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Abstract: The presence of stromal cells in tumors is altering the significance of molecular profiling
when using standard methods of gene expression quantification. We developed a novel normalization
method to rank target gene expression in tumor samples by comparisons with reference samples
representing the different cell types found in a tumor. The score for each target gene obtained after
normalization, is aimed to be predictive of targeted therapies efficiency. We performed this qPCR
analysis on human colorectal cancers to demonstrate the importance of reference samples to obtain
accurate data and on a collection of patient-derived xenografted (PDX) colon tumors treated with
Cetuximab (anti-EGFR) to demonstrate that the calculated EGFR score is predictive of Cetuximab
efficacy. Interestingly, the score allowed to select an efficient treatment in a PDX model refractory to
standard of care. This method is opening a novel way to predict targeted therapy efficiency which
could be extended to several tumor types, and to unlimited target genes.

Keywords: gene expression; drug efficacy; targeted therapy selection; molecular profiling

1. Introduction

A cancer is a dynamic disease due to an acquisition of genomic alterations triggering perturbations
of signaling pathways that control, among others, cell growth, proliferation, apoptosis, or migration [1,2].
Due to the increasing research in this field, the mechanisms that govern these alteration processes are
becoming increasingly understood. In fact, the generalized molecular characterization of tumors using
multiple omics approaches has generated over the last 15 years a gold mine of data revolutionizing the
current clinical practice [3]. Thanks to this new knowledge, a tumor is nowadays not only classified as
usually by organ or cell type, but also according to molecular abnormalities and specific molecular
characteristics [4–6]. While helping to understand the mechanisms of cancer onset and progression,
the vast availability of information is strengthening the concept of personalized medicine for better and
more precise diagnosis and prognosis or predicting treatment efficacy [7]. Hence, this concept is also
concomitant with the development of targeted therapies differing from conventional chemotherapies,
since they specifically target key players of the processes involved in neoplastic transformation of a
tumor cell or in tumor progression [8]. The current challenge is to find the best adapted targeted therapy
for a patient according to their specific tumor molecular characteristics. Patients can therefore eventually
be classified into subgroups of responders or non-responders according to precise characteristics
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reflecting genetic alterations of molecular targets known to be responsible for the carcinogenesis
process or leading to resistance to targeted therapies. The KRAS mutation is, for example, predictive
of Cetuximab efficacy in colorectal cancer [9,10]. However, besides genomic instability in cancer
cells, one major hurdle slowing the systematic use of such approaches in the daily clinical practice is
intra-tumor heterogeneity. Indeed, it is well known that a tumor comprises several clonal expansions
whose genetic inhomogeneity has been clearly revealed [11]. This intra-tumor heterogeneity is in
part responsible to resistance to targeted therapies [12]. Moreover, cancer cells in solid tumors are
surrounded by a complex cellular ecosystem made of endothelial cells, eventually normal cells,
and several subtypes of infiltrating immune cells. Finally, profound modifications of the extracellular
microenvironment are also contributing to tumor heterogeneity [13]. This complexity has been
exemplified by Werb et al. comparing tumors as organs in organs [14]. Thus, when analyzing a tumor
biopsy, it is mandatory to take into account the cellular complexity reflecting the potential enrichment
of one particular cell type or may contain more non-tumor cells or may correspond to hypoxic/necrotic
region associated with disorganized extracellular matrix. This conjunction of factors is highlighting
the need to define a correct reference sample serving to calibrate the normal level of expression of a
given gene in order to properly identify up or down-regulation in the pathological context. Generally,
the expression data are produced using one or more housekeeping genes and eventually by comparison
with the normal tissue when applicable such as in the WINTHER initiative [15]. Here, we decided
to take into account the tumor complexity by comparing the level of the expression of a given gene
determined in a tumor sample with its expression in the whole organ hosting the tumor (here the
colon) and to take into account of the diversity of cell types in a tumor with its expression in the normal
major cell populations constituting the organs (here colon epithelial cells, colon smooth muscle cells).
To integrate the early modifications of the cellular composition in precancerous/low grade tumors we
also compared expression levels with precancerous (here polyps) tissue samples. Each comparison
was used to normalized the expression of target genes and the sum of these relative expression levels
was then calculated in order to determine a global target gene expression level reflecting the real
deregulation of the gene expression with regards to the different cellular components of the tumor.
The expression scores were calculated here for a limited list of target genes arbitrary selected for
their implication in tumor-associated processes and described as relevant targets in colorectal cancer
(see Table 1). This includes genes involved in proliferation (ITGB1, ERBB2, EGFR, MMP2, MMP9,
PDGFR), vascularization (VEGFA, Flt1, KDR), extracellular matrix remodeling (MMP2, MMP9), and all
being the target of targeted therapies in clinical development or already in-use.

Table 1. Summary of the target genes included in the molecular signature.

Target Gene Biological Function Relevance in CRC

MMP9
Extracellular matrix remodeling

Proliferation

[16]

MMP2 [16]

ITGB1 [17]

ERBB2 [18]

EGFR [19]

PDGFRA [20]

VEGFA

Angiogenesis

[21]

Flt1 [22]

KDR [23]

We conducted this proof of concept experiment on colorectal cancer (CRC) because, despite
progress in diagnosis and treatment, CRC is still a deadly cancer with a 5-year net survival not
exceeding 60% ([24]. In addition to microsatellite instabilities [25], mutations are sought to identify
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tumor subtypes. Overall, frequent alterations in colorectal cancers are a loss of APC (70%), mutations
of TP53 (30–50%), KRAS (35–40%), BRAF (5–10%), NRAS (3 to 5%), PI3CA (25%). In addition, IGF2
is amplified in 30% of cases and ERBB2 in 4% of cases [26]. Hence, the progressive evolution of
CRC together with the accumulation of mutations and the existence of well-established targeted
therapies represented an ideal model to challenge whether our normalization method independent
of the mutational status of the tumor would modify our understanding of gene expression in such a
complex and evolving cellular system. Using RNA samples from patient biopsies, we first showed the
importance of the reference samples used to normalize data and to get relevant levels of expression of
a given target gene. We then used 15 patient-derived xenograft tumor samples to prove the possibility
to obtain a correlation of an appropriately normalized expression level of EGFR with the response
to Cetuximab. The detailed analysis of this cohort also revealed that the method we developed
allowed the stratification of responding and non-responding tumors. Hence, we used this method to
evaluate in an animal model of CRC whether the administration of targeted therapies selected from
the proposed ranking method could be used to select efficient targeted therapies in tumors derived
from a non-responder patient. Strikingly, we were able to show in a preclinical model the predictive
value of the proposed normalization process and calculated expression scores.

2. Results

2.1. Selection of a Normalization Process Taking into Account Tumor Complexity

We accessed to a set of RNA samples of nine human colorectal cancer biopsies from Bioserve tumor
samples collection. After controlling RNA integrity, we performed RT-qPCR analysis to determine
the expression levels of nine target genes (EGFR, ERBB2, ITGB1, MMP2, MMP9, PDGFRA, VEGFA,
FLT1, and KDR). As seen in Figure 1, we obtained similar expression profiles for all biopsies when the
data were expressed as 2−∆Ct corresponding to the mRNA levels of target genes when compared to the
mean expression of two different housekeeping genes (GADPH and 18S) in the samples.
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Moreover, this approach was not able to identify significant expression level variations among the
different genes. The mRNA levels were then compared to the one measured in a reference sample
using the 2−∆∆Ct formula (Figure 2). Here, the expression level of target genes was to this end searched
in the whole normal colon, a precancerous colon lesion (Polyp), in human colonic smooth muscle cells,
and in human colonic epithelial cells. Interestingly, the expression profiles of target genes appeared
very different when taking into account these reference samples. The closest profile was obtained in
comparison with the polyp reference sample, while marked differences were obtained in comparisons
with smooth muscle cells.
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Figure 2. Molecular signatures after single normalization. The different radar graphs are showing
the molecular signature of each tumor sample when expression data were expressed according
to comparisons (2−∆∆Ct) with whole normal colon (blue line), precancerous lesion (purple line),
colon epithelial cells (green line), or colon smooth muscle cells (red line).

A statistical analysis conducted in the nine independent samples confirmed significant variations
of individual profiles when comparing the data obtained after the different types of normalization
(Table 2).



Cancers 2020, 12, 149 5 of 16

Table 2. Summary of the statistical analysis conducted on the molecular signatures after single
normalization. Each individual signature obtained after single normalization was compared as
matched data. The two by two comparisons showed non-significant variations (ns), or significant
variations (* p < 0.05; ** p < 0.01; *** p < 0.001; Mann-Whitney test) demonstrating the importance of
the normalization in getting relevant and consistent expression data. NORM = whole normal colon;
SMC = smooth muscle cells; EPIC = colon epithelial cells; POL = precancerous polyp.

Sample. Z5ALYRSH FC1AVRAA OQMNOR32

Reference SMC EPIC POL SMC EPIC POL SMC EPIC POL

NORM ** * ns *** * ns **** ns ns

SMC ns * * ** * **

EPIC ns ns ns

Sample 4QDH8RIJ RVBKJR34 EK21MRMZ

Reference SMC EPIC POL SMC EPIC POL SMC EPIC POL

NORM *** ns ns *** ns ns ** ns ns

SMC * *** ns * * ****

EPIC ns ns *

Sample R5NSMRQV 565HFAF2 65SVR2E

Reference SMC EPIC POL SMC EPIC POL SMC EPIC POL

NORM *** ns ns *** ns ns **** ** ns

SMC ** *** ns *** ns ***

EPIC ns ns *

Hence, to take into account as much as possible this variability, we calculated for each target gene
the sum of the 2−∆∆Ct to obtain a full picture of the relative expression of target genes. The highest
sum was then arbitrary set to 1000 in order to calculate a normalized score of expression ranking all
target genes from this particular level of expression being the gene for which the deregulation (in this
case upregulation) was seen with the highest amplitude. As depicted in Figure 3, the signature of
target genes using the scores of expression was differing from the expression data determined prior to
the normalization process or single normalizations. This calculation mode also demonstrated genes
strongly upregulated in all patients (e.g., MMP9, KDR), while individual variations could be monitored
for other genes (e.g., MMP2, PDGFRA, VEGFA).

To address whether one single sample is sufficient for each reference sample types, we performed
data mining of target genes expression in human normal colon epithelial biopsies. As seen in Figure 4,
we found that all target genes were expressed in a comparable amount in 69 different samples analyzed
in a whole or as a function of their anatomical region (sigmoid colon, terminal ileum, descending or
ascending colon). This suggested that at least for this proof of concept study, the use of one single
reference sample is representative of a larger population.
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Figure 3. Molecular signatures after multiple normalizations. The different radar graphs are showing
the molecular signature of each tumor sample when expression data were expressed as the sum of
2−∆∆Ct further normalized to 1000, an arbitrary unit attributed to the gene with the highest sum
of 2−∆∆Ct.

Another important issue is the actual percentage of tumor cells in the tumor biopsies. Indeed,
depending on the sampling, there might exist strong differences in the tumor cell contents. We were
able to determine the scores of expression of 6/9 of the target genes (restricted to six genes due to
limitation of sample size) from three different formaldehyde fixed paraffin embedded sections of a
same tumor sample containing different percentage of tumoral cells (30%, 40%, 60%) certified by a
pathologist (Service de Pathologie, Hôpitaux Universitaires Paris-Centre, Site Cochin, Paris, France).
A cross correlation analysis revealed that the score of expression calculated for the different genes from
the tumor sample with 30% tumor cells were similar to the ones determined from samples containing
40% or 60% tumor cells. A Spearman’s rank correlation coefficient (Rs) of 1 (p = 0.0028) reflected the
strong correlation of the measurements. This demonstrated that the normalization method is highly
sensitive and is applicable to tissue samples containing at least 30% of tumor cells (Figure 5).
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Figure 4. Data mining of target genes expression in human normal colon epithelial biopsies. Analysis of
mean values of gene expression (log2 ratio) of selected target genes in (A) normal uninflamed sigmoid
colon (n = 24), (B) normal uninflamed terminal ileum (n = 6), (C) normal uninflamed descending colon
(n = 22), (D) normal uninflamed ascending colon (n = 17), and (E) all colon samples (n = 69). Data were
extracted at the GEO platform (GEO access number GDS3268 from [27]).
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2.2. The Normalized Score of Expression of EGFR Correlates with Cetuximab Efficacy

We next used a cohort of 15 PDX colon cancer issued from the well-characterized collection
published by Julien et al. [28]. Samples comprised tumors with various mutations and microsatellite
instability (MSI) profiles to create a situation where any information extracted from our normalization
process should not be dependent on these criteria (for details see Supplementary Table S1). RNA samples
were collected and analyzed as described for the patient biopsies to calculate the score of expression, i.e.,
when data were expressed using the normalization process including the different reference samples.
The PDX models used in this study have been previously extensively characterized and their response
to Cetuximab is well documented. We used this information to determine the correlation between
the expression levels of EGFR with Cetuximab efficacy (expressed by the percentage of tumor growth
inhibition (dt/dc)%). As seen in Figure 6, there is no correlation between the raw expression levels
(before normalization) of EGFR expression (2−∆Ct), thereby demonstrating that EGFR expression cannot
be used to predict treatment efficacy if not appropriately determined (p = 0.2927). However, we found
a significant correlation between the EGFR expression scores (normalized expression being the sum of
2−∆∆Ct) and Cetuximab efficacy (p = 0.0383). The highest scores corresponded to the strongest efficacy
of Cetuximab. This result suggested that the EGFR expression level can predict drug efficacy only
when determined using an appropriate method taking into account the complexity of tumors samples.
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Figure 6. The normalized score of expression of EGFR correlates with Cetuximab (anti-EGFR) efficacy.
(A) Correlation of the non-normalized expression of EGFR expression (2−∆Ct) with Cetuximab tumor
growth inhibition in the cohort of 15 patient-derived tumor xenografts models. (B) Correlation of the
EGFR score (sum of 2−∆∆Ct further normalized to 1000) with Cetuximab tumor growth inhibition in
the cohort of 15 patient-derived tumor xenografts models. dt%/dc% index is used as an exact value of
Cetuximab efficacy. Spearman r analysis was applied.
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2.3. The Score of Expression of EGFR Can Be Used to Discriminate Responders Versus Non Responders

Thanks to the systematic measurement of tumor growth upon Cetuximab treatments, we were
able to classify the PDX models into eight responders (R, (dt/dc)% < 10%) and seven non responders
(NR, (dt/dc)% > 10%) [23]. This allowed us to evaluate the performance of our normalization method
in discriminating Cetuximab responding and non-responding tumors. As seen in Figure 7, a Receiver
Operating Characteristic (ROC) curve analysis (Zweig and Campbell, 1993) showed an area under
the curve of 0.95 (±0.06) demonstrating a strong and significant discrimination capacity (p = 0.0038)
with a 95% confidence interval (0.83–1.06). Interestingly, an ROC curve analysis of non-normalized
data (raw expression data) confirmed that EGFR level of expression if not appropriately determined is
not predictive of the response to the drug (area of 0.76 ± 0.13, p = 0.1) with a 95% confidence interval
(0.5–1.01). Consistently, the median of EGFR expression before normalization was similar for the two
groups (0.00234 for R versus 0.00134 for NR, p = 0.1 Mann Whitney test), while the calculation of the
scores of expression revealed a significantly higher median score for tumors of the responding tumor
group (138.5 for R versus 28 for NR, p = 0.002 Mann Whitney test).
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2.4. The Highest Score of the Normalized Signature is Predictive of Drug Efficacy

To address whether this scoring method could help identifying efficient drugs on refractory
tumors, we selected one of the PDX model previously shown to be resistant to Cetuximab. Tissue
blocks were grafted in mice and the molecular signature of the nine target genes was established
from a sentinel tumor sample collected two days before the administration of treatments. As seen
in Figure 8, the scoring procedure revealed that FLT1 obtained the highest score (1000 points) while
KDR and VEGFA were also exhibiting high scores (575 and 437, respectively). The EGFR score was 28,
being at the bottom of the list. We decided to test whether Cediranib, a potent inhibitor of FLT1/KDR
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could trigger anti-tumor effect in this Cetuximab-resistant model. Hence, mice received Cetuximab
or Cediranib, while a control group received the vehicle of the two drugs. Strikingly, we found that
Cetuximab was inefficient and treated animals had tumors growing as good as in the control group.
However, Cediranib treated mice showed a significant 50% (p = 0.003, Student t-test) reduction of
tumor growth compared to Cetuximab and control groups. Hence, the calculated score of expression
could serve to identify potential therapeutic targets in refractory tumors.
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of target genes obtained after normalization of the expression data in PDX model CR IC 028M-P3.
(B) Evaluation of the predictive value of the scores in the PDX model CR IC 028M-P3 known to be
refractory to anti-EGFR treatment (Cetuximab). Mean tumor volumes measured during the time of
treatment with Cetuximab (red line) predicted to be inefficient, Cediranib (green line) predicted to
be the most efficient drug among the selected target of the signature or vehicle (black line) used as a
positive control of tumor growth. Student t test analysis (ns: not significant; * p < 0.05).

3. Discussion

Molecular profiling of tumors from biopsies is undoubtedly a very efficient way to get a precise
diagnosis and eventually prognosis of the cancer. Large scale analyses at the genomic or transcriptomic
levels have provided unprecedented knowledge on the tumor subtypes and led to the identification
of biomarkers eventually predictive of a risk of cancer. Outstanding examples can be found in
the detection of the BRCA1 mutation as a marker of a high risk of ovarian or breast cancer [29] or
monitoring of the PSA antigen for the diagnostic of prostate cancer [30]. However, few biomarkers
can be used to stratify patients with regards to their response to a treatment, for example HER2 for
predicting Trastuzumab efficacy for breast cancer [31], RAS for Cetuximab, and Panitumumab for
metastatic colorectal cancer [9,32], BRAF for Vemurafenib efficacy for metastatic melanoma [33]. The
most common studied criteria are the genomic alterations (point mutations, deletions, insertions, and
gene sequences translocations). The limit of this methodology is that a mutation is not necessarily
responsible of tumor progression and/or the exact function of the genes may be poorly understood.
Our study provides a novel method to analyze mRNA expression data in order to calculate a score of
expression that can be used to rank target genes expression and potentially predict drug efficacy in
addition to the knowledge of existing mutations being required to validate the relevance of therapeutic
targets highly ranked with our procedure.

One of the main difficulties encountered when searching molecular signatures from tumor biopsies
is the heterogeneity of the samples. Indeed, inter-tumor and intra-tumor heterogeneity is common
and local variations of the percentage of tumor cells compared to stromal cells, immune cells or
vascular cells contribute to create an extraordinary complexity. Hence, it is mandatory to use the
right reference to be able to compare expression data to avoid false conclusions on the apparent
deregulation of gene expression that might simply reflect the contribution of one particular cell type
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instead of real abnormal expression in the tumor cells. One way to take into account this complexity
is to compare gene expression in the tumor sample to the one measured in the different cell types
potentially composing the tumor sample. A comparison of the expression levels between the tumor
and the whole organ hosting the tumor is in fact the easiest way to include all potential normal cell
types that may be present in the tumor sample. This has been successfully performed to develop the
OncoFinder pathway activation strength method enabling efficient prediction of patient’s response to
cetuximab [34]. However, using the whole organ as a reference is only providing an average signal,
masking potential variations of expression from one cell type to another. To address this point and to
increase the sensitivity of the analysis, we decided to include comparisons of the level of expression in
isolated major cell types composing the organ hosting the tumor. Hence, considering the importance
of tissue remodeling during the process of cancer, a pre-cancerous tissue appeared interesting to
catch any early significant modification of the expression profiles of target genes. Our analysis was
indeed conducted by RT-qPCR when using housekeeping genes 18S and GADPH to express data
(raw data) or when comparing the expression of a given gene with the one measured in the whole
colon (organ hosting the tumor), in a precancerous lesion (polyp) or in two major cellular components
(colon epithelial cells, smooth muscle cells) composing the organ. Importantly, we verified that only one
reference sample is sufficient of each subtype. To explore this point, we have done data mining of target
genes expression in 69 different parts of human normal colon biopsies has revealed that the selection
of one colon sample is representative of the more general expression in a large population. However,
our data showed clear differences in the determined expression levels of the target genes depending on
the reference sample use to calculate the relative expression. The strongest variations were observed
when comparing to the cellular components, while comparison to the organ or precancerous lesion were
generally not discriminant. This strongly suggests that the use of individual cell types is more relevant
than the whole normal tissue to extract gene expression variations. However, without the technical
possibility to obtain all isolated cell types, it is important to keep the comparison with the whole organ,
guaranteeing the largest diversity of cell types. From one sample to another, differences were not
necessarily concerning the same genes. Rather, individual profiles were seen for each tumor sample.
Thus, we decided to take into account the differences in the measurement of gene expression levels by
determining a calculated score of expression integrating the sum of the individual expression levels in
comparison to all different reference samples. To facilitate analysis and rescaling of expression data,
the highest deregulated target gene expression (being the sum of the different 2−∆∆ct) was arbitrarily set
to 1000, a value then used to express normalized scores for the other genes. In this case, expression data
for a given gene resulted from a normalization process taking into account variations due to the cellular
heterogeneity. Interestingly, the analysis of tumor samples containing various percentage of tumor
cells and stroma showed that our method is indeed compensating/correcting the apparent expression
levels as the signatures were similar while contained 20–70% tumor cells (see Figure 2). This correction
of expression data was then challenged using a collection of 15 PDX models for which an objective
response to Cetuximab treatment was available [28]. In this cohort, the EGFR level of expression is not
predictive of a response to Cetuximab in non-normalized expression data were also not correlated
with treatment efficacy in this cohort. However, the calculated expression scores were exhibiting
a significant correlation with the response rate to Cetuximab treatment. Moreover, the median of
the expression scores appeared as a predictor of drug efficacy, since scores above it corresponded to
responding tumors, while scores below the median were not. Without objective clinical response for
all of the other selected target genes in these PDX models, it is difficult to affirm that median scores
of the other targets would also predict drug efficacy. However, the selection of a drug targeting the
genes with the highest score of expression showed anti-tumor activity in a Cetuximab refractory model.
Thus, while needing further work to identify the threshold of therapeutic efficacy for each targeted
therapy, the method proved the existence of a link between the calculated scores and tumor response.
To the contrary of other methods like OncoFinder [34] focused on EGFR pathway, our proof of concept
experiment was conducted on a selection of nine genes arbitrary chosen because they were described
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for their role in colon cancer progression and being the target of well-documented drugs. The selected
genes should not be considered as a definitive molecular signature with any diagnosis, prognosis,
or relative drug efficacy value, but only as a model signature serving to challenge the normalization
process we developed. In other words, the inclusion of additional or different genes being potentially
targetable with drugs could provide very different hierarchy, thus leading to alternative therapeutic
options. However, from a clinical perspective, the possibility to predict the efficacy (or non-efficacy)
of anti-proliferative drugs (such as Cetuximab) or anti-angiogenic drugs (such as Cediranib) is of
prime interest in the context of colon cancer for which this therapeutic option is mainly driven by the
localization of the tumor [35]. Future investigations will also analyze from clinical retrospective studies
the correlation between calculated scores of expression and objective response to targeted therapies.
We have already conducted a clinical retrospective study on colorectal cancer, demonstrating that the
VEGFA score is correlated with patient recurrence free survival and with cancer specific survival [36].
A systematic approach can now be conducted in order to show our method as a general procedure
allowing the integration of tumor complexity in the determination of gene expression.

4. Material and Methods

4.1. Tumor Samples Collection

RNA from nine colon tumor stage I or IV (Z5ALYRSH Male, STAGE I, 83 years old/OQMNOR32
Male, STAGE IV, 52 years old/FC1AVRAA Female, STAGE I, 52 years old/4QDH8RIJ Female, STAGE
I, 44 years old/RVBKJR34 Male, STAGE IV, 77 years old/EK21MRMMZ Male, STAGE IV, 66 years
old/R5NSMRQV Female, STAGE IV, 62 years old/565HFAF2 Male, STAGE I, 77 years old/65SVOR2E
Male, STAGE IV, 78 years old) were obtained from Bioserve. Collected frozen fragments from 15
established patient-derived colorectal tumors xenografted and serially passaged subcutaneously in mice
were provided by Oncodesign (CR-IC-004M-P4 Male, 70 years old/CR-IC-006M-P3 Female, 45 years
old/CR-IC-007M-P4 Female, 68 years old/CR-IC-009M-P3 Female, 73 years old/CR-IC-0013M-P3 Male,
68 years old/CR-IC-0021M-P4 Female, 80 years old/CR-IC-0025M-P3 Male, 60 years old/CR-IC-0028M-P3
Male, 58 years old/CR-IGR-002M-P4 Male, 69 years old/CR-IGR-0023M-P3 Female, 64 years
old/CR-IGR-048M-P3 Female, 68 years old/CR-IGR-052C-P4 Male, 71 years old/CR-LRB-008M-P4
Female, 80 years old/CR-LRB-009C-P4 Female, 50 years old/CR-LRB-019C-P5 Female, 58 years old).

4.2. RT-qPCR

Total RNA was extracted with Tri Reagent® solution (Molecular research center; RNA/DNA
isolation reagent #TR118) according to manufacturer’s instructions. RNA concentration was measured
with a spectrophotometer (Thermo Scientific; Nanodrop 1000) and 2 µg of total RNA/10 µL were treated
with DNase-I (ROCHE) and the reverse transcription was done with High Capacity cDNA Reverse
Transcription Kit (10 min at 25 ◦C, 2 h at 37 ◦C, 5 min at 85 ◦C) (APLLIED BIOSYSTEM #4368814).
cDNA were then diluted to get a finale concentration of 1 µg/100 µL. cDNA Quantitative reverse
transcriptase polymerase chain reaction (RT-qPCR) was performed using the 7500 Real time PCR
System (Life technologies) with TaqMan Gene expression Master Mix (APPLIED BIOSYSTEM #4369016)
with a concentration of cDNA of 10 ng in a final volume of 20 µL. Thermal cycling conditions were:
2 min at 50 ◦C, 10 min at 95 ◦C (Holding step), and 40 cycles of 15 s at 95 ◦C (Melting step) + 1 min at
60 ◦C (Annealing/Extension step). Experiments were conducted using customized microplates specially
produced for this project by Applied Biosystems (APPLIED; Custom TaqMan Array Plates) to contain
human specific TaqMan® probes (1× final concentration is 250 nM) and primers (1× final concentration
is 900 nM per primer) for: EGFR (Epidermal Growth Factor Receptor; Hs01076078_m1); FLT1 (Vascular
Endothelial Growth Factor Receptor 1; Hs01052936_m1); HER2 (Human Epidermal Growth Factor
Receptor-2; Hs01001580_m1; ITGB1 (Integrin Subunit Beta 1; Hs00236976_m1); KDR (Kinase Insert
Domain Receptor; Hs00911700_m1); MMP2 (Matrix Metalloproteinase-2; Hs00234422_m1); MMP9
(Matrix Metalloproteinase-9; Hs00957562_m1); PDGFRA (Platelet-Derived Growth Factor Receptor,
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alpha; Hs00183486; VEGFA (Vascular Endothelial Growth Factor A; Hs00173626_m1). We attributed a
ct value of 40 to ct that were undetermined. Relative expression level of genes was obtained by the
comparison with the mean expression of two housekeeping genes, the ribosomal 18S (18S ribosomal
RNA; Hs99999901_s1) and the GAPDH (Glyceraldehyde 3-phosphate dehydrogenase; Hs99999905_m1):
∆ct (gene) = ct (gene)–mean ct (housekeeping genes). 2−∆ct (gene) corresponds to RNA quantity.

4.3. Normalization Process

Target gene expression levels in the tumor are normalized with ∆∆Ct method by several comparison
to reference samples as: (i) a normal tissue, whole normal colon (ZYAGEN; HR-311) (ii) tissue cellular
subtypes, human colonic smooth muscle cell (CLINISCIENCES; 2945-SC) and human colonic epithelial
cells (CLINISCIENCES; 2955-SC), and a low grade or benign tumor tissue, precancerous Polyps
(09H20450 Centre de Ressources Biologiques, Hôpitaux Universitaires de Strasbourg, Hôpital de
Hautepierre, Strasbourg, France; gift from Dr D. Guenot). Results obtained after these different
comparisons to reference samples are then added to determine an intermediate score defined as the
sum of 2−∆∆Ct. This intermediate score is calculated for each target genes and represents the global
amplitude of this target gene expression variation in the cancer sample compared to the expression in
reference samples:

intermediate score =
n∑

k=1

[2−∆∆Ct(re f erence sample)k] (1)

where ∆∆Ct (target genes) = ∆Ct (target genes in tumor sample) − ∆Ct (target genes in reference
sample) and ∆Ct (target genes in reference sample) = Ct (target genes in reference sample) −mean of
Ct (reference gene in reference sample)

These intermediate scores are then ranked in a decreasing order and the target gene with the
highest intermediate score is arbitrary set to 1000 points. The other target genes are then normalized
from this maximal value. Each expression level is therefore shown as a score of expression between
[0–1000]. The scale is linear from [0–1000] for ranking and a logarithmic (Log10) is used for radar mode
representation of data.

4.4. Heterotopic Grafting of Colorectal Cancer Patient Derived Xenograft

Animal facility is authorized by French authorities Agreement N◦ A21231011EA. All Experiments
were performed according to the Guide for Care and Use of Laboratory Animals (E67-6-482-21) and the
European Directive with approval of the regional ethical committee (Reference AL/55/62/02/13) and the
Animal Care and Use Committee of Oncodesign (Oncomet, CNREEA agreement N◦91). Small tumor
fragments (CR-IC-0028M-P3 not responsive to Cetuximab) were subcutaneously implanted in the right
flank of CB17 SCID mice. When tumor size reached 500–700 mm3, tumors were surgically excised and
small tumor fragments were subcutaneously implanted in the right flank of 30 recipients SWISS Nude
mice. The treatment started when tumors reached a mean volume of 200–300 mm3. The first group of
the model CR-IC-028M was treated with Cetuximab 12.5 mg/kg (n = 10) i.p. once per week for 3 weeks,
the second group was treated with Cediranib 6 mg/kg (n = 10) p.o. for 10 days interrupted by 2 days
of wash-out after 5 days. The last one, the control group, received a mix of the vehicle of Cetuximab
and Cediranib. The administration volume for the two models was 10 mL/kg (200 µL/mouse of 20 g)
adjusted to the most recent individual body weight of mice. Cediranib (Selleckchem) is solubilized
in methylcellulose 0.5% in PBS. Cetuximab is solubilized in NaCl 0.9% (Aguettant, Lyon, France).
The tumor volume was calculated by [(a × b2)/2], where a is the largest tumor diameter and b the
perpendicular tumor diameter measured with a caliper every 3 days.

On the day of termination (31 days after the first treatment), mice were sacrificed by cervical
dislocation before tumor collection. The response to treatments is expressed by the percentage of tumor
growth inhibition index (dt/dc)% = [(median Treated Tumor volume at Day 31 −median Treated Tumor
volume at Day 0)/(median Control tumor volume at Day 31 −median Control tumor volume at Day 0)]
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× 100 where Day Y is the day of evaluation, and Day X is the day of initiation of therapy for treated [T]
and control [C] tumor volumes. Of note, treatments were administrated in blind condition regarding
the prediction of efficacy. The molecular signatures and the preclinical models were conducted in
independent labs by different experimenters.

4.5. Statistics

The radar mode representations of molecular signatures were done using Excel. All statistics and
other graphics were performed using GraphPad Prism 7.03. Multiple comparisons of the molecular
signatures obtained with the different normalizations (Table 1) were performed with a non-parametric
Friedman test on matched data. Spearman r analysis served to determine the correlation between the
score of expression of EGFR and cetuximab efficacy (Figure 4). In Figure 5, ROC curve analysis served
to calculate the area under the curve (AUC with 95% confidence interval) and the differences between
medians of the scores were analyzed with Mann-Withney test. t test analysis was performed to analyze
differences in tumor growth (Figure 6).

5. Conclusions

We have developed a simple method designed to correct the expression levels of target genes in a
tumor biopsy. This method relies on rounds of normalization of the expression data with reference
samples reflecting the complexity of tumor samples in term of cell contents. This proof of concept
study conducted for CRC opens the possibility to extend the strategy to other solid tumors. In this
case, reference samples reflecting the composition of the organ hosting the tumor will be necessary
to calculate the expression scores. Moreover, this approach is not limited to the nine target genes we
arbitrary selected here. Rather, it can virtually be extended to any gene thereby allowing to identify
new therapeutic targets that may not be detected with classical methods. The whole approach will
now need a systematic analysis challenging the relevance in clinical settings.

Supplementary Materials: The following is available online at http://www.mdpi.com/2072-6694/12/1/149/s1, Table
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