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Background: Robust prognostic stratification of patients with oropharyngeal squamous cell carcinoma
(OPSCC) is important for developing individualized treatment plans. This study was conducted to develop
and validate a clinically feasible prognostic classifier based on transcriptome-wide gene expression profiles.
Methods: Tumor tissues were collected from 208 OPSCC patients treated at Washington University in St. Louis
and 130 OPSCC patients treated at Vanderbilt University, used for model training and validation, respectively.
OPSCC patients (n = 70) from the TCGA cohort were also included for independent validation. Based on RNA-
seq profiling data, Cox proportional hazards regression analysis was performed to identify genes associated
with disease outcomes. Then, Lasso-penalized multivariate survival models were constructed to identify bio-
marker genes for developing a prognostic gene signature.
Findings: A 60-gene signature was identified by RNA-seq profiling analysis. Computed risk score of the gene
signature was significantly predictive of 5-year overall survival of the training cohort (Hazard ratio (HR)
2832, P = 4-3E-41). Subgroup analysis stratified by HPV status revealed that the signature was prognostic in
HPV-positive OPSCC patients (HR 30.55, P = 7-0E-37) and was independent of clinical features. Importantly,
the gene signature was validated in two independent patient cohorts, including the TCGA cohort (HR 3.-94,
P =0-0018) and the Vanderbilt cohort (HR 8.50, P = 5.7E-09) for overall survival.
Interpretation: The prognostic gene signature is a robust tool for risk stratification of OPSCC patients. The sig-
nature remains prognostic among HPV-positive OPSCC patients.
Funding: National Institutes of Health.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Multiple prognostic models for OPSCC have been developed in recent
years based on specific domain knowledge of small subsets of genes,
such as those focused on specific somatic mutations [4], HPV-promoter

Epidemiologic evidence has shown a rapid increase in the inci-
dence rate of oropharyngeal squamous cell carcinoma (OPSCC) in the
past several decades [1]. Accurate prognostication of patients with
OPSCC is critical for providing effective individualized treatment plans.
Currently, OPSCC prognosis is mainly based on human papillomavirus
(HPV) status, lifetime tobacco cigarette smoking and tumor and nodal
stage [2]. Although HPV-positive (HPV+) patients show better overall
survival, disease outcomes still vary greatly, and rates of distant metas-
tasis are similar to the HPV-negative (HPV-) population [3].
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methylome [5], miRNA [6] and immune-related genes [7]. However,
knowledge of the molecular mechanisms underlying observed clinical
differences remains rather limited at present, and existing prognostic
models have not been validated in large independent OPSCC patient pop-
ulation. Thus, there is an urgent need to identify robust prognostic bio-
markers which further stratify risk in OPSCC patients.

In general, an integrated model consisting of multiple genes have
greater predictive ability than single gene models [8]. To this end, tra-
ditional univariate or multivariate Cox regression models are com-
monly used to select biomarker genes for further building multi-gene
signatures. However, conventional Cox regression models, without
adequate consideration of variable selection, often suffer from
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Research in context
Evidence before this study

Accurate prognostication of patients with oropharyngeal squa-
mous cell carcinoma (OPSCC) is critical for providing effective
individualized treatment plans. Although HPV-positive (HPV+)
patients show better overall survival, there are approximately
20% of HPV+ OPSCC having dismal prognosis. We systematically
searched PubMed up to September 15, 2019, with the search
terms “mRNA”, “OPSCC”, “prognostic”, and “biomarker”, with
no publication date or language restrictions. Of the OPSCC
mRNA signature studies, several signatures were developed by
analyzing small numbers of genes using limited numbers of
tumor specimens. For example, high expression level of HER3
was found to be significantly correlated with poor overall sur-
vival (OS); patients with highly expressed nuclear PRMT5 had
1.7 times higher hazard of death; an immune-related gene sig-
nature was reported to be prognostic of OS; a hypoxia-related
gene signature was reported to be associated with poor pro-
gression-free survival; an HPV-correlated signature including
38 genes was prognostic of HPV+ OPSCC patients. Our search
did not identify any previous transcriptome level studies that
investigated the potential predictive role of mRNA expression
signature in OPSCC.

Added value of this study

We did a cross-institutional study to develop an mRNA expres-
sion signature for predicting the risk of OPSCC progression. By
performing transcriptome-wide RNA-seq profiling analysis for
408 OPSCC cases, a 60-gene signature was developed. Com-
puted risk score of the gene signature was significantly predic-
tive of 5-year overall, 5-year recurrence-free, and 5-year
metastasis-free survival of the training cohort. Subgroup analy-
sis stratified by HPV status revealed that the signature was
prognostic in HPV+ OPSCC patients. We validated the perfor-
mance of the 60-gene signature in two independent cohorts
and the signature maintained its independent prognostic value
after adjustment for the clinical variables. Our finding suggests
that the 60-gene signature is a clinically feasible signature for
OPSCC prognosis including the HPV+ OPSCC subgroup.

Implications of all the available evidence

We developed and validated a clinically feasible gene signature
for the prognosis of OPSCC patients including the subgroup of
HPV+ patients. The robust performance of the signature on
multi-institutional OPSCC patients indicates its general applica-
bility in clinical practice.

increased risk of model overfitting when a large number of genes are
included. To address this challenge, the least absolute shrinkage and
selection operator (LASSO) [9] penalized Cox model is a useful
method to implement variable selection while fitting the Cox model
and has been widely applied for robust modeling of high-dimen-
sional predictors. In this study, we sought to develop a robust prog-
nostic gene signature for OPSCC based on transcriptional expression
profiles of genes, as selected by LASSO Cox regression models. A
patient cohort from Washington University in St. Louis was used as
the training set to build the prognostic signature. An independent
OPSCC cohort from Vanderbilt University as well as an OPSCC cohort
from The Cancer Genome Atlas (TCGA) [10] were used to evaluate
the general applicability of the signature. In this way, we have devel-
oped and validated an RNA expression based 60-gene signature that
robustly predicted OPSCC survival across multiple institutions.

2. Methods
2.1. Patients cohorts

This study was approved by the Human Research Protection Office
of the Washington University in St. Louis and the Human Research
Protection Program of Vanderbilt University Medical Center.
Informed patient consent was not required for this retrospective
study. Two hundred and eight OPSCC cases treated at Washington
University were included in this study as the training cohort. In addi-
tion, we obtained 130 cases treated at Vanderbilt University as a vali-
dation cohort. Clinical data were collected prospectively from these
patients and then updated retrospectively after follow-up review.

For all the patients, formalin-fixed, paraffin-embedded (FFPE)
tumor tissues were collected for pathologic analysis from biopsy or
primary surgical resection. Tumor sections from these cases were
stained with hematoxylin and eosin (H&E) and reviewed indepen-
dently by pathologists at Washington University and Vanderbilt Uni-
versity to confirm the diagnoses. Tumor regions from each section
were identified by H&E staining, and total RNA was then extracted
from macrodissected tumor regions with the miRNeasy FFPE kit (Qia-
gen). In this way, we focused on expression profiling of the tumor tis-
sues with minimal contamination from adjacent normal tissues.

From the TCGA GDC Data Portal (https://gdc-portal.nci.nih.gov/),
normalized RNA-seq and clinical data for head and neck cancer
(HNSCC) patients were retrieved. From this cohort, a total of 70
OPSCC patients were identified according to anatomic neoplasm sub-
division annotations in the clinical data.

2.2. RNA-seq and sequencing data analysis

Details of the RNA-seq experimental protocol have been described
previously [11]. In brief, ribosomal RNA (rRNA) was removed with
the RiboMinus kit (Life Technologies) and custom DNA oligonucleo-
tide probes. Then, the RNA was used to construct RNA-seq libraries
with the NEBNext Ultra mRNA Library Prep kit (New England BioL-
abs). The resulting cDNA libraries were PCR amplified and subject to
sequencing with Illumina HiSeq 3000 at Washington University
Genome Technology Access Center. Raw sequencing reads were
mapped to the NCBI reference sequence database [12] to identify
human coding genes as well as aligned to annotated HPV genomes
[13] to identify HPV transcripts with Bowtie [14]. Twenty-seven sam-
ples were excluded from a total of 338 samples due to low sequenc-
ing data quality (i.e. total mRNA read counts < 400,000). The read
counts were normalized to reads per kilobase per million reads
(RPKM). Genes with average RPKM <1 were excluded from further
analysis. The RPKM expression values were further log2 transformed.

2.3. Construction of gene expression prediction model

Univariate Cox regression analysis was performed to evaluate the
association between individual gene expression and disease outcome
in the training data. A simple mean imputation approach was used to
replace missing values in the clinical variables. The average percent-
age of missing values is 2.4% per clinical variable in the training
cohort and 2.2% in the Vanderbilt validation cohort. Multivariate Cox
regression analysis was performed to evaluate the independent prog-
nostic value of individual genes after controlling for common clinico-
pathologic variables. LASSO was used to reduce model overfitting
during the selection of high-performance biomarker genes with the
glmnet R Package [15]. Specifically, an optimal value for the penalty
parameter (A1) was calculated using a ten-fold internal cross-valida-
tion for selecting variables in the final model. The modeling process
was repeated 1000 times. From the 1000 iterations, different gene
models were constructed for optimal prognostic performance. We
then counted the occurrence of individual genes across all presented
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models. Various cutoffs were considered to retain genes with occur-
rences >100, 200 or 300 to develop three respective gene signatures.
The risk score of the signatures was calculated as follows:

p
Risk score = *(z; « e;)

i1
where p is the total number of genes retained in the final signature, i
indicates the ith gene in the signature, z; and e; represent the z-score (i.e.,
the Cox regression coefficient of a gene divided by its estimated standard
error) and the expression level of the ith gene, respectively. C-index from
the Cox analysis was applied to evaluate the performance of the signa-
tures. Patient stratification according to risk score was done using the
optimal cut-off value as established in the training cohort by receiver
operating characteristic (ROC) curve analysis for overall survival.

2.4. Statistical analysis

In our study, overall survival (OS) was defined as the time interval
between the date of diagnosis and the date of death; recurrence-free
survival (RFS) was defined as the time interval between the date of diag-
nosis and the date of first recurrence or death; metastasis-free survival
(MFS) was defined as the time interval between the date of diagnosis
and the date of first distant metastasis or death. The Kaplan-Meier sur-
vival curve and log-rank test were used to evaluate the performance of
the gene signatures. Statistical data analysis was performed using the
statistical programming language R (http://www.r-project.org/).

3. Results

3.1. RNA-seq profiling to globally identify genes associated with patient
survival

RNA-seq profiling was performed for 208 OPSCC patients treated
at Washington University in St. Louis. Total RNA isolated from FFPE
tumor specimens is usually highly degraded, and thus not suitable
for conventional RNA-seq profiling analysis. To address this chal-
lenge, we developed a sequencing library construction method using
custom designed probes for rRNA removal (see Methods for details).
In this way, most rRNA reads were successfully removed from the
constructed libraries. On average, we obtained 12 million total reads
per sample. After removing 11 samples with low sequencing data
quality, 197 cases were included in the training cohort for discover-
ing prognostic biomarker genes (Table 1). Among them, 32.5%
(n = 64) of the patients received surgery with adjuvant chemoradia-
tion therapy, 35.0% (n = 69) received surgery with adjuvant radiation
therapy, 16.2% (n = 32) received chemoradiation therapy and 11.2%
(n = 22) received surgery only. The median follow-up time was 60
months, with 49 of the 197 patients (24-9%) deceased during the
study period. We performed univariate Cox regression analysis to
identify genes whose RNA expression was correlated with 5-year (5-
yr) overall survival in the training cohort. The results revealed that
1928 protein-coding genes were associated with 5-yr OS (P < 0.05,
Wald test). The independent prognostic values of these genes were
evaluated further by controlling for treatment protocols (chemother-
apy and radiotherapy status) with multivariate Cox regression analy-
sis. In this way, 1436 genes were selected as biomarker candidates
for further model development (P < 0-05, Wald test).

3.2. A gene expression signature to predict patient survival

To further identify the most promising gene biomarkers, we per-
formed LASSO-penalized multivariate Cox modeling with ten-fold
cross-validation. Across 1000 iterations, 16 different gene expression
models were constructed for optimal survival prediction. The fre-
quency counts of these different models ranged from 1 to 681. A total

Table 1
Patient characteristics.
Variable WashU Cohort ~ Vanderbilt Cohort ~ TCGA Cohort
(n=197) (n=114) (n=70)
Median age (IQR) 57 (50—64) 58 (51-64) 56 (50—62)
Sex, male (%) 172 (87-3) 100 (87-7) 60 (85-7)
Race (%)
White 184 (93-4) 107 (93-9) 65 (92.9)
Other 13 (6-6) 7(6-1) 5(7-1)
HPV status (%)
Negative 30(15-2) 21(184) 26 (37-1)
Positive 167 (84-8) 93(81-6) 44(62-9
Stage (%)
Stage -1 13 (6-6) 17 (14-9) 15(21-4
Stage 11V 174 (88-3) 80(70-2) 53(75-7)
Smoking (%)
Non-smoker 62 (31.5) 30(26-3) 19(271)
Smoker 131 (66-5) 70 (61-4) 50 (71-
5-year events (%)
Recurrence 31(15.7) 19(16.7) 9(12:9)
Death 49 (24.9) 27(23.7) 20(28:6)

of 77 genes were represented in all the models combined, with a
range of 6 to 59 genes in individual models. The frequency counts of
the 77 genes were in the range of 5 to 700 across 1000 iterations
(Supplementary Table S1). We established three gene signatures
based on various cutoffs of the gene occurrence (>100, 200 or 300).
We found that the signature consisting of 60 genes (n>200) had the
best prognostic performance (C-index = 0-89). Thus, this signature
was selected for further analysis. Among the 60 genes in this signa-
ture, 26 had positive Cox coefficients, indicating that higher expres-
sion levels were associated with poor survival outcomes. On the
other hand, 34 genes had negative Cox coefficients, indicating higher
expression levels were associated with favorable outcomes (Supple-
mentary Table S2).

A risk scoring system was established by summarizing weighted
expression values of the 60 genes (see Methods). The z-scores in the
univariate Cox models were used as weighting factors to compute
the risk score. In this way, we calculated the risk score for each
patient in the training cohort. ROC analysis was performed to define
the optimal cut-off for patient risk stratification, revealing a sensitiv-
ity of 80% and a specificity of 96% at the cut-off value of —158-3 (Sup-
plementary Figure S1). Patients were divided into high-risk and low-
risk groups based on the optimal cut-off value. In this way, 53
patients were predicted to be of high-risk (with score >-158-3) and
144 of low-risk (with score < —158.3). Expression heatmap analysis
indicates that the 34 favorable and 26 unfavorable genes had
enriched expression in patients with low- and high-risk scores,
respectively (Supplementary Figure S2). In total, 86-7% of the patients
in the high-risk group vs. 6-6% in the low-risk group died during the
study period. Kaplan-Meier survival analysis indicated that the death
risk for high-risk patients was significantly higher compared with
that for low-risk patients (HR 28-32, 95% CI 13-90—57-66, P = 4.3E-41,
Log-rank test; Fig. 1a). Moreover, the risk score was also demon-
strated to be prognostic of locoregional and distant failures (HR
17-28, 95% C1 9-49—31.46, P = 7-9E-35 for 5-y RFS and HR 22.-89, 95%
CI12.03—-43.55, P = 2.5E-40 for 5-y MFS, Log-rank test; Fig. 1b and c).

3.3. The 60-gene signature was independent of clinicopathologic
features and HPV status

We assessed whether the 60-gene signature had independent
prognostic value in the context of clinicopathologic parameters
including age, sex, race, smoking history, TNM stage, radiotherapy
and chemotherapy status. With univariate Cox analysis, the 60-gene
signature were significantly associated with 5-yr OS in the training
cohort (P = 3-1E-20, Wald test, Table 2). Multivariate Cox analysis fur-
ther exhibited that the signature retained its independent prognostic
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Fig. 1. Evaluation of the 60-gene signature for 5-yr OS (a), 5-yr RFS (b) and 5-yr MFS (c) in the training cohort. Patients were stratified according to signature risk score. Kaplan-

Meier survival analysis was performed, with log-rank P values presented.

value for 5-yr OS after adjusting for clinicopathologic factors (HR
30-19,95% CI 14-41-63-23, P = 9-2E-16, Wald test; Table 2).

It is well-known that HPV+ OPSCC is associated with better out-
come than HPV- OPSCC. Given the strong prognostic impact of the
HPV status on survival, we further assessed whether the 60-gene sig-
nature could significantly prognosticate both HPV+ and HPV- patients
in the training cohort. The HPV status was determined by RNA-seq
analysis as described in Methods. Patients were stratified into two
groups according to their HPV status (167 HPV+ cases and 30 HPV-
cases). The 60-gene signature was assessed for its performance by
applying to these two patient subgroups separately. Survival analysis
indicated that the signature risk score was prognostic of 5-yr OS (HR
30-55, 95% CI 13-86—67-34, P = 7-0E-37, Log-rank test), 5-yr RFS (HR
17.57, 95% CI 8-96-34.49, P = 6-6E-29, Log-rank test) and 5-yr MFS
(HR 24-11, 95% CI 11.75—49-48, P = 5-1E-35, Log-rank test; Fig. 2a-c)
for HPV+ patients. Similarly, the risk score was also a prognostic
predictor for HPV- patients, although with less significant p-values
(p-values for survival outcomes ranging from 8-8E-05 to 2-0E-04,
Log-rank test) as compared with HPV+ patients, partly due to the
smaller sample size (Fig. 2d-f). Importantly, the 60-gene signature
also maintained its independent prognostic value in the HPV+ patient

Table 2

subgroup as evaluated by both univariate analysis (HR 30-55, 95% CI
13.86-67-34, P = 2.3E-17, Wald test) and multivariable analysis
adjusting for clinical features (HR 30.82, 95% CI 13.01-72.98,
P = 6.5E-15, Wald test; Table 2). Expression heatmap analysis indi-
cates that the favorable and unfavorable genes in the signature had
enriched expression in HPV+ OPSCCs with low- and high-risk scores,
respectively (Supplementary Figure S3). Thus, the prognostic value of
the 60-gene signature was independent of both the clinicopathologic
features and HPV status.

3.4. Validation of the 60-gene signature in independent cross-
institutional cohorts

To assess the general applicability of the 60-gene signature, we
first applied it to the TCGA OPSCC subset comprised of 70 patients
(Table 1). A risk score was calculated for each patient. The same cut-
off score value, as determined with the training cohort, was used for
patient stratification. The patients with high-risk score (n = 26) had
significantly shorter 5-yr OS (HR 3-94, 95% CI 1.56-9.98, P = 0-0018,
Log-rank test), 5-yr RFS (HR 4-14, 95% CI 1.74-9.85, P = 0-0005, Log-

Prognostic performance of the 60-gene signature in the context of clinicopathologic features in the training cohort.

Overall Survival Variable

Univariate Cox

Multivariate Cox

HR (95% CI) Pvalue HR (95% CI) Pvalue

Training cohort (n = 197)

Gene signature (low- vs high-risk) 2832(13.90-57-66)  3-1e-20*  30-19(14.41-63.23)  9-2e-16*
Age 1.03 (1-00-1-06) 0-045* 1.03(1-00-1-07) 0-05
Stage (I/II/IIl vs IV) 1.02 (0-52-2-00) 0.95 1.44 (0-69-3-00) 033
Sex (female vs male) 1.54(0-55-4-28) 0-41 097 (0-30-3-18) 0-96
Race (white vs others) 1.76 (0-57-4-43) 023 0.98 (0-37-2-61) 0.97
Smoking (yes vs no) 0-59(0-30-1-15) 012 1.16 (0-55-2-46) 0.69
Chemotherapy (no vs yes) 1.30(0-74-2-30) 036 0-96 (0-48—1.92) 0-90
Radiotherapy (no vs yes) 1-51(0-54-4-26) 0-44 1-19(0-31-4.51) 0-80

Training HPV+ cohort (n = 167)

Gene signature (low- vs high-risk) ~ 30-55(13.86-67-34)  2.3e-17* 30-82(13-01-72-98) 6-5e-15*
Age 1.05(1-01-1-09) 7-7e-03* 1.02 (0-98-1-07) 024
Stage (I/II/Il vs IV) 1.31(0-55-3-11) 055 1.32(0-45-3-84) 0-61
Sex (female vs male) 4.36 (0-60-31-93) 015 3.42(0-35-33.64) 0-29
Race (white vs others) 096 (0-13-7-04) 0.97 3.00(0-37-24-32) 0-30
Smoking (yes vs no) 0-66 (0-30—1-44) 0-29 1-11(0-46-2-67) 0.-82
Chemotherapy (no vs yes) 1-51(0-74-3.06) 0-26 0.96 (0-38-2-43) 0.94
Radiotherapy (no vs yes) 1-44 (0-43-4-81) 0-56 0-90(0-20-4-11) 0-89

*

Pvalue (Wald test) is significant.
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Fig. 2. Evaluation of the 60-gene signature in the context of HPV status of the training cohort. The 5-yr OS, 5-yr RFS and 5-yr MFS were evaluated in the HPV+ patient group (a-c)
and HPV- patient group (d-f), respectively. Patients were stratified according to signature risk score. Kaplan-Meier survival analysis was performed, with log-rank P values pre-

sented.

rank test) and 5-yr MFS (HR 3.71, 95% CI 1.54-8.91, P = 0.0018, Log-
rank test) than those with low-risk score (n = 44, Fig. 3a-c).

To more comprehensively evaluate the signature performance, we
included an independent OPSCC cohort comprised of 130 patients
treated at Vanderbilt University. Sixteen samples were removed due
to the low sequencing data quality. Among the 114 patients, 38.6%
(n = 44) received surgery with adjuvant chemoradiation therapy,
37.7% (n = 43) received chemoradiation therapy and 11.4% (n = 13)
received surgery only. Using the gene signature with the same estab-
lished cut-off value, the patients were stratified into either the high-
risk group (37 patients) or the low-risk group (77 patients). We
observed that 58-8% of the patients in the high-risk group and 8-8% in
the low-risk group deceased, respectively. Kaplan-Meier survival
analysis confirmed the prognostic significance of the 60-gene signa-
ture for 5-yr OS (HR 8-50, 95% CI 3-59-20-14, P = 5.7E-09, Log-rank
test), 5-yr RFS (HR 4-07, 95% CI 2.17—-7-63, P = 2-4E-06, Log-rank test)
and 5-yr MFS (HR 6.94, 95% CI 3.17—-15-17, P = 1.8E-08, Log-rank
test; Fig. 3d—f).

After adjusting for the clinicopathologic parameters in multivariate
Cox regression analysis, the 60-gene signature retained its independent
prognostic value in both validation cohorts (HR 3.-46, 95% CI 1.21-9-85,
P = 0-02 for the TCGA cohort and HR 5.53, 95% ClI 2.17—14-09, P = 3.4E-
04 for the Vanderbilt cohort, Wald test; Table 3). We also evaluated the
prognostic power of the signature in the context of the HPV status. It

was not feasible to risk-stratify TCGA HPV+ patients mainly due to their
uniformly favorable outcomes as well as the relatively small sample size
(n = 44). As to the Vanderbilt cohort, the risk score was prognostic of
5-yr OS when applied to the 93 HPV+ cases (HR 6-81, 95% CI
2.08-22.36, P = 2.4E-04, Log-rank test). Similarly, the risk score was
also prognostic of 5-yr RFS (HR 2-67, 95% CI 1.09—6.56, P = 0-026, Log-
rank test) and 5-yr MFS (HR 5.-73, 95% CI 2-01-16-36, P = 2-3E-04, Log-
rank test) for HPV+ patients (Fig. 3g-i). Importantly, multivariate Cox
analysis showed that the 60-gene signature was an independent prog-
nostic factor associated with 5-yr OS for HPV+ patients (HR 5-00, 95% CI
1.40—17-85, P=0-01, Wald test; Table 3). As to the 21 HPV- patients, all
except three were predicted to have high risk by the gene signature. In
summary, the 60-gene signature retained its independent prognostic
significance when applied to cross-institutional patient cohorts, includ-
ing the subgroup of HPV+ patients.

3. Discussion

In this study, we developed a comprehensive gene expression sig-
nature for OPSCC prognosis by RNA-seq transcriptome profiling. Our
analysis indicated that the signature was independent from the clini-
cal parameters as well as HPV status. Previous studies have identified
multiple prognostic signatures for the general HNSCC population.
However, signatures developed in this way may not perform well for
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Fig. 3. Evaluation of the 60-gene signature in the validation cohorts. The 5-yr OS, 5-yr RFS and 5-yr MFS in the TCGA validation cohort (a-c), Vanderbilt validation cohort (d-f) and Van-
derbilt HPV+ subgroup (g-i) are presented. Patients were stratified according to signature risk score. Kaplan-Meier survival analysis was performed, with log-rank P values presented.

OPSCC patients as OPSCC is distinctively different from most other
subtypes of HNSCC. Attempting to address this challenge, several
prognostic gene signatures were developed specifically for OPSCCs
[16—18]. For example, high expression level of HER3 was found to be
significantly correlated with poor OS [16]; patients with highly
expressed nuclear PRMT5 had 1.7 times higher hazard of death [17];

an immune-related gene signature was reported to be prognostic of
0S [7]; a hypoxia-related gene signature was reported to be associ-
ated with poor progression-free survival [18]; an HPV-correlated sig-
nature including 38 genes was prognostic of OPSCC patients [19].
However, these existing signatures were developed by analyzing
small numbers of genes using limited numbers of tumor specimens.



Table 3

Prognostic performance of the 60-gene signature in the context of clinicopathologic features in the validation

cohorts.

Overall Survival Variable

Univariate Cox

Multivariate Cox

HR (95% CI) Pvalue HR (95% CI) Pvalue

Vanderbilt validation cohort (n =114)

Gene signature (low- vs high-risk) 8.50(3-59-20-14) 1-2e-06*  5.53(2:17-14.09)  3.4e-04*
Age 1.09(1-04-1-14) 2-6e-04*  1.06(1-00-1-11) 0-05
Stage (I/II/I vs IV) 0-80(0-34-1-88) 0-61 1-42(0-52-3.92) 0-49
Sex (female vs male) 0-55(0-21-1-45) 0-23 1-11(0-33-3.76) 0-87
Race (white vs others) 2-90 (1-00-8-39) 0.-05 1-83(0-55-6-12) 033
Smoking (yes vs no) 0-18 (0-05-0-70) 0-01" 0-29 (0-07-1-25) 0-10
Chemotherapy (no vs yes) 0-68 (0-28-1-67) 0-40 0-53 (0-06—4-41) 0.56
Radiotherapy (no vs yes) 0-58 (0-22—1-50) 0-26 1.62(0-17-15.18)  0-67

Vanderbilt validation HPV+ cohort (n = 93)

Gene signature (low- vs high-risk)  6-81 (2-08—22-36) 1.6e-03* 5.00(1-40-17-85)  0-01"
Age 1.09 (1-00-1-17) 0-03* 1.09 (1-00-1-18) 0.-049*
Stage (I/II/Il vs IV) 0-56 (0-14-2-19) 0-40 0-28(0-07-1-22) 0-09
Sex (female vs male) NA NA NA NA
Race (white vs others) NA NA NA NA
Smoking (yes vs no) 0-20(0-03—1-28) 0-09 0-30(0-04-2.01) 021
Chemotherapy (no vs yes) 10-21(0-11-963-1)  0-32 NA NA
Radiotherapy (no vs yes) 6-66 (0-07-631-2) 0-40 NA NA

TCGA validation cohort (n = 70)

Gene signature (low- vs high-risk)  3.94 (1.56-9-98) 3.8e-03" 3.46(1-21-9:-85) 0.02*
Age 1.04 (0-99-1.09) 0-11 1.03 (0-98-1-08) 0.27
Stage (I/II/Il vs IV) 0-66 (0-27-1-62) 0-36 0-94(0-31-2-86) 0.92
Sex (female vs male) 0-45(0-16—1-28) 0-14 0-55(0-17-1.76) 0-31
Race (white vs others) 1.43(0-19-11-00) 0.73 0-74 (0-08—6-42) 0.78
Smoking (yes vs no) 0-27 (0-08—-0-94) 0-04" 0-41(0-10-1-69) 022
Chemotherapy (no vs yes) 1-14(0-43-2-98) 079 1-14(0-31-4-20) 0-85
Radiotherapy (no vs yes) 0.74 (0-28-1-93) 0-54 1.14(0-31-4-22) 0-84

*

Pvalue (Wald test) is significant.

In contrast, the present study generated transcriptome-wide RNA-
seq profiling data for over 300 OPSCC patients treated at two institu-
tions. To date, this is the most comprehensive study characterizing
RNA expression in OPSCCs. In this way, we have developed and inde-
pendently validated a 60-gene signature for risk stratification of
OPSCC patients.

HPV status has been shown to be a robust prognostic marker in
OPSCC. The favorable prognosis of HPV+ patients leads to various dein-
tensification strategies aiming to maintain high survival rates while
reducing treatment toxicity [20]. Currently, this is an active area of
clinical research, and multiple studies have demonstrated promising
results from deintensification clinical trials for HPV+ OPSCC patients
[21]. Despite favorable prognosis in general, there are approximately
20% of HPV+ OPSCC patients who died of disease [2,22]. It is hypothe-
sized that there may be distinct genetic subtypes of HPV+ OPSCC,
resulting in variable responses to therapy [23]. Thus, deintensification
may not be appropriate for all HPV+ OPSCC patients. In our study, the
60-gene signature was robust at distinguishing high- and low-risk
patients in the HPV+ patient group. Thus, our gene signature could
contribute to ongoing trials by improving the selection of low-risk
HPV+ OPSCC patients for deintensification treatment.

Multiple genes in the 60-gene signature were previously impli-
cated in cancer progression. For example, LYN and MEI1 were included
as favorable genes in the signature. LYN has the capacity to stabilize
focal adhesion complexes and its overexpression were associated with
better OS in acute myeloid leukemia [24,25]. Similarly, patients with
higher expression levels of MEI1 have better OS than those with lower
expression levels in cervical cancer [26]. Another gene, TRIB3, was an
unfavorable gene in the signature. It has recently been identified as a
stress sensor in response to various tumor microenvironments [27]. In
addition, TRIB3 also shows a significant correlation with worse OS in
colon cancer [28]. To further evaluate the functional roles of the genes
in the signature, DAVID was used to identify gene oncology functional

enrichment [29]. The most significantly enriched terms include regula-
tion of glucose transport and inflammatory response. Previous studies
indicate that glucose metabolism is a potential therapeutic target in
cervical cancer, and high tumor inflammatory response predicts better
survival in OPSCC [30,31]. Thus, the roles as well as the underlying
mechanisms of these biomarker genes in OPSCC warrant further inves-
tigation.

In summary, we developed and validated a clinically feasible gene
signature for OPSCC prognosis. The robust performance of the signa-
ture on multi-institutional OPSCC patients indicates its general appli-
cability in clinical practice.
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