
biomolecules

Review

Role of Vascular Endothelial Growth Factor (VEGF) in Human
Embryo Implantation: Clinical Implications

Xi Guo 1,2,†, Hong Yi 3,†, Tin Chiu Li 2, Yu Wang 1, Huilin Wang 4,* and Xiaoyan Chen 1,2,*

����������
�������

Citation: Guo, X.; Yi, H.; Li, T.C.;

Wang, Y.; Wang, H.; Chen, X. Role of

Vascular Endothelial Growth Factor

(VEGF) in Human Embryo

Implantation: Clinical Implications.

Biomolecules 2021, 11, 253. https://

doi.org/10.3390/biom11020253

Academic Editor: Jody

Jonathan Haigh

Received: 30 December 2020

Accepted: 8 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital,
Shenzhen University, Shenzhen 518133, China; guoxi@link.cuhk.edu.hk (X.G.);
wangyu1631@outlook.com (Y.W.)

2 Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong,
Hong Kong, China; tinchiu.li@cuhk.edu.hk

3 Department of Reproductive Health, Shenzhen Baoan Women’s and Children’s Hospital,
Shenzhen University, Shenzhen 518133, China; yihong188@outlook.com

4 Department of Central Lab, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University,
Shenzhen 518133, China

* Correspondence: wanghuilin456@outlook.com (H.W.); chenxiaoyan@cuhk.edu.hk (X.C.)
† X.G. and H.Y. contributed equally to this work.

Abstract: Vascular endothelial growth factor (VEGF) is a well-known angiogenic factor that plays a
critical role in various physiological and pathological processes. VEGF also contributes to the process
of embryo implantation by enhancing embryo development, improving endometrial receptivity,
and facilitating the interactions between the developing embryo and the endometrium. There is a
correlation between the alteration of VEGF expression and reproductive failure, including recurrent
implantation failure (RIF) and recurrent miscarriage (RM). In order to clarify the role of VEGF in
embryo implantation, we reviewed recent literature concerning the expression and function of VEGF
in the reproductive system around the time of embryo implantation and we provide a summary of
the findings reported so far. We also explored the effects and the possible underlying mechanisms of
action of VEGF in embryo implantation.

Keywords: vascular endothelial growth factor (VEGF); embryo implantation; reproductive failure

1. Introduction

Vascular endothelial growth factor (VEGF) is a multi-functional factor primarily
involved in the regulation of proliferation, differentiation and survival of endothelial
cells as well as in vascular permeability [1]. The family of VEGF consists of a group of
growth proteins including VEGF-A–VEGF-F, placental growth factor (PlGF), and endocrine
gland-derived vascular endothelial growth factor (EG-VEGF) [2]. VEGF-A (also called
VEGF), which was firstly described by Senger et al. in 1983 [3], has been proved to be
the most important and potent factor in angiogenesis [2]. PlGF, on the other hand, is
thought to be selectively involved in pathological angiogenesis, for instance, in tumors
and in ischemic and inflammatory processes [4,5]. VEGF-B is more involved in the growth,
differentiation, and survival of certain types of cells [6,7], while VEGF-C and VEGF-D are
primarily implicated in lymphangiogenesis [8,9].

VEGFs exert their effects mainly through binding to tyrosine kinase receptors: fms-like
tyrosine kinase 1 (Flt-1, also termed VEGFR-1), kinase insert domain receptor (KDR, also
termed VEGFR-2), and Flt-4 (also termed VEGFR-3) [2]. VEGFR-2, which has the strongest
pro-angiogenic activity, is mainly expressed in vascular endothelial cells and can bind to
VEGF [2]. Compared with VEGFR-1, VEGFR-2 has a higher tyrosine kinase activity but a
lower affinity for VEGF [10,11]. Besides the expression in endothelial cells, VEGFR-1 is also
expressed in macrophage-lineage cells [11]. VEGFR-1 can interact with VEGF, VEGF-B,
and PlGF [12,13]. With a higher affinity but lower kinase activity, VEGFR-1 acts more
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like a decoy, a negative regulator of VEGF [14,15]. sVEGFR-1 (sFlt-1), a soluble form of
VEGFR-1, can also trap VEGF, VEGF-B, and PlGF and therefore block their binding to
membrane receptors [16,17], and its activity has been proven to be strongly correlated
with unexplained infertility [18,19], recurrent miscarriage [20], and adverse pregnancy
outcomes [21]. PlGF, which shows lower affinity for VEGFR-1 than VEGF [22], can replace
VEGF in the VEGFR-1 “sink” and thus potentiate the angiogenic effect of VEGF, since
VEGFR-2 is the main receptor with a pro-angiogenesis effect [4,12]. VEGFR-3 is expressed in
lymphatic endothelia and high endothelial venules [23]. Through binding with VEGF-C or
VEGF-D, VEGFR-3 transduces signals for lymphangiogenesis [2]. In addition to these three
tyrosine kinase receptors, VEGF can also bind to neuropilins which act as co-receptors [24].

VEGF is implicated in a wide variety of physiological and pathological conditions.
During the process of embryo development, VEGF participates in embryonic vasculogene-
sis and angiogenesis [25,26]. Moreover, in postnatal development, there is accumulating
evidence showing the crucial role of VEGF in body growth and organ development [27–29].
In inflammation, VEGFR-1 plays a role in the recruitment and activation of monocytes
and macrophages [30–32]. In oncogenesis, VEGF is responsible for tumor growth and
metastasis, based on which anti-angiogenic therapy has achieved great progress in tumor
treatment [1]. In the field of reproduction, extensive efforts have been made to clarify
the role of VEGF in embryo implantation. However, there is a lack of a comprehensive
summary of the existing data. In this review article, we summarized recent literature
concerning the expression and function of VEGF in the reproductive system around the
time of embryo implantation. We also explored the effects and the possible underlying
mechanisms of action of VEGF in embryo implantation.

2. The Role of VEGF in the Reproductive System during Embryo Implantation
2.1. VEGF in Human Endometrium

Endometrium lines the inside of the uterus and undergoes cyclic breakdown and
remodeling, which are accompanied with the reconstruction of the vascular system. During
the menstrual cycle, there is only a short and critical period of time allowing an embryo
to implant, when the endometrium becomes a well-vascularized tissue characterized by
increased vascular permeability, oedema, and angiogenesis [33]. Although a myriad of
factors and cytokines are thought to be involved in this transformation, VEGF, as a potent
angiogenic factor, plays a central role.

Extensive efforts have been made to explore the spatial and temporal expression
change of VEGF in the endometrium across the menstrual cycle. Several studies have
found the expression of VEGF in the endometrium throughout the menstrual cycle, with a
significant increase in the mid-luteal phase, suggesting a role of endometrial VEGF around
the time of embryo implantation [34–36]. In addition, adequate expression of VEGF is
essential for successful pregnancy, based on previous finding that endometrial VEGF ex-
pression is impaired in the peri-implantation period in infertile patients [37,38]. Functional
experiments have shown that the addition of VEGF could promote embryo outgrowth
as well as the adhesive capacity of endometrial epithelial cells [39]. In women with re-
current miscarriage, VEGF showed a lower expression level in the endometrium during
the mid-luteal phase [40]. However, one of our previous studies has identified elevated
VEGF levels in women with hampered pregnancy potential [41]. In that study, endometrial
tissues were obtained from women with elevated progesterone level. Progesterone and
estrogen are two main regulators of endometrium changes across the menstrual cycle and
have significant promoting effects on VEGF production [42,43]. Therefore, the analysis
of VEGF levels should take into account the effects of estrogen, progesterone, and other
potential influential factors to understand the role of VEGF during embryo implantation.

In accordance with the upregulation of VEGF, VEGFR-1 and VEGFR-2 are also upregu-
lated in the glandular epithelium in the secretory phase [44]. sFlt-1, a soluble antagonist of
VEGF and PlGF, is increased distinctively in the proliferative phase but decreased to almost
25% of its proliferative phase peak value in the endometrium during the luteal phase [45].
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The analysis of serum sFlt-1 level showed that infertile women had higher serum sFlt-1
levels in the secretory phase than in the proliferative phase [19]. Experimentally, sFlt-1
expression in human primary endometrial stromal cells is also found to be turned off
during decidualization, whereas VEGF expression showed an opposite change [46]. The
upregulation of VEGF and the coordinated downregulation of sFlt-1 in the luteal phase may
serve to increase endometrial angiogenesis and vascular permeability, which are crucial for
endometrium preparation for embryo implantation.

Histochemistry staining reported that PlGF, which exists in glandular and luminal
epithelial cells, decidual stromal cells, and uterine fluid, showed increased staining in-
tensity in the endometrium around the time of embryo implantation [47]. Santi et al.
also demonstrated that PlGF expression was higher in the endometrium of women with
successful embryo implantation compared to those who failed to conceive [48]. In that
study, the authors firstly reported that PlGF gene expression was positively correlated
with the hysteroscopic appearance of the endometrium based on the Sakumoto-Masamoto
grading system. In contrast, one of our previous studies found that PlGF was upregulated
in women with a high serum progesterone level, and this increase might be a cause of
impaired receptivity of the endometrium in those women [41]. As described before, PlGF
and VEGF are two synergistic molecules acting on angiogenesis. The upregulation of these
two cytokines in the endometrium during the time of embryo implantation suggests that
angiogenesis is crucial for successful embryo implantation. Moreover, the upregulation
of VEGF and its receptors in the secretory phase might aim to keep pace with the rapidly
thickening endometrium. Another study also showed that stromal VEGF intensity and
stromal microvessel density (MVD) could be positive predictors of pregnancy outcomes in
preparation of frozen embryo transfer (FET) cycles [49].

It is worth noting that besides an angiogenic effect, VEGF and PlGF are also func-
tionally related to immune regulation. An embryo is an allograft to the maternal immune
system, and immunologic tolerance is critical for the successful establishment of embryo
implantation. During the establishment of immuno-tolerance, numerous immunosuppres-
sive mechanisms and various immunocytes, including uterine natural killer (uNK) cells,
macrophages, and dendritic cells, are thought to play significant roles [50,51]. Several
studies have demonstrated that VEGF and PlGF might serve as immune modulators and
mediate the immuno-tolerance of the maternal immune system during the time of embryo
implantation. Monocytes, well-characterized immunocytes [52], could be activated by
VEGF and PlGF [53,54]. VEGF and PlGF also promote the recruitment and activation of
macrophages [32,55,56]. PlGF is also found expressed in uNK cells and plays a significant
role in the proliferation and differentiation of uNK cells [57]. PlGF is also implicated in the
regulation of the differentiation and maturation of dendritic cells and is able to skew type 1
T helper immune response to the Th2 phenotype [58]. All these immunoregulatory func-
tions of VEGF and PlGF might be favorable for the establishment of pregnancy (Figure 1,
Table 1).

Table 1. Role of VEGF in embryo implantation. PlGF, placental growth factor, VEGFR-2, VEGF receptor-2.

VEGF Family Members Function

Endometrial receptivity

VEGF Promotes endometrial angiogenesis and vascular permeability [59,60]
VEGF Monocyte activation [54]
VEGF Recruitment and activation of macrophages [32,56]
PlGF Monocyte activation [53]
PlGF Recruitment and activation of macrophages [55]
PlGF Proliferation and differentiation of uNK cells [57]

PlGF Differentiation and maturation of dendritic cells; skews type 1 T helper immune response to the
Th2 phenotype [58]
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Table 1. Cont.

VEGF Family Members Function

Embryo development

VEGF Development of the perifollicular capillary network [61].
VEGF Formation of and hormone production by corpus luteum [62,63]
VEGF Regulates oviduct mobility [64]
VEGF Regulates oviductal fluid secretion [65,66]

VEGF Increases blastocyst yield and blastocyst cell numbers, enhances blastocyst outgrowth, and reduces
cavitation time [39,67,68]

PlGF Increases blastocyst cell numbers and enhances blastocyst outgrowth [47]

Embryo implantation

VEGF Improves endometrial epithelial cells’ adhesion ability and increases implantation rates [39,67]
VEGF Embryo-derived VEGF stimulates angiogenesis at the implantation site [69]

VEGFR-2 Interacts with integrin αvβ3 [70]
PlGF Improves endometrial epithelial cells’ adhesion ability [47]
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2.2. VEGF in the Development of Human Oocytes and Embryo

The growth and development of follicles are dependent on an adequate blood supply
to obtain nutrients and oxygen. Insufficient blood supply could lead to a low-oxygen
status in follicular fluid and severely disrupt the development of oocytes and, subsequently,
of the embryo [71]. The inhibition of angiogenesis could lead to disruption of follicular
development, ovulation, and endocrine functions of the ovary [72,73]. VEGF is secreted by
granulosa cells and theca cells and can be detected in the follicular fluid [74,75]. A high
concentration of VEGF in the follicular fluid is correlated with increased perifollicular
vascularity, higher fertilization rates, better embryo quality, and higher pregnancy rates [61].
As VEGF in the follicular fluid is mainly secreted from granulosa and theca cells, it is likely
that a higher VEGF level indicates better functioning of these cells and thus the presence of
a better microenvironment for follicle development. In contrast, there are several studies
indicating that VEGF concentration in follicular fluid is negatively correlated with in vitro
fertilization (IVF) pregnancy outcomes [76,77]. However, in these studies, women with
polycystic ovary syndrome (PCOS) were included. It is well recognized that PCOS patients
have a higher level of VEGF and compromised IVF outcomes [78]. The inclusion of PCOS
patients could be a remarkable influential factor in these analyses.

VEGF also acts in the formation and function of corpus luteum (Table 1, Figure 2).
Corpus luteum is a transient endocrine gland that develops from residual follicular tissues
after ovulation in the presence of active angiogenesis [79]. The ruptured follicle is under
hypoxia conditions after ovulation, when hypoxia-inducible factor-1 (HIF1) is induced
and promotes the angiogenesis of corpus luteum via VEGF [62]. Besides the formation of
corpus luteum, VEGF also contributes to progesterone production by corpus luteum [63].
The reduction of VEGF and VEGFR-2 levels in corpus luteum is related to the impairment
of the luteal circulation [80]. Blocking of VEGF signaling via VEGFR inhibition is proved
to induce decreased luteal endothelial networks, vascular endothelial cell detachment,
apoptosis of luteal steroid-producing epithelial cells, disrupted luteal function, embryonic
development arrest, and preterm birth [63,80,81].
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With a highest level during the periovulatory period, VEGF shows dynamic changes in
the human oviduct across the menstrual cycle and is thought to be implicated in the secre-
tion of oviductal fluid via regulating the vascular permeability of the oviduct (Table 1,
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Figure 2) [65,66]. Furthermore, VEGF also plays a role in oviduct mobility (Table 1,
Figure 2). VEGF regulates oviduct contraction by stimulating the biosynthesis and re-
lease of prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α), and endothelin-1 (ET-1) in
bovine oviductal epithelial cells, which is important for gametes transport, fertilization,
and embryo transport [64].

VEGF can be detected throughout the process of embryo development [82,83]. The
analysis of embryos cultured in vitro also demonstrated that the expression of VEGF and
two VEGF receptors (VEGFR-1 and VEGFR-2) was maintained during embryo develop-
ment [84]. Functional in vitro experiments in embryos suggest that the addition of VEGF
could increase blastocyst yield and blastocyst cell numbers, enhance blastocyst outgrowth,
and reduce cavitation time [39,67,68]. As another member of the VEGF family, PlGF shows
a similar effect on embryo development: increased blastocyst cell numbers and enhanced
blastocyst outgrowth [47]. However, the molecular mechanisms underlying these effects
remain unclear.

2.3. VEGF in the Interaction between Endometrium and Embryos

After an embryo enters the uterus lumen, the interaction between embryo and en-
dometrium starts in the uterine fluid through locally produced soluble mediators. Uterine
fluid, also called uterine secretion, is mainly produced by uterine glands. During the
peri-implantation period, endometrial glands secrete important mediators that facilitate
pre-implantation embryo development and embryo implantation. Several VEGF family
members such as VEGF and PlGF have been identified in uterine fluid [39,47]. It is demon-
strated that VEGF concentration was upregulated in mid-luteal uterine fluid [39]. The
significant role of VEGF in the dialogue between embryo and endometrium is further
evidenced by functional experiments where enhanced blastocyst outgrowth, improved
endometrial epithelial cell adhesion ability, reduced cavitation time, increased blastocyst
cell numbers, increased implantation rates, and enhanced fetal limb development were
observed after VEGF treatment [39,67]. PlGF is found upregulated in endometrial glands,
with strong corresponding staining on the apical surface of the epithelium in mid-secretory
phase [47]. Functional studies of PlGF showed similar results, indicating that PlGF in-
creased blastocyst cell numbers, enhanced blastocyst outgrowth, and improved endome-
trial epithelial cells’ adhesion ability [47]. In addition to the effect of endometrium-derived
VEGFs on the embryo, embryo-derived factors and cytokines are also involved in the regu-
lation of the uterine microenvironment. For example, embryo-derived VEGF-A stimulates
endometrial angiogenesis, which enables embryos to induce angiogenesis directly at the
implantation site [69]. Human chorionic gonadotropin (hCG), produced by the embryo,
is also a stimulator of VEGF action in the endometrium [85]. Taken these results together,
although less is known about the effect of the embryo on the endometrium, the crosstalk
of embryo and endometrium might be extensive and influence embryo implantation in a
more complex manner (Figure 1, Table 1).

Furthermore, VEGFR-2 could interact with integrin αvβ3 [70], which is an impor-
tant adhesion molecule during embryo implantation [86], in VEGF-induced angiogenesis.
Integrin αvβ3 is found to be expressed in endometrial pinopodes and blastocyst trophec-
toderm [87], and the ligand of integrin αvβ3, the glycoprotein osteopontin (OPN), is also
expressed in the endometrium. The interaction of embryonic integrin αvβ3 and endome-
trial OPN is thought to be involved in embryo adhesion to the luminal epithelium of
the endometrium, while the binding of VEGFR-2 and integrin could shift the cell surface
localization of VEGFR-2 to focal adhesions and induce endothelial cell polarization, which
could also be a mechanism facilitating embryo implantation [88]. However, further studies
are still necessary to explore how this interaction between VEGFR-2 and integrin αvβ3
influences embryo implantation.
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3. VEGF in Reproductive Failure
3.1. Recurrent Implantation Failure (RIF)

RIF occurs when a woman under the age of 40 fails to achieve a clinical pregnancy
after transfer of at least four good-quality embryos in a minimum of three fresh or frozen
embryo transfer cycles [89]. There are numerous factors that could lead to RIF, such as
uterine abnormalities, advanced maternal age, elevated body mass index, immunological
factors, and abnormal angiogenesis [90,91].

One earlier study has reported an increased serum VEGF level in women with RIF
compared to fertile controls [92], whereas one of our earlier studies demonstrated decreased
VEGF expression in all regions of the endometrium at the time of embryo implantation [91].
The discrepancy between these two studies might derive from different sampling time
and different sample types. Further studies are needed to explore the expression pattern
of VEGF in RIF patients. Furthermore, some studies have explored the association be-
tween VEGF polymorphisms and the occurrence of embryo implantation failure. These
results suggest polymorphisms of the VEGF gene could impact fertilization rate, em-
bryo implantation rate, and pregnancy rate [93]. In addition, VEGF polymorphisms such
as VEGF-1154A/A, which are related to altered VEGF expression, increase the risk of
RIF [94–97]. However, whether VEGF influences embryo implantation in RIF patients
remains largely unknown.

3.2. Recurrent Miscarriage (RM)

RM is defined as three or more consecutive miscarriages before 24 weeks of ges-
tation [98]. Although several known causes of RM, including parental chromosomal
anomalies, uterine malformation, endocrinological disorders, and immunological abnor-
mality, are known, around half of RM cases remain unexplained [99]. Recent evidence has
indicated that altered expression of VEGF family members might be a contributory factor
to RM [20,100].

Lash et al. explored the expression of VEGF and its receptors in women with unex-
plained recurrent miscarriage [38]. The results demonstrated that, during mid-late secretory
phase, the expression of VEGF-A in vascular smooth muscle cells (VSMCs), endothelial
cells (ECs), and glandular epithelial cells was decreased, while the expression of VEGFR-1
in stromal cells, VSMCs, ECs, and glandular epithelial cells was increased in RM patients.
This study also showed a decreased expression of VEGFR-2 in VSMCs and stromal cells,
an increased expression of VEGFR-3 in glandular epithelial cells, and a greater proportion
of mature vessels in the endometrium around the time of embryo implantation in women
with RM. Banerjee et al. identified lower VEGF expression in endometrial tissues from
patients with idiopathic recurrent miscarriage (IRM) in the peri-implantation period [101],
and the observed downregulation of VEGF might be a product of the downregulation of
angiogenic cytokines including interleukin (IL)-2, IL-6, and IL-8. In another previous study,
Amirchaghmaghi et al. analyzed the gene expression of VEGF, VEGFR-1, and VEGFR-2 and
found that unexplained RM (URM) patients had a lower VEGF level and higher VEGFR-1
and VEGFR-2 levels in the endometrium between day 19th and 24th of the menstrual
cycle when compared to fertile controls [100]. In contrast, in one of our earlier studies,
RM patients were found to have a higher VEGF level in luminal epithelium, glandular
epithelium, and stroma of the endometrium around the time of embryo implantation [91].
RM patients were also found to have higher HIF1α expression and increased number
of micro-blood vessels in the endometrium [102]. These contradictory results imply the
multifactorial nature of the etiology of RM, although all patients were diagnosed with
unexplained RM at the time of sampling.

In addition to the endometrial tissues, there are also some studies focusing on VEGF
expression in other types of tissue from women with recurrent miscarriage. By sampling
chorionic villi from RM patients, Pang et al. found that VEGF and sFlt-1 levels were in-
creased when compared to their levels in women with a normal pregnancy [103]. However,
other studies demonstrated that VEGF expression in the chorionic villi and decidua from
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women with recurrent pregnancy loss (RPL) was significantly decreased compared with
the expression in women with normal pregnancy [104,105], while in peripheral blood,
serum VEGF expression was higher in URM patients between day 19th and 24th of the
menstrual cycle when compared to VEGF level in fertile controls [100]. In accordance
with these results, Pang et al. also found that the serum levels of VEGF and sFlt-1 in RM
women were significantly higher than in women with normal pregnancy [20]. However,
several studies reported opposite results, though the time of serum sampling was not men-
tioned [106–108]. Therefore, given the significantly different changes during the menstrual
cycle and pregnancy, it is crucial to standardize the timing of sampling in future studies.

Although there is compelling evidence showing dysregulation of VEGF in a number
of common diseases, the underlying causes of this dysregulation remain unknown. Ge-
netic variation might be one of the potential causes responsible for dysregulated VEGF
expression [109]. A meta-analysis of 10 independent case–control studies revealed that
rs1570360, rs3025039, rs2010963, and rs3025020 polymorphisms of VEGF were associated
with elevated RM risk [110]. Furthermore, Su et al. reported that KDR polymorphisms were
correlated with RPL [111]. Hence, further studies are needed to illustrate the mechanisms
by which VEGF is regulated in RM.

3.3. Endometriosis

Endometriosis is a common cause of infertility in women of reproductive age. There
is accumulating evidence showing that eutopic endometrium in women with endometrio-
sis displays higher VEGF expression [112,113]. At the same time, estrogen receptor is
also upregulated in eutopic endometrium of patients with endometriosis [112]. Thus, the
endometrium of endometriosis patients might be hyper-responsive to estrogen stimula-
tion and thus enhance the expression of VEGF. In addition, the dysregulation of VEGFRs
(downregulation of VEGFR-1 and upregulation of VEGFR-2) seems to be responsible
for endometriosis [114]. Kim et al. have shown that expression of VEGFR-1, VEGFR-2,
and VEGFR-3 was higher in the mid-luteal endometrium of patients with endometrio-
sis [115]. The authors also conducted a subgroup analysis and found that in patients with
endometriosis, non-pregnant subjects had higher VEGFR-1 and VEGFR-3 expression than
pregnant subjects [115]. Moreover, endometriotic mesenchymal stem cells of ectopic lesions
from endometriosis patients exhibited unique biological characteristics, with increased pro-
duction of angiogenic factors including VEGF and platelet-derived growth factor (PDGF),
which implies intrinsic defects in these cells [116]. In addition, anti-VEGF therapy could
attenuate the progress of endometriosis and may be a novel strategy for endometriosis
treatment [117]. All these findings suggest the important role of VEGF in endometriosis.

3.4. PCOS

PCOS is a common endocrine disease characterized by oligomenorrhea or amenor-
rhea, hyperandrogenism, and the presence of polycystic ovary. In addition to endocrine
disorders, ovarian hyperplasia and hypervascularity are also two common features of
PCOS and are thought to be related to extensive angiogenesis of the ovary [118,119]. These
angiogenic disorders might be associated with the decreased ovulation rates of PCOS
patients [120]. Immunohistochemistry analysis found increased VEGF expression in PCOS
ovary [121], which might be correlated with increased vascularity in the ovarian stroma
and the higher incidence of ovarian hyperstimulation syndrome (OHSS) observed in PCOS
patients [122–124]. After VEGF inhibitor treatment, the ovary from PCOS rats demon-
strated a decreased percentage of primary follicles and improved ovulation and follicular
development [125].

It has been proved that VEGF levels in serum and follicular fluid of PCOS patients were
significantly higher, while sFlt-1 level was lower than in normal ovulatory women [78,126].
Taken these results together, the upregulation of VEGF and the downregulation of VEGF
antagonists may jointly increase VEGF bioavailability in PCOS patients. However, in
PCOS patients, the expression of VEGF in the endometrium around the time of embryo
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implantation is lower than in controls [127]. As VEGF is upregulated in the mid-luteal
phase in normal endometrium as described above, the downregulation of VEGF might be
a contributory factor to impaired endometrial receptivity in patients with PCOS. Moreover,
VEGF polymorphisms are also found to be related to PCOS [128,129].

3.5. Preeclampsia (PE)

PE is a serious pregnancy complication characterized with hypertension and protein-
uria. A defect in placental angiogenesis is considered to be one of the factors responsible
for the pathogenesis of PE [130]. Significant attention has been given to the alteration of
the VEGF system in PE, since it is the main regulator of placental angiogenesis.

sFlt-1 was found to be upregulated [131–134], whilst VEGF and PlGF were downreg-
ulated in serum and placenta of PE patients [131,132,135,136]. VEGFR-1 and VEGFR-2
were found to be overexpressed in the placenta from patients suffering from PE [130].
Placentation is a process with extensive angiogenesis in order to establish an appropriate
vascular network between mother and fetus [137–139]. VEGF mediates angiogenesis and
has an anti-apoptotic effect on vascular endothelium cells [2]. VEGF also plays a role in
the proliferation, migration, and endovascular differentiation of trophoblast cells [140,141].
Thus, the alteration of the VEGF system could lead to placental malfunction. Maynard
et al. have elucidated the central role of sFlt-1 in the pathogenesis of PE [133]. At an early
stage of pregnancy, hypoxia increases sFlt-1 production by placental cytotrophoblasts [142].
Subsequently, excess sFlt-1 produced by the placenta leads to endothelial dysfunction,
hypertension, and proteinuria by trapping VEGF and PlGF [133]. Thus, among these
changes in the VEGF system, the elevation of sFlt-1 might play a central role, since de-
creased concentrations of VEGF and PlGF might be a consequence of an elevated level of
circulating sFlt-1.

Based on the fact that the process of angiogenesis is regulated by numerous pro-
angiogenic and anti-angiogenic factors and cytokines as well as angiogenic receptors, there
is an increasing number of studies focusing on the balance between pro-angiogenic and
anti-angiogenic factors in preeclampsia [143,144]. In some studies, the ratios sFlt-1/PlGF
and VEGF/ sFlt-1 were determined to study the association of angiogenesis with certain
pathological conditions [19,21,145].

3.6. Anti-Angiogenic Therapy

Over these years, the development of anti-VEGF agents has achieved great
progress [146,147]. A number of anti-angiogenic agents including bevacizumab have
been applied clinically in tumor treatment [1]. Associated with conventional chemotherapy,
bevacizumab significantly improved the prognosis of patients with metastatic colorectal
cancer or non-small-cell lung cancer [148–152]. Anti-angiogenic therapy is also proved to be
effective in the treatment of non-tumor diseases, for instance, age-related macular degener-
ation [153]. However, as stated above, due to the complex role of VEGF in the reproductive
system, anti-VEGF therapy has not been applied in clinical practice in the field of reproduc-
tive medicine yet. Although some studies have reported the possible therapeutic role of
VEGF inhibitors in women with PCOS [125], the clinical application of anti-VEGF therapy
should be cautious before we fully understand the underlying mechanism whereby VEGF
influences embryo implantation and the pharmacokinetic characteristics of these drugs.

4. Conclusions

VEGF is an important angiogenic factor in many physiological and pathological
conditions. In this review, we summarized recent data on the role of VEGF in embryo im-
plantation and reproductive failure. The existing data show that VEGF plays multifaceted
roles in embryo implantation and that the alteration of the expression of VEGF, including
VEGF polymorphisms, could lead to infertility and pregnancy complications. However,
little is known about the mechanisms whereby VEGF influences embryo implantation or
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the root causes of the observed alterations in VEGF expression. Further studies are in
urgent need to clarify the role of VEGF in successful pregnancy and reproductive failure.
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