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ABSTRACT

Complex in vitro models of the tissue microenvironment, termed microphysiological systems, have enormous potential to transform the process of
discovering drugs and disease mechanisms. Such a paradigm shift is urgently needed in acute respiratory distress syndrome (ARDS), an acute lung
condition with no successful therapies and a 40% mortality rate. Here, we consider how microphysiological systems could improve understanding
of biological mechanisms driving ARDS and ultimately improve the success of therapies in clinical trials. We first discuss how microphysiological
systems could explain the biological mechanisms underlying the segregation of ARDS patients into two clinically distinct phenotypes. Then, we
contend that ARDS-mimetic microphysiological systems should recapitulate three critical aspects of the distal airway microenvironment, namely,
mechanical force, inflammation, and fibrosis, and we review models that incorporate each of these aspects. Finally, we recognize the substantial
challenges associated with combining inflammation, fibrosis, and/or mechanical force in microphysiological systems. Nevertheless, complex
in vitromodels are a novel paradigm for studying ARDS, and they could ultimately improve patient care.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5111549

I. PATHOPHYSIOLOGY AND ENDOTYPES OF ARDS
A. Background

Acute Respiratory Distress Syndrome (ARDS) is a life-threatening
acute lung condition characterized by the sudden onset of severe

pulmonary inflammation and edema resulting in secondary hypox-
emia and pulmonary fibroproliferation. ARDS can be triggered by var-
ious insults, whether direct (e.g., aspiration, pneumonia, and
mechanical ventilation) or indirect (e.g., sepsis, trauma, and blood
transfusion).2,8,84 Following such insults, most ARDS patients must be
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placed on positive pressure mechanical ventilation that can cause
ventilator-associated lung injury, which exacerbates the initial tissue
injury.101 Despite over 50 years of intense study and attempts at phar-
macological treatment, the mortality rate in ARDS patients hovers at
35%–45% and the condition afflicts an estimated 190 000 patients per
year84 in the United States. It is also responsible for up to 10% of
intensive care admissions globally.11,35,46 Only modest improvements
in survival have been made due to mechanical ventilation strategies
that minimize ventilator associated lung injury.118 So far, no pharma-
cological therapies have reduced ARDS mortality, including those
aimed at attenuating inflammation, preventing or suppressing fibrosis,
addressing infection, or surfactant replacement to reduce fluid
mechanical stress.46,64,67

B. ARDS pathophysiology

Pathophysiology of ARDS occurs in 3 chronological phases. In
the exudative phase, severe inflammation causes diffuse alveolar injury
and increased epithelial and microvascular permeability.
Proteinaceous vascular fluid leaks into the alveolar lumen, and large
amounts of alveolar epithelial cells die. Surfactant production is com-
promised as type II pneumocytes are lost so that the fluid flooding the
lumen has an abnormally high surface tension.28 Leukocytes, especially
neutrophils, are aggressively recruited and release proinflammatory
cytokines, proteases, and neutrophil extracellular traps. Apoptotic epi-
thelial cells and neutrophils accumulate in the alveolar lumen and
begin to form hyaline membranes composed of immunoglobulin,
complement, dead cell debris, and fibrin. Fibroblasts infiltrate into this
environment to repair the tissue damage sustained by the initial injury.
In the proliferative phase, type II alveolar epithelial cells and fibroblasts
proliferate and cover sites of denudation in the alveoli. Fibroblasts

become activated and deposit fibronectin to re-establish a basement
membrane, and type II alveolar epithelial cells differentiate to type I
epithelium and restore gas exchange and barrier function to sites of
denudation. Immune cells are continuously recruited to mediate tissue
repair. Hyaline membranes are a characteristic histological finding
during this phase.19 The fibroproliferative phase is characterized by
myofibroblast invasion, fibroblast proliferation, and collagen produc-
tion. Surviving patients often experience a permanent decline in lung
function.22 For detailed pathophysiology that is outside the scope of
this review, readers are referred to recent comprehensive reviews by
Matthay et al.84 and Sapru et al.108

C. Injury-inflammation-repair in ARDS

Tissue repair, especially restoration of barrier function, is coordi-
nated through inflammatory and fibrotic processes that are influenced
by the mechanical and biochemical microenvironment [Fig. 1 (Refs. 2,
7, 15, 27–29, 53, 69, 88, 89, 101, 121, and 123)]. The initial injury is
caused primarily by neutrophil-dependent and platelet-dependent
damage to the endothelial and epithelial barriers of the small airways
and alveoli. Studies in large animals showed that alveolar edema
occurs only when there is damage to both the endothelium and epithe-
lium.138 In healthy repair, inflammation and fibrosis restore barrier
and gas exchange function to the epithelium and endothelium and
subsequently resolve.4,7,12,27 While the endothelium’s morphology
appears unaffected aside from its compromised barrier function,
the epithelium experiences significant denudation and apoptosis in
addition to loss of barrier function, which prevents removal of alveolar
edema fluid and deprives the lung of adequate quantities of
surfactant.84

FIG. 1. Injury-inflammation-repair in lung
disease. Inflammation and fibrosis (resolv-
ing or nonresolving) cooperate to remodel
lung tissue after injury.7,27 Both processes
are heavily influenced by stressors in the
tissue microenvironment. In ARDS,
mechanical forces arising from surfactant
dysfunction28 and mechanical ventila-
tion101 interfere with the tissue repair pro-
cess by reinjuring the tissue,2,29,53,69

thereby inducing inflammation123 and pro-
moting fibrosis.15,121,131 The interactions
between tissue stress, inflammation, and
remodeling can direct the tissue toward
successful tissue repair or toward aberrant
remodeling that consists of progressive
fibrosis and systemically dysregulated
immunity.7,15,88,89,131
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Epithelial repair in ARDS is often dysregulated. Blood neutro-
phils are recruited massively to the lumen, where they extend their life-
span in the lung tissue and perpetuate inflammation.48 Meanwhile,
activated fibroblasts deposit excess collagen that impairs gas
exchange.86 Most patients require mechanical ventilation and experi-
ence surfactant dysfunction, exacerbating epithelial injury during the
repair process and imparting sublethal stresses on the epithelium.
Compounding the impact of ventilation is the fact that the epithelium,
immune cells, and fibroblasts sense and respond to mechanical
forces14,31,60,85,109,121,137,144 in the lung microenvironment. Therefore,
models of inflammation and fibrosis during mechanical ventilation are
critical to understanding how epithelial repair impacts ARDS endo-
type development and consequently the patient’s chance of survival.

D. ARDS endotypes

ARDS is a clinically heterogeneous condition. Approximately
10% of ARDS patients recover rapidly and in the acute phase
(<3 days),110 and these patients may not require intervention aside
from ventilation. Meanwhile, a larger subset of patients experien-
ces progressive fibrosis80,81,89 and/or systemically dysregulated
inflammation,17,90,104 both of which are associated with a higher
risk of mortality.17,21,65,81,87,118 These nonresolving patients might
benefit from pharmacologic intervention, especially if their risk of
developing to this stage could be identified prior to the onset of
symptoms. Additionally, ARDS clinical trials74,106,128 have
reported inconsistent therapeutic responses. This failure could be
explained by the syndrome’s heterogeneity. Therefore, there is
great interest in predicting (a) which patients will not recover rap-
idly to determine when intensive treatment and/or trial enrollment
is most beneficial38 and (b) which nonresolving patients might
respond to which therapeutics to enrich clinical trial cohorts with
potential responders.

To address these urgent questions, clinicians have developed
prognostic markers that correlate ARDS outcomes with epidemiology,
genomics, clinical features, physiology, and biomarkers.26,116 The lad-
der classifier is advantageous because it stratifies patients based on
indicators of the underlyling biology of their disease. This powerful
connection to biology might enable clinicians to predict therapeutic
responses using these biomarker-based classificiations when the path-
ophysiology driving each biomarker profile is better understood. For
example, Calfee et al.17 used latent class analysis to show that ARDS
patients cluster into two clinical endotypes based on biomarkers:
hyper- and hypoinflammatory. The former experienced higher rates of
shock and metabolic acidosis, had significantly worse outcomes, and
had higher mortality in response to mechanical ventilation with low
positive end expiratory pressure. These findings were later verified
using cluster analysis,13 and a second retrospective trial analysis
showed endotype-associated responses to simvastatin.18

In these retrospective studies, Calfee’s classifiers have demon-
strated the potential to transform patient care by treating patients
based on the biology driving their disease. However, biomarker-based
endotyping cannot fulfill its promise of predicting endotype-specific
responses to drugs until the biological mechanisms behind each endo-
type are understood. Only then will endotyping be a convincing deter-
minant of patient enrollment in clinical trials. Sinha and Calfee116

provide a more extensive review of ARDS endotyping and the need for
biological mechanisms.

II. MODELING ARDS ENDOTYPES
A. Traditional models

To understand the biological mechanisms that drive ARDS endo-
types, preclinical models of ARDS pathophysiology are essential. The
ideal preclinical model of ARDS pathophysiology should recapitulate
only the critical aspects of the complex disease microenvironment,
focusing on a specific etiology and patient endotype. Current models
are limited in their ability to represent human pathophysiology for the
study of disease and drug mechanisms.

2D monoculture of the airway epithelium in vitro cannot capture
intricacies of inflammatory networks and cross talk between processes
of injury, inflammation, and remodeling. This culture method typi-
cally also neglects tissue-level stresses such as mechanical force and
does not account for fluid stresses that are dominant in ARDS due to
surfactant depletion. Finally, cell lines are limited in their relevance to
pathophysiology. However, primary human cells are becoming more
accessible. For example, the Marisco Lung Institute’s CF Center Tissue
Procurement and Cell Culture Core has pioneered isolation and cul-
ture techniques for primary human lung cells.43

Animal models, notably mouse models, capture complex interac-
tions between injury, inflammation, and tissue repair in ARDS, mak-
ing them more suitable than current in vitro studies for drug testing.
For pathophysiology studies, however, species-specific differences in
lung physiology could interfere with attempts to correlate biomarkers
with pathophysiological mechanisms. There is conflicting evidence
regarding whether murine gene expression profiles in response to lung
injury correlate well with those in humans. Sweeney et al. argue for
significant similarity between murine and human inflammation after
lung injury,122 although limitations to this study include the small
human sample size (n¼ 3) and the number of genes evaluated
(n¼ 432). Further, this study compared human samples from patients
with non-ARDS lung injury. Seok et al., in contrast, assert that when
comparing almost 5000 human and murine genes altered by the same
inflammatory stressors (i.e., burn, trauma, and hypoxemia), mouse
models of inflammation show a close to random (R2 between 0 and
0.1) association to human gene counterparts.112 Inflammation in
ARDS involves thousands of responsive genes,104 and a comprehen-
sive determination has not been reached about the relevance of murine
gene expression to human ARDS. Therefore, there is interest in study-
ing human cells to complement animal studies.

Inherent limitations hinder the study of primary human samples.
It is impossible to control the cell types (e.g., immune cells, epithelium,
and fibroblasts) and mediators (e.g., cytokines, chemokines, and extra-
cellular matrix components) present in a patient’s lung microenviron-
ment, limiting the ability to interrogate individual components’
contribution to pathophysiology. This limitation can result in studies
that are descriptive rather than mechanistic. Biopsy samples are
acquired primarily from deceased patients because biopsies are a high-
risk procedure for living patients. Because of this, human lung samples
are biased toward severe disease and provide little opportunity to study
the evolution of the disease microenvironment from the early to late
stage. Bronchoalveolar lavage fluid (BALF) provides a snapshot of the
distal lung’s cytokine, immune cell, and mucus content, but cellular-
level mechanisms cannot be positively inferred without corroborating
in vitro data.

Whole blood is readily available but provides limited information
about the lung microenvironment. Particularly, peripheral neutrophils
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are often studied in ARDS, but their relevance to the lung microenvi-
ronment is unclear because lung neutrophils appear to acquire novel
phenotypes upon recruitment to the airways. In vitro, transepithelial
migration of primary peripheral neutrophils into pediatric ARDS
patient airway fluid activates neutrophils toward a proinflammatory
phenotype with paradoxically decreased bacterial killing potency.51

Additionally, primary neutrophils isolated from adult ARDS BALF
display impaired bacterial killing and superoxide production com-
pared to blood and local arterial neutrophils.83 Overall, human sam-
ples are a vital component of ARDS pathophysiology research but
corresponding in vitro data from more sophisticated models are
needed to study mechanisms. For a more in-depth review of preclini-
cal ARDS models, see the excellent analysis by Laffey and Kavanagh.72

B. Modeling ARDS in microphysiological systems
(MPSs)

Microphysiological systems (MPSs) are in vitro cell culture sys-
tems incorporating 3-D culture, coculture, physical forces, or other
tissue-level phenomena that aim to create a tissue-mimetic microenvi-
ronment. They capture complex tissue-level physiology and disease
phenomena in vitro using primary human cells and fluids from
patients,68 lending them the potential to bridge the gap between ani-
mal models and human pathophysiology. MPSs supplement human
and animal models and provide a third paradigm for the study of com-
plex disease processes and drug mechanisms. MPS modeling different
ARDS endotypes could explain the different responses to simvastatin
and protective ventilation that were observed between hyperinflamma-
tory and hypoinflammatory cohorts in clinical trials.

Of course, the challenge of recreating a pathophysiology that is
poorly understood, for the purpose of advancing its understanding,
cannot be overstated. ARDS endotypes are not correlated strongly
with disease etiology or epidemiology, and as a result, there are cur-
rently no preclinical models of endotype-specific ARDS. There are sev-
eral excellent etiology-specific models: Hecker and colleagues recently
developed a “two-hit” murine model of ARDS combined with aging
that resembles human ARDS more closely than traditional mouse
models and may prove more clinically relevant for therapeutic efficacy
evaluation.99 Nemzek et al. have studied a two-hit aspiration-induced

ARDS model.96 However, these models do not capture endotype-
specific ARDS.

MPSs are uniquely suited to become the first preclinical ARDS
endotype models. MPSs can undergo iterative prototyping until a
desired pathophysiological feature is adequately captured. This strat-
egy is illustrated in Fig. 2. MPS designers compare their prototype to
the human phenotype using metrics such as biomarkers, immune cell
phenotypes, and responses to stimuli (e.g., strain, hypoxia, and infec-
tion). The prototype is then adjusted to better reflect in vivo metrics
through the precise control of microenvironmental factors such as cell
types, inflammatory and fibrotic mediators, and type/degree of
mechanical force. MPSs capture disease processes to the extent neces-
sary to produce endotype-specific biomarkers but remain simple
enough to obtain a high signal-to-noise ratio, which is a desirable
feature of in vitromodels.

This review focuses on the bioengineering challenges of construct-
ing an ARDS microphysiological system that could address clinical
problems, especially the need to understand endotype pathophysiology.
Critical aspects of the alveolar microenvironment during ARDS should
be identified and included in experimental models of ARDS. This
review highlights mechanical forces, inflammation, and fibrosis because
they are central to ARDS pathophysiology and tissue repair, difficult to
capture in vitro with traditional methods, and readily adaptable to
existing MPS technology.

III. CAPTURING MECHANICAL FORCES IN MPS
A. Physiological forces in the distal airways

Because a majority of ARDS patients are mechanically ventilated,
it is important to understand how the forces inflicted by positive pres-
sure ventilation and mechanical stress from excess fluid in the bron-
choalveolar region impact the tissue repair process. After ARDS onset,
surfactant function is compromised due to the death of type II alveolar
epithelial cells and flooding of distal airways with proteinaceous fluid.8

This increases the surface tension of the liquid covering the surface of
the alveolar and small airway epithelia, leading to abnormally high lev-
els of fluid stresses. These are exacerbated by alveolar collapse and
reopening (atelectasis), overdistension of the alveoli (volutrauma),
and/or high peak inspiratory or driving pressures (barotrauma) during

FIG. 2. Iterative model design with validation against patient phenotype will lead to an endotype-specific model of ARDS that can be used for predictive enrichment of ARDS
clinical trials. Endotype-specific metrics such as cytokine ratios, immune cell functions (e.g., bacterial killing, metabolism, and NETosis), and degree of surfactant production
can be compared between patients and in vitro models. Iterative adjustments to model parameters, such as genetics (e.g., MUC5A upregulated epithelium), physical forces,
degree of initial injury, degree of fibrosis, and the type and ratio of inflammatory mediators, could enable the development of a model that produces biomarkers or functional
characteristics (e.g., response to therapeutics, response to mechanical strain, and immune cell phenotype changes such as enhanced NETosis), mimicking those of a specific
endotype. The model should also be validated by testing functional outputs such as barrier function of the epithelium and tissue healing (scratch wound assay). The final model
provides the opportunity for pathophysiological mechanisms of disease to be clarified and for drug candidates to be tested in vitro. Both pathophysiology and drug testing will
help predict whether a certain endotype is likely to respond to novel treatments.
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mechanical ventilation.45,97,98 Figure 3(A) illustrates forces experi-
enced by the small airways and alveoli during ARDS. Of note, surfac-
tant trials to alleviate fluid stress have not succeeded. Studies suggest
they may have failed as a result of inadequate delivery to the alveoli
due to low instilled dose volume, as indicated by computational
modeling.39,50

B. Existing mechanical force MPS

Lung mechanical forces can be categorized broadly as compres-
sive stress, shear stress, and stretch [Fig. 3(B)].140 Shear stress is the
force per area that acts parallel to a plane, often considered a “slipping”
force. Strain (stretch) is the change in the length of a plane divided by
the initial length. Compressive stress is the force per area applied per-
pendicular to a plane; it includes pressure and normal force. The
effects of mechanical forces on pulmonary epithelia have been studied
in vitro for several decades.76,137 Most models incorporate membranes

that allow for strain or compressive stress to be applied to well-
differentiated cell lines or primary airway cells in air-liquid interface
(ALI) culture (Table I).

Complex fluid stresses also contribute significantly to lung
injury.2,49,101,107 Investigators have modeled the fluid stresses
imparted by liquid plug propagation and rupture, small airway col-
lapse and reopening, and alveolar collapse and reopening. The
Gaver group was the first to report an in vitro system for modeling
the stress field associated with alveolar recruitment using a moving
air bubble [Fig. 3(D) (Refs. 10 and 142)]. They showed that slower
bubble speeds increase cell death, despite a milder shear gradient,
because the pressure gradient is significantly increased.70 In the
same moving air bubble model, Higuita-Castro et al. showed that
increasing the substrate stiffness caused greater cell death after 1
and 5 bubbles57 [Fig. 4(c)].

Additionally, Takayama and colleagues modeled liquid plug
propagation and rupture in vitro61,126 [Fig. 4(a) (Refs. 42, 54, and 61)].

FIG. 3. Physiologic mechanical forces in the bronchoalveolar region and their computational models. (A) The acinus consists of alveoli sacs that branch off of common terminal
bronchiole (d) or (h); sacs (e), (f), and (g) are depicted in this figure. Sac (e) is cut off from air flow by the stagnant plug at (d); sac (f) is overinflated, and sac (g) is flooded
with proteinaceous fluid. (B) Shear, strain, and compression are the main components of force present in the lungs, either independently or in concert. In the above depiction,
strain results from overinflation of sac (f) due to obstruction of sac (d) and collapse of sac (g). Compression of adjacent sac results from the overinflation of (f). Shear stress is
a component of the stress field produced during airway reopening at (h).10,142 Interfacial flow damages the small airways when liquid plugs propagate and rupture during inspi-
ration61,126 (a)–(c) Transient liquid plugs form when the small airways collapse slightly and liquid on either side of the airways meets, forming the plug depicted in (a). Upon
inspiration, the plug is pushed by pressure-driven flow, becoming thinner and thinner (b) until it loses integrity and pops (c), creating the crackle sounds that are observed upon
auscultation of the lungs. (C) Hassan et al.54 modeled liquid plug propagation and rupture and found that the leading edge of the plug creates a narrow capillary wave (circled).
The wave’s extreme pressure gradient imparts severe stress on the airway wall. (D) The first in vitro model of airway reopening was introduced by Bilek et al.10 Using this
model, Yalcin et al. found that smaller airway diameters experience greater stress.142 Reproduced with permission from Hassan et al., Int. J. Numer. Methods Fluids 67, 1373
(2011). Copyright 2011, John Wiley and Sons.54 Reproduced with permission from Bilek et al. J. Appl. Physiol. 94, 770 (2003). Copyright 2003, American Physiological
Society.10
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TABLE I. Representative sample of in vitro platforms that replicate mechanical forces in the lungs.

References
Mechanical
Stimuli Disease Cell type(s) Model type

Force application
method

Key metrics in response to
force

Ressler et al.105 Compression Asthma Rat tracheal epithelial Transwell Air pressurization
above culture

RNA coding for Egr-1, endo-
thelin-1, TGF-b

Swartz et al.121 Compression Asthma Normal human bronchial
epithelial and normal
human lung fibroblast
(CCL-186)

Transwell epithelium
culture over fibroblasts

Air pressurization
above culture

Quantitative production of
collagen, fibronectin

Tschumperlin et al.132 Compression Asthma Normal human bronchial
epithelial

Transwell Air pressurization
above culture

MAP kinase and herparin-
binding epidermal growth
factor (HB-EGF)

Bilek et al.10 Stress field, pres-
sure gradient

VILI Fetal rat pulmonary epithe-
lial (CCL-149)

Parallel plate flow
chamber

Air bubble propagation Cell death (live/dead stain)

Chu et al.24 Compression Asthma Normal human bronchial
epithelial

Transwell Air pressurization
above culture

Quantitative expression of
epidermal growth factor
receptor ligands HB-EGF,
epiregulin, amphiregulin,
TGF-b

Tarran et al.125 Shear stress Cystic fibrosis Primary human epithelial Transwell Phasic motion of
culture

Adenosine triphosphate (ATP)
release, periciliary layer
thickness

Choe et al.23 Compression Asthma Human fetal lung
fibroblast (CCL-186)

Tissue-engineered
human airway wall

Dynamic lateral com-
pressive strain

Deposition of types III and
IV collagen, MMPs-2 and-9

Huh et al.61 Shear stress,
pressure gradient

Pulmonary
edema

Primary human small
airway epithelial

Microfluidic chip Liquid plug propaga-
tion and rupture

Cell death (live/dead stain)

Yalcin et al.142 Shear stress,
pressure gradient

ARDS Fetal rat pulmonary
epithelial (CCL-149)

Height adjustable
parallel plate flow
chamber

Air bubble propagation Cell death (live/dead stain)

Sidhaye et al.114 Shear stress General Normal human bronchial
epithelial

Cell culture insert Laminar fluid flow Paracellular permeability

Fronius et al.41 Shear stress Cystic fibrosis Xenopus oocyte Xenopus oocyte Fluid stream Epithelial sodium channel
activation

Huh et al.63 Strain General Human pulmonary micro-
vascular endothelial and
alveolar epithelial, periph-
eral neutrophil (H441,
A549, E10)

Microfluidic chip Stretching porous
membrane

ICAM-1 (endothelium), ROS
generation (epithelium),
nanoparticle translocation

Douville et al.32 Shear stress,
strain

ARDS Human alveolar basal epi-
thelial (A549) and primary
murine alveolar epithelial

Microfluidic chip with
flexible membrane

Membrane stretch and
air-liquid interface
oscillation

Cell death (live/dead stain)

Jacob and Gaver69 Stress field, pres-
sure gradient

ARDS Human pulmonary epithe-
lial (H441)

Parallel plate flow
chamber

Air bubble propagation Paracellular permeability;
Distribution of tight junction
proteins ZO-1 and claudin 4
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They found that liquid plug propagation caused cell death even with-
out plug rupture. To explain this observation, Fujioka et al. showed
that the front meniscus of a moving liquid plug imparts large stresses
on the airway wall due to a narrow capillary wave that appears ahead
of the plug’s leading edge [Fig. 3(C), capillary wave circled].42,54

Recently, Muradoglu et al. also showed that surfactant reduces the
mechanical stress imparted by the liquid plug.95 In an alveolar closure/
reopening model, Douville et al. showed that repeat strain combined
with fluid stress caused cell death and detachment, suggesting a mech-
anism for how atelectasis affects lung function32 [Fig. 4(b)]. The work
of the preceding investigators has brought attention to the major role
of fluid stresses in promoting lung injury. Additionally, we provide a
representative history of all types of pulmonary epithelial force models
in Table I.10,23,24,32,41,61,63,69,79,105,114,117,119,121,125,132,142

C. Limitations of mechanical force MPS

Few pulmonary force models consider the physical properties of
the extracellular matrix, such as stiffness and substrate ligands. It is
well established that substrate ligands affect epithelial and endothelial
properties and that focal adhesions mediate mechanosensing.1,73 Of
relevance to mechanical force models, aligned collagen fibers in the
substrate amplify cell-cell mechanotransduction across distances
greater than several cell diameters.78 In the moving air-finger model
[Fig. 4(c) (Refs. 10, 57, 58, 69, 70, and 142)], Higuita-Castro et al.
showed that increased substrate compliance leads to greater cell
detachment and less necrosis.57 More investigation is needed to deter-
mine the effects of substrate properties on physiology in mechanical
force models.

Mechanical force models rarely contain multiple stress types,
despite indications that stressors work synergistically to promote
injury. For example, simultaneous surfactant loss and overstretching
of the alveoli cooperatively promote secondary lung injury during
mechanical ventilation.97,98 Even models that do capture complex
force combinations or stress fields often fall short of describing the
force’s downstream effects on the tissue. Huh et al. and Douville et al.,
shown in Figs. 4(a) and 4(b), capture complex forces but characterize
only cell death and detachment. Ghadiali and colleagues, in contrast,
have characterized mechanotransduction in the moving air-finger
model [Fig. 4(c)].57,58,69 Still, both models lack immune and fibroblast
coculture.

Because tissue repair is an essential component of recovery from
ARDS, it is critical to capture the interaction between tissue repair and
mechanical forces. This dynamic relationship remains poorly under-
stood despite two decades of in vitro studies on the effects of mechani-
cal forces on isolated epithelial, fibroblast, and immune
cells.85,127,137,144 In the following, we discuss the challenges and oppor-
tunities for modeling this aspect of ARDS in MPS.

IV. CAPTURING INFLAMMATION AND FIBROSIS IN MPS
A. Inflammation and fibrosis in ARDS

Inflammation in ARDS is characterized by early and persistent
neutrophilia, mast cell recruitment and activation,135 and recruitment
of monocytes and macrophages in the distal airways and alveoli.84

Neutrophil activity is believed to damage tissue in ARDS.48,146

Neutrophils secrete proteases, such as neutrophil elastase and matrix
metalloproteases (MMPs), which degrade the extracellular matrix, and
neutrophils promote hypoxia through rapid oxygen consumption andTA
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the excessive production of reactive oxygen species (ROSs).25,48,146

Neutrophils are also affected by mechanical stressors in vitro and
in vivo. Force induces the production of chemotactic factors, including
TNF-a,60,102,103,129 IL-8,102,131,136 and IL-6.103,123,129,141 IL-6 has long
been considered a biomarker of ventilator-induced lung injury, and
TNF-a and IL-8 are master regulators of inflammation.

Concurrently, fibroproliferation and tissue repair proceed in
response to both the primary tissue injury and the damage caused by
recruited neutrophils. In the terminal bronchioles and alveoli, type II
pneumocytes proliferate and fibroblasts become activated. Proliferating
fibroblasts deposit provisional extracellular matrix (ECM) consisting of
fibronectin, and later collagen, to repair ECM damage and restore

FIG. 4. MPS models of mechanical force
in lung disease. (a) (i) A microfluidic
device replicates the generation of crackle
sounds frequently heard in the distal air-
ways of patients with pulmonary edema.
(ii) The device generates liquid plugs that
propagate and rupture in channels over
alveolar type I pneumocytes. (iii) Plugs
result in epithelial cell death (red) during
propagation (left) and especially at the
rupture site (right). Scale bar, 150lM. (iv)
Fluid dynamic simulations show that the
leading edge of the plug applies severe
shear stress to the epithelium.42,54

Reproduced with permission from Huh
et al. Proc. Natl. Acad. Sci. U. S. A.
104(48), 18886–18891 (2007). Copyright
2007 National Academy of Sciences.61 (b)
(i) Douville et al. report a device that
applies simultaneous fluid shear stress
and mechanical strain to alveolar epithe-
lium; vacuum stretches the membrane
and simultaneously lowers the fluid level.
(ii) Fluid stress and strain result in death
(red cells) and detachment of alveolar epi-
thelium in the device. Scale bar, 1 mm.
Reproduced with permission from Lab on
a Chip 11, 609–619 (2011). Copyright
2011 Royal Society of Chemistry.32 (c) (i)
Higuita-Castro et al. mimic small airway or
alveolar reopening by propagating an air
bubble over the epithelium.57 The device
design, first conceived by Bilek et al.,10

has been extensively used to characterize
the damage of liquid stress during atelec-
tasis and airway reopening.57,58,69,70,142

(ii) and (iii) Higuita-Castro et al. show that
the fluid meniscus causes increasing cell
death and detachment with increasing
substrate stiffness. Reproduced with per-
mission from Higuita-Castro et al., J. Appl.
Physiol. 117, 1231 (2014). Copyright 2014
American Physiological Society.57
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epithelial integrity.84,89 Dysregulated fibroproliferative repair can
develop into nonresolving fibrosis that has a poor prognosis in
ARDS and is refractory to treatment.80,81,87 Aside from the intro-
duction of protective ventilation strategies that limit ventilator-
associated lung injury, attempts to prevent the occurrence of non-
resolving fibrosis and dysregulated immunity, or to slow progres-
sion, have not yielded success.

Crosstalk between the epithelium and immune system in
response to mechanical force plays a significant role in mediating tis-
sue repair. This process is poorly characterized due to its complexity
and heterogeneity, but general mechanisms of mechanical force-
induced epithelial-immune cross talk that have been reported individ-
ually are presented in Fig. 5 (Refs. 5, 12, 16, 20, 27, 30, 31, 33, 34, 40,
44, 48, 52, 56, 59, 60, 66, 75, 77, 82, 85, 92–94, 100, 107, 113, 115, 117,
120, 121, 123, 124, 130, 133, 137, 139, and 143–146).

B. Challenges of modeling inflammation and fibrosis
in MPS

The choice of cell types, source, and degree of activation or polar-
ization can greatly affect cell phenotype and responses to stimuli.
Tissue repair in vivo involves the migration, activation, and cross-
contact of multiple cell types including fibroblasts, neutrophils, mono-
cytes, and lymphocytes. The ideal model would capture a high degree
of in vivo cell functionality including fibroblast proliferation, immune
transmigration and in situ activation, degranulation, neutrophil extra-
cellular trap (NET) formation, and elevated phagocytosis. However,
many of these behaviors are difficult to control and modulate in com-
plex model systems with multiple cell types. For example, TGF-b acti-
vates fibroblasts but may have concurrent effects on the epithelium
and immune cells. MPSs should capture the minimal activation neces-
sary to recapitulate the disease mechanism of interest.

Barkal et al., for example, focused on neutrophil activation in
their small airway-on-a-chip model of fungal infection. Neutrophils
migrated toward volatile fungal chemoattractants through the endo-
thelium and epithelium [Fig. 6(a)].6 In a model of invasive aspergillo-
sis, the device recapitulated the well-characterized inflammatory
cytokine response and increased recruitment of neutrophils observed
in murine and zebrafish models. In another example, Choe et al.
focused on activation of fibroblasts.23 They applied strain to a cocul-
ture of human bronchial epithelial cells atop a fibroblast-seeded colla-
gen gel. They found that strain induced myofibroblast differentiation
and type III and IV collagen deposition. Both myofibroblasts and type
III collagen were concentrated close to the basal side of the epithelium,
suggesting that the epithelium is a source of profibrotic mediators that
promote matrix remodeling. Their in vitro model included the mini-
mum cell types and activating stimuli to capture remodeling events.
Furthermore, the model showed that the pathway is not mediated by
immune cells because they were not present. The rational choice of the
required cell types and activating stimuli enables MPSs to remain sim-
ple enough for analysis but sophisticated enough to capture inflamma-
tion and remodeling in vitro.

Immune cell and fibroblast cocultures greatly improve the physi-
ological relevance of ARDS MPSs but present significant design chal-
lenges. First, very few MPSs have studied the impact of mechanical
strain on fibrosis. Swartz et al.121 and Choe et al.23 showed that strain-
induced fibrosis can be mediated by the epithelium, but such mechani-
cal force pathways that induce fibrosis are likely complex and

multifactorial. As such, they should be further explored in ARDS
MPSs that can incorporate physiological forces in coculture systems.
Additionally, the presence of multiple cell types obfuscates the source
of inflammatory and fibrotic mediators (e.g., cytokines, proteases,
miRNA, reactive oxygen species, and TGF-b). To overcome this hur-
dle, MPS data are sometimes analyzed with systems biology techniques
similar to those used to parse out in vivo signaling pathways.9,134

FIG. 5. Reported mechanical stress-induced cell behaviors and inflammatory medi-
ators that enable cross talk between pulmonary epithelium and immune cells.
Mechanical stresses due to surfactant dysfunction, edema, and mechanical ventila-
tion cause the epithelium to produce inflammatory and fibrotic mediators107,130 and
may induce the integrated stress response, a key mediator of mechanical stress-
induced epithelial injury.31 Mechanical force-induced cell behaviors and mediators
of cross talk between the epithelium and immune cells are listed in Fig. 5. Such
cross talk drives remodeling pathways; for example, hyperactivated neutrophils
deplete oxygen in their microenvironment through the excessive production of reac-
tive oxygen species (ROSs). This hypoxia stresses the epithelium and leads to apo-
ptosis or inflammatory signaling that promotes fibroblast activation and epithelial
proliferation. Neutrophils also contribute directly to remodeling during epithelial
transmigration;12 massive neutrophil influx compromises tight junction integrity and
stimulates repair of the lamina propria.146 Mechanically activated neutrophils and
alveolar macrophages also secrete proteases that degrade the extracellular matrix
(ECM), such as neutrophil elastase, and promote continued ECM destruction and
activation of fibroblasts to repair the ECM damage.27,44,124 Because neutrophils are
significant drivers of this destructive remodeling cycle, they are a target of therapeu-
tic research.120
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FIG. 6. Models of pulmonary inflammation
in vitro. (a) (i) A microfluidic small airway-
on-a-chip replicates the endothelium,
interstitial fibroblasts, and epithelium. (ii)
Fungal infection is simulated by inoculat-
ing the epithelium with wild type
Aspergillus fumigatus, a model fungal
pathogen. (iii) Neutrophils are added to
the endothelial channels after the hyphae
have extended into the interstitial space.
Scale bar, 200 lM. (iv) Neutrophils che-
motax from the endothelium through the
interstitium toward fungal hyphae,
attracted by volatile compounds produced
by the fungus. Scale bars, 100lM.
Reproduced with permission from Barkal
et al. Nat. Commun. 8, 1770 (2017).
Copyright 2017 Authors, licensed under a
CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/).6 (b) (i) and (ii) A micro-
fluidic alveolus-on-a-chip incorporates
strain and neutrophil transmigration in a
bilayer epithelium-endothelium coculture
model. (iii) E. coli on the epithelium
attracts neutrophils to transmigrate from
the basal channel through endothelium
and epithelium. (iv) Two E. coli bacteria
(green) on the epithelium are chased and
phagocytosed by a neutrophil (red) on the
epithelium of the device. Reproduced with
permission from Huh et al., Science 328,
1662 (2010). Copyright 2010 AAAS.63
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Additionally, airway epithelia, especially from primary cells,
require many days or weeks to polarize. Media optimization may not
be adequate to maintain the health and desired phenotype of all cell
types present in coculture in the long term. Sellgren et al. reported a
triple coculture of primary airway epithelium, fibroblasts, and endo-
thelium but noted that an airwaylike phenotype (cobblestone mor-
phology, mucus production, and cilia) was difficult to maintain in
coculture conditions.111 MPS designers should consider if long-term
coculture can be avoided, and if not, what media formulations can
maintain cocultured cells in their desired phenotypes.

Substrate properties and mechanical forces also affect immune
and fibroblast cell phenotypes. MPSs should have physiologically rele-
vant physical forces and substrate properties so that immune and
fibroblast phenotype mimic those in vivo. While models have indepen-
dently considered immune cell and fibroblast mechanobiology in
response to single stresses such as substrate stiffness or mechanical
force, few combine multiple stress types in the same microenviron-
ment. Although Huh et al. (2010) [Fig. 6(b)] incorporated interstitial
flow, strain, and transmigration into their alveolus on-a-chip, they did
not study how these forces affected the neutrophils in the model.

V. GENERAL CHALLENGES OF MODELING ARDS IN
MPS
A. Complexity

A major challenge of designing MPSs is determining the level of
model complexity. An overly complex model will produce noisy data,
but an overly simplistic one is not useful. One option is to utilize func-
tional readouts that are already familiar to the biology community,
such as phenotypic assays (e.g., assays for bacterial phagocytosis and
killing by neutrophils), to reduce the dimensionality of the data while
keeping the model relatively complex. MPSs are, however, limited in
how complex they can become before losing physiological relevance.
A model that is too complicated could create conditions that induce
nonphysiological cell behaviors. Additionally, elaborate models are dif-
ficult to fabricate, which limits their throughput and accessibility to

the greater research community. Designers must consider what aspect
of pathophysiology they desire to model and carefully consider what
features are necessary to capture the phenomenon while minimizing
the components of the system.

ARDS pathophysiology is complex and involves multiple stages
with different characteristics. The designer must consider what aspects
of disease progression to model. For example, Huh et al. captured pul-
monary edema, fibrin deposition, and impaired gas exchange in
response to toxic levels of IL-2 in a lung-on-a-chip microdevice
including only the epithelium and endothelium (Fig. 7). They discov-
ered that immune cells and fibroblasts were not necessary to produce
these tissue-level functions, but strain was necessary, indicating that
strain is a significant initiator of early pulmonary drug toxicity
responses in vivo.

Conversely, designers must consider whether even the most com-
plex MPS is comprehensive enough to replicate the phenomenon of
interest. For example, a single MPS could not capture multiple organ
failure. Systemic dysregulated immunity that is observed in sepsis is
likewise unlikely to be captured in a single MPS. Many MPSs also lack
an immune component, a challenge that has not been addressed suffi-
ciently. However, the simplicity of MPSs compared to in vivo models
is often a benefit because it allows the isolation of confounding factors
from the system, such as in Choe et al.23 and Huh et al.62

B. Heterogeneity

Because ARDS is a heterogeneous syndrome, it is impossible to
construct a unifying model that incorporates every possible phenotype.
MPSs could, however, be used to generate high throughput microen-
vironments mimicking the phenotypes to better understand divergent
biological pathways driving phenotypic differences. For cell culture,
primary human cell heterogeneity is also a significant challenge.
Quality control of primary-cell-sourced cultures is difficult, especially
in microfluidic culture with very small cell populations, due to vari-
ability across patients and even among cells from a single source.

FIG. 7. In vitro models of the lung microenvironment could be applied to study fibroproliferative disease in ARDS. (i) A lung-on-a-chip that replicates vascular leakage, leading
to pulmonary edema and fibrin clotting.62 (ii) Strain is applied, by pulling vacuum on either side of the chamber, to a membrane (iii) with alveolar epithelium on the apical side
and endothelium on the basal side. Scale bar, 200 lM. (iv) IL-2 induces endothelial and epithelial permeability allowing basal media loaded with prothrombin and fibrin to pass
through the membrane and flood the apical channel, simulating pulmonary edema. Scale bar, 200 lM. (v) and (vi) Fibrin clots form on the apical channel after it becomes
flooded with basal media containing fibrin and prothrombin. Scale bar (v), 50lM. Scale bar (vi), 5 lM. Reproduced with permission from Huh et al. Sci. Transl. Med. 4,
159ra147 (2012). Copyright 2012 AAAS.62
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Conversely, models constructed with cell lines typically lack adequate
cell heterogeneity. For example, models of the small airways that use
H441 club cell lines lack the small populations of goblet cells, basal cells,
and macrophages also present in this microenvironment. Most MPSs
mimicking the alveoli only include alveolar type I pneumocytes and
neglect type II pneumocytes, macrophages, and fibroblasts. Mertz et al.91

provide a discussion of the considerations of cell heterogeneity in MPSs.

C. Data collection in microfluidic systems

Traditional assays are difficult to adapt to microfluidic MPSs.
Epithelial barrier permeability measurement is usually absent from
microfluidic devices, especially real time permeability.55 This measure
of epithelial response to stress and recovery from injury would greatly
increase the information provided by microfluidic MPSs. Similarly,
the scratch wound assay is a common metric of epithelial repair and
recovery from injury that has only been adapted to microfluidics by
Felder et al.36,37 in a custom device. Cytokine levels produced by very
small cell numbers could fall below the detection limit of Luminex or
ELISA assays. The MPS designer who considers microfluidics should
determine whether their study will be sensitive to these limitations.

D. Clinical relevance

Finally, for MPSs to move from proof-of-concept to clinical
applications, close cooperation with clinicians and the medical
research community is essential. Clinicians connect researchers with
urgent medical needs of patients and help researchers design their
models in the context of a specific motivating question. Researchers in
disease-specific fields provide essential information from studies of
primary samples and basic science experiments that direct the design
of more complex systems. An accurate model will be validated against
clinical data and will recapitulate relevant aspects of ARDS pathophys-
iology or treatment.

VI. OUTLOOK

Despite the challenges of using MPSs for ARDS research, oppor-
tunities abound. These models could elucidate mechanisms that drive
tissue repair toward regenerative or maladaptive responses to injury in
ARDS. Additionally, MPSs can be applied to study pulmonary drug
delivery for surfactant replacement or other therapies.47 MPSs are also
applicable to other lung diseases: asthma and bronchiectasis endotypes
have been described recently, and similar to ARDS, little is known
about the biological mechanisms behind them.3,71 However, both dis-
eases also involve inflammation, remodeling, and mechanical force in
the lungs.

In conclusion, ARDS is a heterogeneous syndrome with high
mortality and few effective treatment options. In-depth analyses have
identified subgroups of patients that respond differently to supportive
interventions and have different morbidity and mortality rates, but the
biological mechanisms driving these differences in outcome are
unclear, hindering the translation of these phenotyping methods to
patients. MPSs have transformed in vitro cell culture and opened the
door to complex in vitro analysis that could uncover these biological
mechanisms and accelerate the translation of new phenotyping meth-
ods to critically ill patients. Overall, MPSs have tremendous potential
to reveal patient-specific biological endotypes, which would improve
personalized outcomes of importance to patients.
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