of degree k.
As pointed above, wa

0 and wa
1 are polynomials of degrees 0

and 1, respectively. Assume that wa
k�1 has degree k� 1. Then,

the first term in right hand side in (31) ensures that wa
k has

degree k. As wa
0 ¼ 1 and wa

1 ¼ �2a, recursion (31) shows that
the independent coefficient of such polynomial is null for
k > 0.

11. The coefficient of ak decreases with increasing k.

For simplifying the proof, let wa
k ¼ Pk

m¼1pmam and

wa
k�1 ¼ Pk�1

m¼1qmam. From (31) we conclude that
pk ¼ � 2a

k qk�1, because the second term in the right hand side
of (31) only affects the lower order coefficients of the poly-
nomial. As this happens for k ¼ 2;3; � � �, we can write
pk ¼ ð�1Þk 2
k

k!

that decreases with k. In fact, after simplifying the common fac-

tors between 2k and k!, the denominator is the largest odd divi-
sor of n!. The numerator is always a power of 2 corresponding to
the factors that were not used when removing the common fac-
tors (see below 37) [6].
Example 2. We are going to present w�N
k for some values of N 2 Zþ

and for any real order obtained by recursive computation.
1. N ¼ 1

� w1
k ¼

0 k < 0
1 k ¼ 0
2ð�1Þk k > 0

8<
:

� w�1
k ¼

0 k < 0
1 k ¼ 0
2 k > 0

8<
:

2. N ¼ 2

� w2
k ¼

0 k < 0
1 k ¼ 0
ð�1Þk4k k > 0

8<
:

� w�2
k ¼

0 k < 0
1 k ¼ 0
4k k > 0

8<
:

3. For any negative order �a, with a > 0
Using the recursion (35) with w�a

0 ¼ 1 and w�a
1 ¼ 2a, we obtain

successively:
w�a
2 ¼ 2a2

w�a
3 ¼ 4

3a
3 þ 2

3a
w�a

4 ¼ 2
3a

4 þ 4
3a

2

w�a
5 ¼ 4

15a
5 þ 20

15a
3 þ 6

15a
w�a

6 ¼ 4
45a

6 þ 40
45a

4 þ 46
45a

2

w�a
7 ¼ 8

315a
7 þ 140

315a
5 þ 392

315a
3 þ 90

315a
w�a

8 ¼ 2
315a

8 þ 56
315a

6 þ 308
315a

4 þ 264
315a

2

� � � � � �

ð37Þ

In Fig. 5 we depict the values of wa
k ; k ¼ 0;1; � � � ;500 and

a ¼ �0:5k; k ¼ 1;2; � � � ;6:

Similarly, for positive orders a ¼ 0:2k; k ¼ 1;2; � � � ;6, the bilin-
ear sequences are plotted in Fig. 6.
Remark 3. In previous works, ARMA approximations to these
sequences were proposed [8,9,5]. Nonetheless, we will not con-
sider them here.
Definition 14. In agreement with the meaning attributed to the
sequence wa

k ; k ¼ 0;1; � � �, we define the a-order forward and back-
ward derivatives as

DðaÞ
f xðnÞ ¼ 2

h

� �aX1
k¼0

wa
kxðn� kÞ ð38Þ

and

DðaÞ
b xðnÞ ¼ eiap

2
h

� �aX1
k¼0

wa
kxðnþ kÞ: ð39Þ

The use of the terms forward and backward is due to the ‘‘time
flow”, from past to future or the reverse [10]. This terminology is
the reverse of the one used in some mathematical literature.

We can remove the exponential factor, eiap, in (39) to obtain a
right derivative. In the following we will consider the causal
derivative (38) represented by the simplified notation Da and with
ZT given by (21).

Other properties.

� The first is causal while the second is anti-causal.

In fact, if xðnÞ ¼ 0; n < n0 2 Z, then DðaÞ
f xðnÞ ¼ 0; n < n0 and we

obtain
DðaÞ
f xðnÞ ¼ 2

h

� �aXn�n0

k¼0

wa
kxðn� kÞ ð40Þ

that is null for n < n0. For the backward the proof is similar using
xðnÞ ¼ 0; n > n0 2 Z, leading to
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DðaÞ
b xðnÞ ¼ eiap

2
h

� �a X�nþn0

k¼0

wa
kxðnþ kÞ ð41Þ

that is null for n > n0.
� Fractional derivative of the impulse
Let introduce the Kroneckker impulse, dðnÞ; n 2 Z, by
dðnÞ ¼ 1 n ¼ 0
0 n – 0

�
:

The Heaviside discrete unit step is usually defined by

eðnÞ ¼ 1 n P 0
0 n < 0

�
:

and its ZT is given by

Z eðnÞ½ � ¼ 1
1� z�1 ; jzj > 1:

As we can see, the derivative of any order of the Kroneckker
impulse is essentially given by the wa

n coefficients. In fact, from
(38) we get

DadðnÞ ¼ 2
h

� �a

wa
neðnÞ; ð42Þ

where eðnÞ is used to express the right behaviour of the deriva-
tive of the delta, stating the causality of the operator.

� Fractional derivative of the unit step
The function w�1

n , introduced in Example 2, is a modified version
of the unit step. It is straightforward to confirm that
w�1
n ¼ 2eðnÞ � dðnÞ:

with ZT Z w�1
n

� � ¼ h
2

1þz�1

1�z�1 ; jzj > 1, as expected. According to the
above properties, we can obtain the fractional derivative of the
unit step function. We have

eðnÞ ¼ 1
2
w�1

n þ 1
2
dðnÞ:

Consequently

DaeðnÞ ¼ 1
2

2
h

� �a�1

wa�1
n þ 1

2
2
h

� �a

wa
n:

� Fractional derivative of the w function
We are interested in computing the derivative of wa

n , for any
a with n 2 Z. From (42) and the additivity property, we can
write

DbDadðnÞ ¼ Db 2
h

� �a

wa
n

	 

¼ 2

h

� �aþb

waþb
n eðnÞ

that leads to

Db wa
n

� � ¼ 2
h

� �b

waþb
n eðnÞ: ð43Þ

Backward compatibility

Often, discrete-time systems are viewed as mere approxima-
tions to the continuous-time counterpart. However, and as seen
above, the discrete-time systems exist by themselves and have
properties that are independent from, although similar to, the
continuous-time analogues. Nonetheless, this observation does
not prevent us from establishing a continuous path from each
other. In fact, we can go from the discrete into the continuous
domain by reducing the graininess. To see it, let us return to (20)
and rewrite it as
DðaÞ
f xðnhÞ ¼ 2

h

� �aX1
k¼0

wa
kxðnh� khÞ:

Assume that xðnhÞ resulted from a continuous-time function xðtÞ
and define a new function, yðtÞ, by

yðtÞ ¼ 2
h

� �aX1
k¼0

wa
kxðt � khÞ: ð44Þ

The LT of (44) is

YðsÞ ¼ 2
h

� �aX1
k¼0

wa
ke

�khsXðsÞ ¼ 2
h
1� e�hs

1þ e�hs

� �a

XðsÞ; ð45Þ

where YðsÞ ¼ L yðtÞ½ � and XðsÞ ¼ L xðtÞ½ �. Knowing that

limh!0
1�e�hs

h ¼ s, we can write

YðsÞ ¼ saXðsÞ; ReðsÞ > 0;

meaning that YðsÞ is the LT of the (continuous-time) derivative of
xðtÞ. This relation states a compatibility between the new formula-
tion described above and the well known results from the
continuous-time derivative formulation [12]. If we used the back-
ward formulation, we would obtain the same result, but with a
ROC valid for ReðsÞ < 0. Taking in account the above equations
and (38), we conclude that, for t 2 R, we can write:

DðaÞ
f xðtÞ ¼ lim

h!0

2
h

� �aX1
k¼0

wa
kxðt � khÞ: ð46Þ

Similarly, we can obtain from (39)

DðaÞ
b xðtÞ ¼ eiaplim

h!0

2
h

� �aX1
k¼0

wa
kxðt þ khÞ ð47Þ

Relations (46) and (47) state two new ways of computing the
continuous-time fractional derivative that are similar to the
Grünwald-Letnikov derivatives. However, it may be interesting to
remark that we can compute derivatives with (44) instead of (22).

The differential discrete-time linear systems

The above derivatives lead us to consider systems defined by
constant coefficient differential equations with the general formXN
k¼0

akD
ak yðnÞ ¼

XM
k¼0

bkD
bkuðnÞ ð48Þ

with aN ¼ 1. The operator D is the forward (or backward) derivative
above defined, assuming orders ak and bk; k ¼ 0;1;2; � � �. The coeffi-
cients ak and bk; k ¼ 0;1;2; � � � are real numbers and N and M repre-
sent any given positive integers. Let gðnÞ be the IR of the system
defined by (48) that is, vðnÞ ¼ dðnÞ. The output is the convolution
of the input and the IR,

yðnÞ ¼ gðnÞ � vðnÞ: ð49Þ
If vðnÞ ¼ zn, then the output is given by:

yðnÞ ¼ zn
X1
n¼�1

gðnÞz�n

" #
:

The summation expression will be called transfer function as usu-
ally and it is the ZT, GðzÞ, of the IR.

With the definition of forward derivative and mainly formula
(21) we write

GðzÞ ¼

XM
k¼0

bk
2
h

1�z�1

1þz�1

� �bk

XN
k¼0

ak 2
h

1�z�1

1þz�1

� �ak ; jzj > 1; ð50Þ
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Fig. 7. Impulse responses corresponding to (53) for orders a ¼ 0:5k; k ¼ 1;2; � � � ;4.
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for the causal case, and

GðzÞ ¼

XM
k¼0

bk
2
h

z�1
zþ1

� �bk

XN
k¼0

ak 2
h

z�1
zþ1

� �ak ; jzj < 1; ð51Þ

for the anti-causal case. We can give to expressions (50) and (51) a
form that states their similarity with the classic fractional linear

systems [13,4]. For example, for the first, let v ¼ 2
h

1�z�1

1þz�1

� �
. We have

GðvÞ ¼

XM
k¼0

bkvbk

XN
k¼0

akvak
ð52Þ

Remark 4. It is important to note that the factors
2
h


 �ak ; k ¼ 1;2; � � �, do not have any important role in the compu-
tations. Therefore, they can be merged with ak and bk coefficients.
Example 3. Consider the simple system with transfer function

GðvÞ ¼ 1
va þ 1

: ð53Þ

In Fig. 7 we represent the impulse responses for several values of
the order, a ¼ 0:25k; k ¼ 1;2; � � � ;6.

It is interesting to verify that all the IR assume a finite value at
the origin, contrarily to the continuous-time system analog to (53)
described by GðvÞ ¼ 1

vaþ1 ; ReðvÞ > 0.
Conclusions

In this paper, we introduced new discrete-time fractional
derivatives based on the bilinear transformation. We obtained both
time and frequency representations. The corresponding impulse
responses are always finite, contrarily to their continuous-time
analogs. We illustrate the behaviour of the forward derivative
through the computation of the impulse response of a simple
system.
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