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Abstract. Cancer immunotherapy, including vaccination, 
is considered a major scientific and medical breakthrough. 
However, cancer immunotherapy does not result in durable 
objective responses against colorectal cancer (CRC). To 
improve the efficacy of immunotherapy, the present study 
investigated several biomarkers for selecting patients who were 
expected to respond well to immunotherapy. Firstly, a compre‑
hensive proteomic analysis was performed using tumor tissue 
lysates from patients enrolled in a phase II study, in which five 
human leukocyte antigen (HLA)‑A*24:02‑restricted peptides 
were administered. Sialic acid‑binding immunoglobulin 
type lectin (Siglec)‑7 was identified as a potential predic‑
tive biomarker. Subsequently, this biomarker was validated 
using western blot analysis, and immunofluorescence using 
tissue samples from the patients enrolled in the phase II 
study. The expression levels of Siglec‑7 detected by immuno‑
fluorescence were quantified and their association with overall 
survival (OS) in patients treated with the peptide vaccine was 

examined. Furthermore, considering the important role of 
tumor‑infiltrating lymphocytes (TILs) for CRC prognosis, the 
densities of CD3+, CD4+, CD8+ and forkhead box P3 (FOXP3)+ 
T cells in CRC tissues were examined and compared with 
Siglec‑7 expression. The mean expression levels of Siglec‑7 
were significantly higher in patients with poor prognosis, with 
an OS of ≤2 years, as shown in comprehensive proteomic 
analysis (P=0.016) and western blot analysis (P=0.025). 
Immunofluorescence analysis demonstrated that Siglec‑7 was 
expressed in intratumoral macrophages. The OS in patients 
with high Siglec‑7 expression was significantly shorter than 
in that in patients with low Siglec‑7 expression (P=0.017) in 
the HLA‑A*24:02‑matched patients. However, this difference 
was not observed in the HLA‑unmatched patients. There was 
no significant difference in OS between patients according 
to the numbers of TILs, nor significant correlation between 
TILs and Siglec‑7 expression. In conclusion, Siglec‑7 expres‑
sion in macrophages in tumor tissue may be a novel predictive 
biomarker for the efficacy of immunotherapy against meta‑
static CRC.

Introduction

Colorectal cancer (CRC) is the third most common cause of 
cancer‑related mortality among both men and women (1). In 
the past decade, chemotherapy and molecular targeted treat‑
ment have improved the overall survival (OS) in patients with 
metastatic CRC to ~30 months (2). These drugs, however, have 
some limitations, including drug resistance and side effects, 
so the development of new therapeutic options to prevent 
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metastatic spread and eventually improve patient survival is 
necessary (3).

Cancer immunotherapy is considered as a major scien‑
tific and medical breakthrough (4), and several immune 
checkpoint‑directed antibodies have increased the OS in 
patients with various cancers and are approved by the Food 
and Drug Administration (5,6). For example, PD‑1 inhibitor 
nivolumab and pembrolizumab are used for deficient mismatch 
repair (dMMR) or microsatellite‑instability‑high (MSI‑H) 
CRC world‑wide (7,8).

However, immunotherapies, including immune check‑
point inhibitors to proficient‑MMR CRC, have not achieved 
durable objective responses against CRC (9,10). Improving the 
efficacy of immunotherapies requires two approaches. One is 
the use of combination therapy to alter ‘cold tumors’ which 
are characterized by the absence of T cell infiltration, to ‘hot 
tumors’ characterized by the accumulation of proinflamma‑
tory cytokines and T cell infiltration (5,11). The other is the 
identification of biomarkers to select patients who are expected 
to respond well to immunotherapy.

The authors of the present study previously reported 
phase I and II studies in which five epitope peptides were 
administered to advanced‑stage CRC patients (12,13). In 
these studies, a low neutrophil/lymphocyte ratio and a low 
plasma interleukin (IL)‑6 level were the potential markers 
for improved survival time of vaccinated patients (14,15). 
Furthermore, it was also shown that several miRNAs and the 
integrity of plasma cell‑free DNA were predictive biomarkers 
for active immunotherapy using epitope peptides (15‑18).

This study aimed to identify novel predictive biomarkers to 
select patients who are highly responsive to immunotherapy to 
improve the efficacy of immunotherapy. To this end, a compre‑
hensive analysis of proteins in tumor tissues was performed 
and sialic acid‑binding immunoglobulin type lectin (Siglec)‑7 
was identified as a potential predictive biomarker for immu‑
notherapy.

Siglecs are a family of transmembrane receptors predomi‑
nantly found in both innate and adaptive immune cells, 
involved in distinguishing between self and non‑self‑cells 
by recognizing sialic acids at the cellular surface (19,20). 
Siglec‑7, the seventh member of the Siglec family, is mainly 
expressed on natural killer (NK) cells, monocytes, macro‑
phages, and a minor subset of CD8+ T cells (21,22), and 
acts as an inhibitory receptor. The cytoplasmic portion of 
Siglec‑7 contains immune receptor tyrosine‑based inhibition 
motifs (ITIMs), which provide inhibitory signals by recruiting 
the SH2‑domain‑containing tyrosine phosphatase (SHP)‑1 
and SHP2 (22). SHP1 and SHP2 inhibit NK cell activation 
pathways such as the NKG2D pathway, suppressing NK cell 
cytotoxicity to tumor cells (23). However, it has never been 
evaluated for its possible role in cancer immunotherapy. In the 
present study, Siglec‑7 was evaluated for its potential role as a 
novel biomarker for active immunotherapy.

Materials and methods

Summary of the phase II study. To assess the clinical 
benefits of cancer vaccination treatment, a phase II study 
was conducted using five human leukocyte antigen (HLA
)‑A*24:02‑restricted peptides, including kinase of the outer 

chloroplast membrane 1 (KOC1) (24), translocase of outer 
mitochondrial membrane 34 (TOMM34) (25), ring finger 
protein 43 (RNF43) (26), vascular endothelial growth factor 
receptor (VEGFR) 1 and 2 (27,28). This phase II study 
was a non‑randomized, HLA‑A status double‑blind study. 
The detailed protocol of this phase II study was previously 
described (13). Briefly, the therapy consisted of a cocktail 
of five therapeutic epitope peptides in addition to oxalipl‑
atin‑containing chemotherapy. The cocktail containing 3 mg 
of each of the five peptides was mixed with 1.5 ml of incom‑
plete Freund's adjuvant and administered subcutaneously 
into the thigh or axilla regions every week for 13 weeks, 
followed by the vaccination once every 2 weeks. Patients 
≥20 years old with histologically confirmed advanced CRC 
who were chemotherapy‑naïve, who had adequate functions 
of critical organs, and had a life expectancy of ≥3 months 
were eligible. Between February 2009 and November 2012, 
96 chemotherapy‑naïve CRC patients were enrolled with 
masked HLA‑A*24:02 status.

Sample collection. From the 96 patients who were enrolled in 
the phase II trial (50 were HLA‑A*24:02‑matched and 46 were 
unmatched), 63 formalin‑fixed paraffin‑embedded (FFPE) 
tissue samples of primary CRC were obtained (32 were 
HLA‑A*24:02‑matched and 31 were unmatched) (Fig. 1). In 
14 of the 32 HLA‑A*24:02‑matched patients, fresh tissues 
were also snap‑frozen in liquid nitrogen and preserved at ‑80˚C 
until further examination. Primary CRC tissues were obtained 
by surgery prior to the vaccine treatment at Yamaguchi 
University Hospital and affiliated hospitals. All samples were 
obtained with the patients' written informed consent. This 
study was conducted according to the Declaration of Helsinki 
and was approved by the Institutional Ethics Review Boards of 
Yamaguchi University (approval no. H20‑102; Clinical Trials 
Registry: UMIN000001791).

Comprehensive proteomic analysis of tumor tissue. A 
comprehensive analysis of the protein levels in tumor tissue 
lysate was performed using the SOMAscan (SomaLogic, Inc.) 
to quantify 1,129 biologically relevant proteins as previously 
described (29). Frozen CRC tissue samples were available 
from patients who survived for either more than three years or 
less than two years (Fig. 1). According to the manufacturer's 
protocol (SomaLogic, Inc.), the total protein of the frozen CRC 
tissue sample was extracted with lysis buffer T‑PER Tissue 
Protein Extraction Reagent (Thermo Fisher Scientific, Inc.) 
supplemented with Halt Protease Inhibitor Cocktail (Thermo 
Fisher Scientific, Inc.) through a Qiagen TissueLyser (Qiagen). 
Samples were sent to SomaLogic and analyzed using the 
SOMAscan assay. In this assay, protein signals were converted 
to nucleotide signals using chemically modified nucleotides so 
that quantification could be done using relative fluorescence 
signal on microarrays. For this reason, SOMAscan measure‑
ments were presented as relative fluorescence units (RFUs).

Western blot analysis. Western blot analysis was performed as 
previously described (30), using the same extracts as those used 
in the comprehensive analysis of SOMAscan. Briefly, protein 
samples (10 µg) were separated on 10% SDS‑PAGE and trans‑
ferred onto a PVDF membrane (Bio‑Rad Laboratories, Inc.). 
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Membranes were blocked by pre‑incubation with 3% skim 
milk for 30 min at room temperature and then were incubated 
with anti‑Siglec‑7 antibody (ProteinTech Group, Inc.) at 4ºC 
overnight. After washing 3 times with Tris‑buffered saline 
with Tween‑20 (TBST) buffer, the membranes were incu‑
bated with the corresponding secondary antibody for 1 h at 
room temperature. Immunoreactions were detected using an 
enhanced chemiluminescence (ECL) western blotting detec‑
tion system and an Amersham Imager 600 (GE Healthcare 
Life Sciences). Densitometry analysis was performed using 
ImageJ software (National Institutes of Health) (31). Since the 
protein levels of VCP, one of the housekeeping proteins, are 
more stable compared to other housekeeping proteins, such 
as glyceraldehyde 3‑phosphate dehydrogenase (GAPDH) and 
actin, VCP was chosen as the loading control (30,32,33).

Immunohistochemistry. Immunohistochemistry was carried 
out on 4‑µm‑thick FFPE sections. For staining Siglec‑7, 
sections were deparaffinized through xylene and graded alco‑
hols, and antigen retrieval was performed in 10 mM Tris‑EDTA 
buffer pH 9.0 (Dako) in a microwave at 95˚C for 20 min. 
Endogenous peroxidase activity in the sections was blocked 
with 3% hydrogen peroxidase for 20 min, and nonspecific 
protein binding was blocked with Protein Block Serum‑Free 
(Dako) for 10 min. The staining procedures were performed 
in a Dako Autostainer (Dako) according to the manufacturer's 
protocol. Sections were incubated with an anti‑Siglec‑7 anti‑
body (rabbit polyclonal, 13939‑1‑AP, ProteinTech Group, Inc.; 
dilution 1:800) at room temperature for 1 h. After washing 
3 times with phosphate‑buffered saline (PBS), the sections 
were incubated with the corresponding secondary antibody 
for 30 min. The reactions were visualized with 3,3'‑diami‑
nobenzidine chromogen (DAB; Dako) and counterstained 
with Mayer's hematoxylin. Images were acquired using the 
All‑in‑one fluorescence microscope BZ‑X710 (Keyence).

Considering the important role of tumor‑infiltrating 
lymphocytes (TILs) for the CRC prognosis, the densities of 
CD3+, CD4+, CD8+, and forkhead box P3 (FOXP3)+ T cells 

in CRC tissues were also examined. Immunohistochemistry 
for TILs was performed as previously described (34,35). 
Briefly, using the Ventana Discovery XT staining system 
(Ventana), the sections were incubated with anti‑CD3 anti‑
body (mouse monoclonal, 518110079; Ventana), anti‑CD4 
(mouse monoclonal, 518108816; Ventana), anti‑CD8 (mouse 
monoclonal, IR623; Dako; dilution 1:50), and anti‑FOXP3 
(mouse monoclonal, ab20034; Abcam; dilution 1:100). The 
microscopic images were acquired using a high‑resolution 
digital slide scanner NanoZoomer‑XR C12000 (Hamamatsu 
Photonics).

Immunofluorescence. Immunofluorescence was carried out 
on 4‑µm‑thick FFPE sections the same way as immunohisto‑
chemistry. Sections were deparaffinized and antigen retrieval 
was performed in 10 mM Tris‑EDTA buffer pH 9.0 (Dako) in 
a microwave at 95˚C for 20 min. Nonspecific protein binding 
was blocked with Protein Block Serum‑Free (Dako) for 
10 min. Sections were incubated with an antibody mixture 
(1:800 diluted anti‑Siglec‑7 antibody, and 1:400 diluted 
anti‑CD68 antibody; mouse monoclonal, Ab783; Abcam) at 
4˚C overnight. The next day, after washing 3 times with PBS, 
sections were incubated with secondary antibody mixture 
(1:1,000 diluted anti‑mouse Alexa Fluor 568 and 1:1,000 
diluted anti‑rabbit Alexa Fluor 488; Thermo Fisher Scientific) 
for 60 min at room temperature. Slides were counterstained 
with DAPI blue to visualize nuclei. All staining procedures 
were performed manually, and stained sections were visualized 
and photographed using the All‑in‑one fluorescence micro‑
scope BZ‑X710 (KEYENCE; magnification, x200). From each 
section, 10 fields near the center of the tumor with the highest 
density of Siglec‑7‑positive cells and CD68‑positive cells 
were manually selected by observers. Images were analyzed 
with an algorithm for positive pixel count using ImageJ soft‑
ware (NIH) to quantify the expression levels of Siglec‑7 and 
CD68. The threshold intensity was set at 40 for Siglec‑7 and 
CD68 staining. The results were presented as a percent of the 
total positive area to the area of the examined fields.

Figure 1. CONSORT diagram of the analyses in this study. Thirteen frozen tissue samples from HLA‑A*24:02‑matched patients were analyzed using 
SOMAscan, the comprehensive proteomic analysis; and 63 FFPE tumor tissue samples, 32 HLA‑matched and 31 HLA‑unmatched patients, were analyzed 
using immunofluorescence. HLA, human leukocyte antigen; FFPE, formalin‑fixed paraffin‑embedded.
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Measurement of TILs. Based on the immunohistochemistry 
for TILs, the number of TILs was measured as previously 
described (34,35). Briefly, intratumoral‑infiltrating CD3+, 
CD4+, CD8+ and FOXP3+ cells were defined as TILs and 
their numbers were measured. Those found in the peri‑
tumoral stroma and extratumoral lymphoid structures 
were excluded from this analysis. A computerized image 
analysis system Tissue Studio (Definiens) was used to score 
all tumor lesions. The numbers of TILs were recorded in 
square millimeters as the mean number of positive cells per 
tumor tissue unit.

Statistical analysis. In comprehensive protein analysis, 
differential expression of proteins was detected using the 
log2 and Fisher ratio using Microsoft Excel 2010 (Microsoft 
Corporation) (36). The log2 ratio for a protein k was calculated 
according to the following formula:

where is the kth protein of the sample mean of the good or 
poor prognosis group. The Fisher ratio F for a protein k was 
calculated using the following formula:

where is the kth protein of the sample variance of the good 
or poor prognosis group.

Differences between the two groups were estimated using 
the Welch's t‑test, which was selected for this study because 
recent statistical recommendations and simulation studies 
suggest using this test under either homoscedasticity or 
heteroscedasticity conditions (37). The categorical variables 
were compared using the χ2 or Fisher's exact tests. The strength 

of a correlation between two groups was assessed by the 
Spearman's rank correlation coefficient. The optimal cut‑off 
values of the expression levels of Siglec‑7, CD3, CD4, CD8, and 
FOXP3 were determined using either the median value or the 
time‑dependent receiver operating characteristic (ROC) curve 
analysis using the Kaplan‑Meier (KM) estimation method and 
Youden's index (sensitivity + specificity ‑ 1) (38). The survival 
curves were estimated using the KM method and tested using 
the log‑rank test. All statistical analyses were performed using 
R language for 64‑bit Windows (version 3.6.1, R Development 
Core Team). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Selection of candidate protein to predict the efficacy of 
vaccination. Comprehensive analysis of the expression 
profiles of 1,129 proteins in 13 frozen CRC tissue samples 
from HLA‑A*24:02‑matched patients was performed. The 
patients were divided into good and poor prognosis groups; 
in 7 cases with good prognosis, the patients had OS of 3 years 
or more and in 6 cases with poor prognosis, the patients had 
OS of 2 years or less. Comparing the protein expression 
levels of the two groups, 23 proteins satisfied the absolute 
log2 ratio ≥1 and the Fisher ratio ≥1. Of the 23 proteins, 
Table Ⅰ shows the 10 proteins with the highest Fisher ratio. 
The expression level of Sonic hedgehog (SHH) in the good 
prognosis group was significantly higher than that in the 
poor prognosis group (P=0.022). In contrast, the expression 
levels of Siglec‑7 and fibronectin were significantly higher 
in the poor prognosis group than those in the good prog‑
nosis group (P=0.016 and 0.025, respectively). Among them, 
Siglec‑7 was selected as a candidate protein because of the 
lowest P‑value.

Table Ⅰ. Predictive markers from comprehensive proteomic analysis of tumor tissue.

 Good prognosis Poor prognosis Welch's
 (n=7) (n=6) t‑test
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Rank Target protein Mean SD Mean SD |Log2 ratio| Fisher ratio P‑value

  1 Sonic Hedgehog 492.5 226.9 230.3 82.7 1.1 3.66  0.022 
  2 ICOSLG 14492.5 14465.9 41296.1 34872.0 1.5 2.29  0.089 
  3 Lysozyme 9204.3 5769.5 19217.0 12240.3 1.1 2.20  0.079 
  4 Siglec‑7 934.8 511.9 2272.1 1121.8 1.3 2.00  0.016 
  5 Siglec‑9 416.4 167.9 1158.8 1044.2 1.5 1.62  0.089 
  6 Fibronectin 4794.1 3336.5 13751.4 8483.4 1.5 1.60  0.025 
  7 FCGR3B 1494.4 827.5 3934.3 3370.6 1.4 1.42  0.089 
  8 TIMP1 6566.0 4235.2 14537.2 11608.0 1.1 1.32  0.117 
  9 LBP 3525.2 2064.2 12051.2 14610.8 1.8 1.22  0.152 
10 C1q 14432.5 10855.0 32501.8 22469.4 1.2 1.20  0.085 

Proteins eligible for predictive biomarkers were narrowed down by the absolute log2 ratio ≥1 and ranked according to the Fisher ratio between 
the good and poor prognosis groups. Good prognosis, with overall survival of 3 years or more; poor prognosis, with overall survival of 2 years 
or less; SD, standard deviation; ICOSLG, inducible T cell costimulator ligand; Siglec‑7, sialic acid‑binding immunoglobulin‑like lectin 7; 
Siglec‑9, sialic acid‑binding immunoglobulin‑like lectin 9; FCGR3B, Fc fragment of IgG receptor IIIb; TIMP1, tissue inhibitor of metal‑
loproteinase 1; LBP, lipopolysaccharide binding protein; C1q, complement component 1, q subcomponent.
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Confirmation of candidate protein expression using western 
blot analysis. To validate the results obtained in comprehensive 
analysis of SOMAscan, western blot analysis was performed 
using the same 13 samples as the ones used in SOMAscan 
analysis (Fig. 2A). As shown in Fig. 2A, the protein band in 
lane #9 was lower than those in the other lanes. Siglec‑7 has 
three isoforms, and the shorter isoform may have been highly 
expressed in the tumor tissue of patient #9 compared with 
the other patients. The levels of Siglec‑7 showed a positive 
correlation between SOMAscan measurements and western 
blot measurements (rs=0.758, P=0.00268; Fig. 2B). The mean 
expression levels of Siglec‑7 were significantly higher in the poor 
prognosis group based on both SOMAscan analysis (P=0.016) 
and in western blot analysis (P=0.025) (Fig. 2C and D). These 
results indicated that the levels of Siglec‑7 protein in the CRC 
tissue were significantly higher in patients with poor prognosis 
than in those with good prognosis in HLA‑A*24:02‑matched 
cohort.

Localization of Siglec‑7 in tumor tissue. To identify the local‑
ization of Siglec‑7 in CRC tissue, immunohistochemistry and 

immunofluorescence were performed. Immunohistochemistry 
showed that Siglec‑7 was expressed in stromal cells located 
between or around tumor cells (Fig. 3A). Immunofluorescence 
showed that Siglec‑7 was expressed in stromal cells which 
also expressed CD68 (Fig. 3B). These results indicated that 
Siglec‑7 was expressed in intratumoral macrophages.

Validation of Siglec‑7 as a predictive biomarker of vacci‑
nation. The levels of Siglec‑7 expression in 63 CRC tissue 
samples from 32 HLA‑A*24:02‑matched patients and 
31 HLA‑A*24:02‑unmatched patients were examined using 
immunofluorescence (Fig. 1; Table II). The levels of Siglec‑7 
expression ranged from 0.00001 to 7.81% (median, 0.0279%), 
and from 0.0400 to 0.457% (median, 0.120%) in 
HLA‑A*24:02‑matched and ‑unmatched patients, respectively. 
The comprehensive proteomic analysis in the present study 
was based on the survival of stage IV patients. Since the 
median OS among stage IV CRC patients is approximately 3 
years, the optimal cut‑off value was determined using ROC 
curve analysis at 36 months. This analysis was performed 
in HLA‑A*24:02‑matched patients because HLA‑restricted 

Figure 2. Confirmation of Siglec‑7 expression levels and their correlation with patient prognosis. (A) The same protein samples as those in the comprehensive 
analysis were used in western blot analysis (n=13). The lower protein band in lane #9 may reflect higher expression of the shorter isoform of Siglec‑7 in the 
tumor tissue of patient #9 compared with the other patients. In subsequent analysis, protein bands were quantified by densitometry and the results were 
presented as relative expression levels compared to the Siglec‑7 expression level in patient number 1 (=100%). (B) The levels of Siglec‑7, as measured by 
SOMAscan and western blot analysis, were correlated (n=13). (C) The levels of Siglec‑7 measured using the SOMAscan analysis were significantly higher in 
the poor prognosis group. (D) The levels of Siglec‑7 measured using western blot analysis were significantly higher in the poor prognosis group. Siglec‑7, sialic 
acid‑binding immunoglobulin‑like lectin 7; VCP, valosin containing protein; RFU, relative fluorescence unit; OS, overall survival.
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peptides vaccines are theoretically effective for these patients. 
The cut‑off value was presented as a percentage of the total posi‑
tive area of Siglec‑7 to the area of the examined fields. A percent 
of 0.213 was selected as the cut‑off value for Siglec‑7 expres‑
sion. In the HLA‑A*24:02‑matched patients, the OS in patients 
with high Siglec‑7 expression was significantly shorter than that 
in patients with low Siglec‑7 expression (P=0.017; Fig. 3C). In 
contrast, in the HLA‑A*24:02‑unmatched patients, there was 
no significant difference in OS between patients with high or 
low Siglec‑7 expression (P=0.910; Fig. 3D). In patients with 
low Siglec‑7 expression, there was a significant difference in 
OS between HLA‑A*24:02‑matched and ‑unmatched patients 
(P=0.041; Fig. S1A), whereas there was no significant difference 
in patients with high Siglec‑7 expression (P=0.179; Fig. S1B). 
The levels of Siglec‑7 expression in tumor tissue were 
correlated with that of CD68 (rs=0.786, P<0.001; Fig. S2A). 
However, there was no significant difference in OS between 
patients with high and low levels of CD68 expression in 

HLA‑A*24:02‑matched patients (P=0.528; Fig. S2B). These 
results indicated that Siglec‑7 expression in tumor microen‑
vironment might be a predictive biomarker of the efficacy of 
cancer vaccine therapy.

Relationship of TIL infiltration and prognosis with Siglec‑7 
expression. Because TILs have been reported as biomarkers 
for CRC, they were analyzed using immunohistochemistry in 
CRC tissue samples from 32 HLA‑A*24:02‑matched patients, 
the same as those used for Siglec‑7 analysis (Fig. S3). Using 
ROC curve analysis at 36 months, the optimal cut‑off values 
were determined as 440.1, 133.8, 52.6 and 17.8 for CD3+, CD4+, 
CD8+ and FOXP3+ cell densities, respectively. There was no 
significant difference in OS between patients with high and low 
numbers of TILs including CD4+, CD8+ and FOXP3+ T cells 
(P=0.319, 0.605 and 0.242, respectively; Fig. 4), although there 
was a trend for better OS in patients with high infiltration of 
CD3+ lymphocytes (P=0.065; Fig. 4A). Next, the correlation 

Figure 3. Siglec‑7 expression in tumor microenvironment and its correlation with patient prognosis. (A) Stromal cells in the tumor area expressed Siglec‑7 
(indicated by arrows), whereas tumor cells did not (indicated by arrowheads). They were defined based on their locations and morphological findings. Scale 
bar, 100 µm. (B) Representative immunofluorescence images of Siglec‑7 (green), CD68 (red), and nuclei (blue) in CRC tissue. Almost all of the Siglec‑7+ cells 
expressed CD68 simultaneously, whereas there were some cells expressing only CD68. The upper row represents a tumor with high expression level of Siglec‑7, 
and the lower one shows a tumor with low expression. Scale bar, 5 µm. (C) Overall survival in patients with high levels of Siglec‑7 expression as detected with 
immunofluorescence images was significantly (P=0.017) shorter than that in patients with low levels of Siglec‑7 expression in HLA‑A*24:02‑matched group. 
(D) There was no significant difference in overall survival between patients with high and low levels of Siglec‑7 expression in HLA‑A*24:02‑unmatched 
patients. Siglec‑7, sialic acid‑binding immunoglobulin‑like lectin 7; HLA, human leukocyte antigen; CRC, colorectal cancer; RFUs, relative fluorescence units.
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between Siglec‑7 expression and TILs in CRC tissues was 
examined. There were no significant associations between the 
levels of Siglec‑7 expression detected in immunofluorescence 
and the numbers of CD3+, CD4+, CD8+ and FOXP3+ T cells 
in immunohistochemistry (P=0.565, 0.154, 0.982 and 0.676, 
respectively; Fig. 5). These findings indicated that lymphocytes 
and monocytes/macrophage infiltration might be independent.

Discussion

The purpose of the present study was to explore proteins as 
novel biomarkers to predict the efficacy of immunotherapy 
before treatment. First, it was demonstrated that high levels 
of Siglec‑7 expression in tumor tissues were associated with 
shorter OS in patients treated with peptide vaccines for meta‑
static CRC. Second, it was shown that Siglec‑7 was expressed 
in macrophages in CRC tissue. Further, there was no significant 
correlation between the level of Siglec‑7 expression and the 
number of TILs in CRC tissue. These results indicated that 
high levels of Siglec‑7 expression in intratumoral macrophages 
can be a negative biomarker of the vaccine treatment efficacy 
against metastatic CRC. To our knowledge, this is the first report 
showing the relationship between Siglec‑7 and CRC prognosis.

In the comprehensive proteomic analysis, the good and 
poor prognosis groups showed significant differences in 
expression levels of Siglec‑7, SHH, and fibronectin. SHH is a 
ligand for the Hedgehog signaling pathway, which is critical 
for embryonic development and carcinogenesis (39). Although 
increased expression of SHH has been associated with poor 
prognosis in patients with various malignancies, including 
CRC (40,41), the present study obtained opposite results in this 
aspect. Furthermore, fibronectin is a ligand for many members 
of the integrin receptor family and it is involved in cell adhe‑
sion, migration, growth, and differentiation (42). Because the 
relationship between fibronectin and CRC has been already 
reported (43,44), it was difficult to find additional roles for this 
protein as a biomarker in cancer vaccination against CRC. For 
these reasons, SHH and fibronectin were excluded as candi‑
dates for predictive biomarkers.

Low levels of Siglec‑7 expression in tumor tissue was 
associated with better prognosis in HLA‑A*24:02‑matched 
patients, but not in the unmatched patients. HLA‑restricted 
epitope peptides show theoretical antitumoral effects only 
in HLA‑matched patients. And only HLA‑A*24:02‑matched 
patients were considered to be treated with vaccines in the 
present study. Therefore, the resulting difference in OS based 

Figure 4. Overall survival according to the number of tumor‑infiltrating lymphocytes (TILs). Kaplan‑Meier curves for overall survival according to the number 
of CD3, CD4, CD8 and FOXP3 are shown. There was no significant difference in overall survival between patients with high or low numbers of TILs. (A) CD3, 
(B) CD4, (C) CD8, and (D) FOXP3. FOXP3, forkhead box P3.
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on Siglec‑7 expression was only in HLA‑A*24:02‑matched 
patients, indicating that Siglec‑7 was not a prognostic marker 
for CRC but a predictive biomarker for cancer vaccination.

Siglec‑7, a member of the CD33‑related Siglecs, is mainly 
expressed in NK cells and monocytes/macrophages (22). 
The distribution of Siglec‑7+ cells has been reported to differ 
between peripheral blood and colonic lamina propria (45). In 
the peripheral blood, 75% of Siglec‑7+ cells were NK cells and 
8% were monocytes. In colonic lamina propria, in contrast, 
76% of Siglec‑7+ cells were monocyte/macrophage lineages 
and 4% were NK cells. In this study, Siglec‑7 was observed 
mostly in CD68+ cells in CRC tissue, thereby it was suggested 
that intratumoral macrophages expressed Siglec‑7. The role 
of Siglec‑7 in macrophage has been poorly explored, whereas 
Siglec‑9, another CD33‑related Siglec that shares 84% sequence 
homology with Siglec‑7, was reported to play an inhibitory role 
in macrophages (46). Specifically, Siglec‑9 mediated reduction 
in proinflammatory cytokine tumor necrosis factor (TNF)‑α 
production and potent increment in anti‑inflammatory 
cytokine IL‑10 production via ITIMs (47). Therefore, it was 
hypothesized that Siglec‑7‑expressing macrophages may 
mediate the reduction in secretion of proinflammatory cyto‑
kine TNF‑α and increase in secretion of anti‑inflammatory 
cytokine IL‑10, resulting in immunosuppression of the tumor 
microenvironment. MSI status, another factor related to the 

tumor microenvironment, was also analyzed in the present 
study, and only one patient had MSI‑high CRC (data not 
shown). Although the level of Siglec‑7 expression was low in 
the MSI‑high CRC, the relationship between Siglec‑7 expres‑
sion in CRC tissue and MSI status was not analyzed because it 
was statistically inappropriate.

Cancer vaccination shows antitumoral effects by 
introducing tumor antigen‑specific cytotoxic T lympho‑
cytes (CTLs). Described as the cancer‑immunity cycle (48), 
injected HLA‑restricted epitope peptides are captured and 
presented to T cells by dendritic cells via HLA molecules. 
Then, activated tumor antigen‑specific CTLs infiltrate the 
tumor, recognizing and killing target cancer cells. However, 
CTLs may have their function inhibited by PD‑L1 and immu‑
nosuppressive mediators such as IL‑10 and transforming 
growth factor‑β in the tumor microenvironment (49,50). 
Siglec‑7 may pose an obstacle to CTLs by mediating immu‑
nosuppression of tumor microenvironment via regulation of 
TNF‑α and IL‑10 secretions, resulting in suppressed efficacy of 
vaccine treatment against metastatic CRC. These mechanisms 
may explain the association between high levels of Siglec‑7 
expression in intratumoral macrophages and poor prognosis in 
HLA‑A*24:02‑matched patients.

TILs, especially CD3+ and CD8+ T cells, are prognostic 
biomarkers for CRC (28,51). For instance, a scoring system 

Figure 5. Relationship between Siglec‑7 expression and the number of tumor‑infiltrating lymphocytes (TILs). Scatterplots for CD3, CD4, CD8 and FOXP3 
versus Siglec‑7 are shown. The values were transformed by log10. There was no significant correlation between the levels of Siglec‑7 expression and the 
numbers of TILs. (A) CD3, (B) CD4, (C) CD8, and (D) FOXP3). Siglec‑7, sialic acid‑binding immunoglobulin‑like lectin 7; FOXP3, forkhead box P3.
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based on CD3+ and CD8+ T cells densities within the tumor 
and its invasive margin, the immunoscore, was demonstrated 
to be a strong prognostic factor for CRC patients (52,53). In 
the present study, Siglec‑7 expression was not associated with 
CD3+, CD4+, CD8+ and FOXP3+ T cells. It was suggested 
that Siglec‑7 was an independent biomarker from TILs. The 
analysis of Siglec‑7 might have led to these results by assessing 
macrophages rather than lymphocytes in the tumor microen‑
vironment.

The present study, however, had several limitations. The 
first one is the small number of patients enrolled in this study. 
Second, multivariate analysis, including clinicopathological 
factors to adjust for confounding factors, was not performed 
because it was statistically inappropriate due to the small 
number of patients. The third limitation concerns the lack 
of mechanistic studies. Nonetheless, understanding the func‑
tions of Siglec‑7 in the tumor environment might lead to 
novel immunotherapeutic strategies such as the alteration of 
cold tumor to hot tumor. For example, because Siglecs are 
endocytic receptors suitable for drug delivery, the alteration 
may be achieved by administering a Siglec‑7‑specific antibody 
conjugated to toxins or chemotherapeutic agents to deplete 
Siglec‑7‑expressing macrophages (54). Finally, the relation‑
ship between Siglec‑7 expression and other immunologically 

important molecules including PD‑1, PD‑L1 and HLA expres‑
sions were not evaluated.

In conclusion, Siglec‑7 expression in macrophages in tumor 
tissue might be a novel predictive biomarker for the efficacy 
of immunotherapy against metastatic CRC. Further studies 
are needed to confirm the utility of Siglec‑7 as a predictive 
biomarker and to analyze the role of Siglec‑7 in the tumor 
microenvironment.
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Table Ⅱ. Characteristics of patients in the phase II study whose 
tissues were analyzed by immunofluorescence.

 HLA‑A*24:02
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 Matched Unmatched
Characteristics (n=32) (n=31) P‑value

Age
  Mean 67.9 64.3 0.069 
  Range 47‑82 47‑77

Sex
  Male 13 18 0.211 
  Female 19 13

Unresectable site
  Liver 18 24 0.300 
  Lung 11   9
  Dissemination   3   2
  Bone  0   2
  Lymph node  3   9
  Other   3   1

Number of metastatic 
organs
  One 26 19 0.068 
  Two   6   8
  Three   0   4

Location of tumor
  Colon 22 24 0.572 
  Rectum 10   7

HLA, human leukocyte antigen.
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