
RESEARCH ARTICLE

Tissue Recognition Based on Electrical Impedance
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Objective: One of the major difficulties in spinal surgery is the injury of important tissues caused by tissue mis-
classification, which is the source of surgical complications. Accurate recognization of the tissues is the key to
increase safety and effect as well as to reduce the complications of spinal surgery. The study aimed at tissue recogni-
tion in the spinal operation area based on electrical impedance and the boundaries of electrical impedance between
cortical bone, cancellous bone, spinal cord, muscle, and nucleus pulposus.

Methods: Two female white swines with body weight of 40 kg were used to expose cortical bone, cancellous bone,
spinal cord, muscle, and nucleus pulposus under general anesthesia and aseptic conditions. The electrical impedance
of these tissues at 12 frequencies (in the range of 10–100 kHz) was measured by electrochemical analyzer with a
specially designed probe, at 22.0–25.0�C and 50%–60% humidity. Two types of tissue recognition models - one com-
bines principal component analysis (PCA) and support vector machine (SVM) and the other combines combines SVM
and ensemble learning - were constructed, and the boundaries of electrical impedance of the five tissues at 12 fre-
quencies of current were figured out. Linear correlation, two-way ANOVA, and paired T-test were conducted to analyze
the relationship between the electrical impedance of different tissues at different frequencies.

Results: The results suggest that the differences of electrical impedance mainly came from tissue type (p < 0.0001),
the electrical impedance of five kinds of tissue was statistically different from each other (p < 0.0001). The tissue rec-
ognition accuracy of the algorithm based on principal component analysis and support vector machine ranged from
83%–100%, and the overall accuracy was 95.83%. The classification accuracy of the algorithm based on support vec-
tor machine and ensemble learning was 100%, and the boundaries of electrical impedance of five tissues at various
frequencies were calculated.

Conclusion: The electrical impedance of cortical bone, cancellous bone, spinal cord, muscle, and nucleus pulposus had sig-
nificant differences in 10–100 kHz frequency. The application of support vector machine realized the accurate tissue recogni-
tion in the spinal operation area based on electrical impedance, which is expected to be translated and applied to tissue
recognition during spinal surgery.
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Introduction

There are various important structures in the operation
area of spine surgery including the spinal cord, nerve

roots, and blood vessels. Accurate recognition of these tissues
is a challenge for surgeons. Inaccurate judgment of spinal tis-
sue may lead to incorrect operation, resulting in nerve and
vascular injuries1. It is a hot research topic to find an objec-
tive and accurate method for tissue identification in the spi-
nal surgery area2. In addition to traditional imaging
methods, tissue recognition techniques based on physical
information such as force, acoustics, and bioelectrical imped-
ance are also widely studied3–8.

Bioelectrical impedance is a kind of electrical charac-
teristics of biological tissues, based on which are there
tissue type identification methods that are considered to
be simple in measurement, sensitive, and real-time9. Bio-
electrical impedance measures tissue-specific characteris-
tics by measuring the impedance of an equivalent circuit
consisting of intracellular fluid (resistance), extracellular
fluid (resistance), and cell membrane (capacitance)10

(Figure 1). The impedance information of tissues can be
obtained by designing probes according to the characteris-
tics of tissues11. Bioelectrical impedance can achieve dif-
ferentiated recognition in both bone and soft tissues, while
imaging, force, and acoustics-based recognition methods
have is good for bone, but poor for soft tissues2,12.
Although the previous studies have confirmed differences
in the electrical impedance of tissues at the spinal surgery
site, none of them have reported the boundaries for the
impedance classification of different tissues at the spinal
surgery site.

Support Vector Machine (SVM) is a commonly used
machine learning algorithm, which is good on classification
tasks and performs well in many medical classification prob-
lems13. It can provide boundaries whose distance to the sam-
ples are maximized data boundary in high dimensional
feature space14. The excellent generalization ability and intui-
tive classification results of SVM have attracted the attention
of researchers15,16. It may be helpful to the classification of
tissue electrical impedance in the spinal surgery area. Electri-
cal impedance is usually measured at multiple frequencies at
the same time, and the data dimension is high. In order to
improve the accuracy and generalization ability of the model,
it is usually appropriate to reduce the dimension of the data.

Principal component analysis (PCA) is a basic dimen-
sion reduction method in machine learning, which transforms
high-dimensional data into features of low-dimensional
space17. For data with a high dimensional, more accurate
results can be obtained by performing PCA before classifica-
tion or regression18,19. Ensemble learning is a classifier com-
bination paradigm, which can gather the classification results
of multiple classifiers by voting to get better classification
performance and stronger generalization ability20,21. The per-
formance of SVM can be improved by combining multiple
SVM classifiers with ensemble learning22.

The objectives of this study were as follows: (i) electri-
cal impedance data were collected from different tissues at
the spinal operation area in vivo; (ii) SVM, combined with
PCA or ensemble learning, were used to classify and to find
the boundaries of electrical impedance of different tissues in
spinal operation area; (iii) the accuracy of classification was
verified through animal experiments.

A B

Fig. 1 Schematic diagram of electrical

impedance measurement. (A) Schematic

diagram of cell and extracellular fluid currents;

(B) Bioelectrical impedance equivalent circuit

model: Ri intracellular fluid resistance, Re

extracellular fluid resistance, Cm membrane

capacitance; Gray dotted line: intracellular

fluid current, black solid line: extracellular

fluid current
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Materials and Methods

Experimental Objects
Two female British white swines, weighing about 40 kg (pro-
vided by Beijing Fulong Tengfei Experimental Animal
Research Institute Co., LTD.). In this study, the impedance
of five types of spinal tissues were measured: cortical bone,
cancellous bone, muscle, spinal cord, and nucleus pulposus,
all of which were measured before the swines were executed.

Electrical Impedance Acquisition Platform
The electrical impedance acquisition platform applied in this
study consists of an electrochemical analyzer, a computer, an
electrical impedance acquisition system, and a probe
(Figure 2A). The electrochemical analyzer is CHI604E
(CH Instruments Ins. Austin, TX, USA). The electrical
impedance measurement system is the electrical impedance
acquisition module of Model 600E Series Workstation
(CH Instruments Ins. Austin, TX, USA), which is loaded on
Windows 10 system computer and connected with the elec-
trochemical analyzer through USB. In this study, a parallel
two-electrode electrical impedance probe was independently
designed according to the characteristics of the spinal sur-
gery area, which was connected to the electrochemical ana-
lyzer through electrode wires (Figure 2B).

Tissue Exposure at the Spinal Operation Area
In this study, cortical bone, cancellous bone, muscle, spinal
cord, and nucleus pulposus of experimental swines were
exposed by posterior spinal surgery. The swines were fasted
for 24 h before surgery and anesthetized by intravenous infu-
sion of pentobarbital sodium. After anesthesia induction, the
swines were placed in prone position and anesthetized by
inhalation of isoflurane. The vital signs of the swines were
monitored during surgery. The skin, after disinfection, drap-
ing, midline incision along the back skin incision, stripping

step by step by the subcutaneous tissue, vertebral muscles
and other soft tissue, vertebrae, nucleus pulposus, such as
structure, with periosteum stripping device eliminating
spines and connective tissue, show of cortical bone, vertebral
plate surface with rongeur bite in addition to the part of the
spine to show cancellous bone, remove vertebral plate to
expose the spinal cord.

Electrical Impedance Data Acquisition
As the value of bioelectrical impedance is greatly affected by
environmental conditions, this study is controlled in a con-
stant temperature (temperature: 22.0–25.0 �C) and constant
humidity (humidity: 50%–60%) environment to reduce the
interference of environmental factors. Connect the electrical
impedance acquisition platform, then use the standard resis-
tance of 1000 ω for system correction, and set the initial level
to 0.5 V. Each set of data includes the impedance at 12 fre-
quencies: 10010 Hz, 12210 Hz, 14650 Hz, 17820 Hz, 21480
Hz, 26120 Hz, 31740 Hz, 38330 Hz, 46390 Hz, 56150 Hz,
68120 Hz, 82520 Hz. We designed a bipolar probe consisting
of two needle-like electrodes with fixed distances to achieve
compact contact with various tissues, to ensure accurate
acquisition of electrical impedance (Figure 1A). Tissues were
fully exposed before detection. The probe was placed on the
surface of the spinous process to collect the cortical bone
electrical impedance, placed on the bone tinside the spinous
process to collect the spongy bone electrical impedance,
placed on the paraspinal muscle to measure the muscle elec-
trical impedance, placed on the spinal nerve to collect the
spinal cord electrical impedance, and placed on the tissue
between the upper and lower vertebral bodies to collect the
myeloid nuclear impedance (Figure 2C). The mean value of
electrical impedance measured by three researchers on the
same part was taken as the single impedance measurement
value. Between the two measurements, tissues on the surface
of the electrode head were wiped with normal saline and

A B C

Fig. 2 Electrical impedance acquisition platform and experimental process. (A) Electrical impedance acquisition platform and experimental

environment; (B) Electrical impedance measurement probe; (C) Electrical impedance measurement process. The picture shows the electrical

impedance measurement process of cortical bone on the spinous process
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clean gauze to ensure that the electrode head was clean and
dry. Electrical impedance values of 12 frequencies of each tis-
sue are measured and stored in txt. format. Each tissue shall
ensure at least three groups of valid data. Data collected from
two experimental swines were used as training set and test
set, respectively.

Data Pre-Processing
The electrical impedance data of five kinds of tissues at 12
frequencies were imported into Excel (version 2019, Micro-
soft, Redmond, WA, USA). One person was responsible for
importing and the other person was responsible for checking
to ensure the data was valid and accurate. As electrical
impedance is susceptible to animal breathing fluctuation and
hand shaking in the process of collection, we eliminated
some data groups, and the elimination criteria are as follows:
(1) coefficient of variation within the group >0.15; (2) The
mean difference between one data set in the group and other
data set at the same tissue at the same frequency is more
than three times the standard deviation; (3) There were
values less than Q1-1.5iQR or greater than Q3+ 1.5iQR in
the group.

Statistics
SPSS 26.0 (IBM, Armonk, New York, USA) software was
used for statistical analysis of the preprocessed experimental
data. All tests were conducted by two-sided test, p < 0.05 was
considered statistically significant, and p < 0.01 was consid-
ered extremely significant. The electrical impedance data
were described according to tissue type and frequency, and
the correlation between impedance and frequency was ana-
lyzed by correlation. Two-way ANVOA was used to analyze
the effect of tissue type and frequency on the difference of
electrical impedance values. The electrical impedance differ-
ence of different tissues was verified by paired T test (same
frequency paired).

Classification Based on SVM and PCA
For each tissue, the impedance at 12 frequencies was col-
lected; thus, each sample is represented by a 12-dimensional
vector. To avoid over-fitting caused by the high complexity
of the model, a simple model with the input being low-
dimensional is appropriate. Therefore, PCA is used to reduce
the dimensionality of the input from 12 to 2, as the two larg-
est principal components of feature vectors of the training
set already accounts for 99.85% of the variance of features of
training samples. PCA is trained on the training set, and
then applied to the feature vectors of training samples and
test samples. The implementation of PCA is decomposition.
PCA from scikit-learn (version 1.0.2) on Python (version
3.7.3) with all parameters being default except the target
dimensionality being 2.

After dimension reduction, linear SVM is used for
classification, since the tranformed feature vectors are nearly
linear separable. The implementation is svm. SVC from
scikit-learn on Python, with the versions as above. The
parameters are set as default expect the normalization coeffi-
cient being 100. SVM is trained on the training set, and then
tested on the test set. In both training and testing, the accu-
racy of the classification is used to evaluate the model
performance.

Classification Based on SVM and Ensemble Learning
In the previous subsection, PCA is adopted to reduce the
complexity of the model. Ensemble learning is ablso adopted
to achieve this. For each frequency, a simple one-
dimensional SVM can be built with the input being the
impedance at that frequency; in total, 12 SVMs can be built,
each labeled by C_1 to C_12, with C_1 corresponding to the
lowest frequency and C_12 the highest. The implementation
of SVM is as above. Similar to Random Forest, these base
models are of high diversity since each uses a different fea-
ture as input. The diversity accounts for the better perfor-
mance of the ensemble model in Random Forest; therefore,
it is speculated that the ensemble model of the 12 SVMs is
better than any of the base model.

TABLE 1 Electrical impedance of the first experiment

Frequency/Hz

Cortical Bone Cancellous Bone Spinal Cord Muscle Nucleus Pulposus

Mean/Ω SD Mean/Ω SD Mean/Ω SD Mean/Ω SD Mean/Ω SD

10,010 82360.00 9013.92 8804.33 153.58 3597.00 388.47 767.86 85.42 339.73 6.62
12,210 81587.50 8861.66 8761.67 168.57 3522.67 420.36 755.22 78.82 328.47 6.60
14,650 80970.00 9008.41 8703.67 173.25 3480.83 440.30 739.44 82.28 319.18 6.19
17,820 80435.00 8655.62 8660.67 195.82 3418.67 486.49 725.36 75.51 310.70 6.46
21,480 79557.50 8487.18 8619.67 211.90 3347.67 556.06 714.98 74.91 304.67 6.46
26,120 78557.50 8065.52 8559.67 212.39 3314.00 556.79 703.96 73.18 297.87 6.98
31,740 77527.50 7766.51 8500.00 213.91 3285.17 542.11 696.40 73.63 292.50 7.46
38,330 76275.00 7539.15 8446.33 216.80 3245.50 544.62 686.72 74.71 289.60 7.41
46,390 74600.00 6902.20 8374.00 226.92 3205.33 530.52 680.08 75.09 286.43 7.46
56,150 72647.50 6615.44 8298.00 214.75 3167.50 549.21 672.80 70.40 283.73 7.28
68,120 69950.00 5875.91 8210.67 249.65 3134.83 541.16 665.54 64.25 281.55 6.90
82,520 66825.00 5131.41 8114.00 250.41 3112.67 532.88 659.16 61.93 280.05 6.58
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Based purely on the performance on the training set,
several best base models are chosen to be combined. For the
ensemble model, it collects the predictions of each base
model chosen, and one of the most frequently predicted clas-
ses is adopted as the output of the ensemble model. The
ensemble model is then tested on the test set.

Result

Electrical Impedance of Five Tissues in Spinal
Operation Area
The descriptive statistical results showed that the electrical
impedance values of the tissues in the five spinal surgery

TABLE 2 Electrical impedance of the second experiment

Frequency/Hz

Cortical Bone Cancellous Bone Spinal Cord Muscle Nucleus Pulposus

Mean/Ω SD Mean/Ω SD Mean/Ω SD Mean/Ω SD Mean/Ω SD

10,010 22750.00 6558.19 10089.75 775.65 1337.00 84.67 631.58 93.73 351.18 21.51
12,210 21520.00 7538.32 10300.50 436.11 1339.00 97.73 650.58 105.39 355.06 22.77
14,650 23362.00 6702.50 10599.50 555.63 1354.60 104.02 672.52 118.21 360.20 23.26
17,820 22112.00 7295.98 10897.50 480.93 1355.60 94.77 693.04 134.15 363.30 21.58
21,480 21988.00 8008.96 10612.50 289.53 1364.60 106.42 710.54 132.11 368.48 22.80
26,120 22776.00 9614.50 9933.75 1449.94 1423.80 164.62 734.90 148.89 375.12 28.22
31,740 21904.00 8907.74 11232.50 489.79 1352.00 92.74 751.68 138.13 382.32 24.41
38,330 21296.00 7377.48 11425.00 793.66 1376.40 88.92 768.12 168.49 389.76 23.18
46,390 21318.00 8233.51 11225.00 438.82 1386.40 101.17 777.30 173.15 398.46 23.46
56,150 21092.00 8996.44 12237.50 440.10 1395.20 110.57 808.92 162.17 410.34 24.24
68,120 24158.00 9913.21 10256.75 1925.67 1409.20 89.48 897.02 197.58 420.94 20.61
82,520 20384.00 7519.51 12257.50 1086.20 1407.00 116.64 865.84 194.86 441.32 23.43

A B

Fig. 3 Impedance values of different tissues in two experiments. (A) Electrical impedance values of different tissues in the first experiment (training

set collection process); (B) Electrical impedance values of different tissues in the second experiment (test set collection process). The vertical axis is

logarithmic, with significant differences among tissues (p < 0.0001).

TABLE 3 The correlation between electrical impedance and frequency of experiment current

Cortical Bone Cancellous Bone Spinal cord Muscle Nucleus Pulposus

Correlation Negative Negative Negative Negative Negative
p value 0.4841 0.0714 0.3460 <0.0001 <0.0001
Significance non non non *** ***
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areas measured at 12 frequencies in the two live animal
experiments presented a pattern of cortical bone > cancellous
bone > spinal cord > muscle > nucleus pulpsus (Tables 1
and 2, Figure 3). Correlation analysis results showed that the
electrical impedance of the five tissues was negatively corre-
lated with the frequency range, that is, the electrical imped-
ance decreased with the increase of measured frequency. The
correlation between cortical bone, cancellous bone, and spi-
nal cord was not significant, but that between muscle and
nucleus pulposus was significant (Table 3, Figure 4). Two-
factor ANOVA of repeated samples showed that the differ-
ences in electrical impedance values measured in this study
were mainly related to tissue type and almost unrelated to
measurement frequency (Table 4). Paired T-test was per-
formed on the electrical impedance of the five tissues in the
spinal surgery area based on frequency pairing, and the results
showed that the electrical impedance of the five tissues was
significantly different within the measured frequency range
(p < 0.0001, Table 5).

Result of Classification Based on SVM and PCA
PCA showed the largest and the second largest principal
component accounts for 99.54% and 0.31% of the variance
of the features of the training samples; thus, the information
of the original features were preserved by dimension reduc-
tion. The accuracy of the SVM using the two largest princi-
pal components was 100% on the training set and 95.83% on
the test set (Table 5a); the regions of each class was shown in
Figure 5A. Since the largest principal component accounts
for 99.54% of the variance, this work also built a similar
model using only the largest principal component: the accu-
racy was the same (Table 5b) while the regions of each class
were simpler (Figure 5B).

Result Based on SVM and Ensemble Learning
This work built 12 one-dimensional SVMs (C_1-C_12), each
accepted input of the impedance of the sample at a particular
frequency. The boundaries (thresholds) of the impedance of
various tissues at all frequencies were calculated (Table 6).
The accuracy of these one-dimensional SVMs varied: 81–
100% on the training set and 88–100% on the test set. Best
ones are C_1–C_7: accuracy is 100% on both sets. This work,
therefore, built an ensemble model on C_1–C_7, which
achieve 100% accuracy on the training set and the test set.

Discussion

This study is the first to use machine learning combined
with bioelectrical impedance method to identify and

classify the electrical impedance of tissues in spinal surgery
area, and it is the first to propose the bioelectrical impedance
classification threshold of cortical bone, cancellous bone, spi-
nal cord, muscle, and nucleus pulposus in spinal surgery
area. In this study, it was found that the electrical impedance
of cortical bone, cancellous bone, spinal cord, muscle, and
nucleus pulposus in the spinal surgery area was significantly
different within the measurement frequency of 10 kHz–100Fig. 4 The impedance of each tissue varies with frequency

TABLE 4 Results of two-way ANOVA with repeated samples

Source SS (Type III) DF MS F value p value

Tissue * Frequency 326,918,653 44 7,429,969 0.04347 p > 0.9999
Frequency 126,346,235 11 11,486,021 0.06720 p > 0.9999
Tissue 172,606,405,931 4 43,151,601,483 252.5 p < 0.0001***
Residual 86,147,696,423 504 170,927,969

TABLE 5 Result of classification based on PCA and SVM

Cortical Bone Cancellous Bone Spinal cord Muscle Nucleus Pulposus Overall

a 100% (4/4) 100% (3/3) 83% (5/6) 100% (5/5) 100% (6/6) 96% (23/24)
b 100% (4/4) 100% (3/3) 83% (5/6) 100% (5/5) 100% (6/6) 96% (23/24)

a. the accuracy of classification of the SVM using the two largest principal components；b. the accuracy of classification of the SVM using only the largest princi-
pal components.
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kHz. The accuracy of PCA combined with SVM was 96%,
while the accuracy of SVM combined with ensemble learning
was 100%. By 100% identifying these tissues, we can achieve
accurate identification of pedicle penetration.

Currently, spinal surgeons often use tactile feedback
from ball-tipped probe to identify whether an open screw
path has broken through the cortical bone with an accuracy
of 62%–91%23, which is not sufficient for the safety of spine
surgery. In clinical practice, improper manipulation of ball-
tipped probe after pedicle penetration may cause mechani-
cal damage to nerves. Study using electrical impedance for
tissue classification had achieved 96% accuracy for pedicle
penetration24. However, the accuracy of identifying pedicle
screw penetration did not represent the accuracy of tissue
classification. The accurate rate of this study was higher
than both of them, and our method could realize more
refined tissue classification. It was for the following reasons.

First of all, due to the high sensitivity25, the accuracy of
electrical impedance in tissue classification was higher than
the traditional tactile feedback. Secondly, as different probes
were suitable for different operation scenarios11, we target
designed a bipolar probe for the spinal surgery area, which
ensure the accurate and robust data acquisition. Thirdly, we
applied SVM and ensemble learning, which were good at
classification13, to find the specific threshold and quantita-
tively analyze the obvious and potential difference of elec-
trical impedance of different tissues, while the identification
of tissues by ball-tipped probe and electrical impedance in
previous studies were based on qualitative or statistical sig-
nificance estimate. To sum up, electrical impedance classifi-
cation, specific probe, and machine learning methods
enabled us to achieve 100% tissue classification accurate
rate, which can further avoid the pedicle penetration caused
by tissue misclassification.

A B

Fig. 5 Result of classification based on PCA and SVM. (A) Result of classification of the SVM using the two largest principal components; (B) Result

of classification of the SVM using only the largest principal components. The horizontal axis. The largest principal component. The vertical axis. The

second largest principal component. �. Training sample. □. Test sample. �. Incorrectly classified sample.

TABLE 6 The boundaries of impedance of five tissues in the area of spine surgery at 12 frequencies

Frequency Cortical bone-Cancellous bone Cancellous bone-Spinal cord Spinal cord - Muscle Muscle-Nucleus Pulposus

10,010 11524.30 4136.00 1237.19 584.95
12,210 10904.64 3583.53 1267.97 572.57
14,650 11713.14 4252.58 1184.20 548.63
17,820 11488.43 3958.88 1173.24 533.41
21,480 12199.85 3917.40 1157.43 519.55
26,120 11859.49 3917.38 1096.60 514.96
31,740 11968.93 3824.45 1127.67 508.32
38,330 11272.55 3925.71 1076.20 493.05
46,390 11449.98 3873.95 1061.60 477.57
56,150 12129.78 3851.27 1032.83 474.70
68,120 11482.76 3770.67 1002.94 462.12
82,520 12178.99 3590.27 977.46 453.70
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Electrical Impedance Difference of Tissues in Spinal
Operation Area
Studies have shown that there are statistical differences in
electrical impedance of different tissues25–27. Studies have
found that there are significant differences in the electrical
impedance of muscle, ovary, testis, liver, kidney, and other
tissues of cattle. Accurate identification of these tissues can
be achieved according to the electrical impedance, which
proves the high sensitivity of electrical impedance in tissue
classification28. Other researchers have realized real-time
identification of fat, muscle, blood, liver, spleen, and other
tissues in live animal experiments based on significant differ-
ences in bioelectrical impedance between tissues29. The
results of these studies have inspired us to use electrical
impedance techniques for tissue classification in the spinal
surgery area. In this study, an electrical impedance acquisi-
tion platform was also built, and an electrical impedance
probe was designed for the spinal operation area of swines.
The impedance values of cortical bone, cancellous bone, spi-
nal cord, muscle, and intervertebral disc nucleus pulposus in
living swines were collected. In addition, the higher the fre-
quency of electrical impedance measurement, the more sig-
nificant the current through the intracellular matrix9.
Therefore, this study applied the frequency range of 10 kHz–
100 kHz to collect the electrical impedance of different tis-
sues. The results confirmed that the electrical impedance
values of the five tissues in the spinal surgery area were sta-
tistically different, which could be used as the basis for tissue
classification. Similar to the results of previous studies8,30,31,
we found that the impedance value of bone tissue was higher
than that of non-bone tissue, and the impedance value of the
five spinal tissues in descending order were cortical bone,
cancellous bone, spinal cord, muscle, and nucleus pulposus.
We found that the electrical impedance of all five tissues
decreased with the increase of measurement frequency.
Among which, there were significant correlations between
measurement frequency and impedance value in muscle and
nucleus pulposus, which was consistent with the results of
previous studies12. Considering both electricity and physiol-
ogy, the distinction of impedance value may result from the
difference of water content, free ion concentration in extra-
cellular fluid between these tissues. The significant correla-
tions between measurement frequency and impedance value
may result from the membrane permeability and free ion
concentration in intracellular fluid.

The Electrical Impedance of Spinal Tissue Classified
by SVM
Artificial intelligence algorithms have been widely used in a
variety of medical scenarios, including image-based tissue
recognition, bone recognition based on force signals, bone
recognition based on sound signals, etc.6,32,33. According to
the characteristics of physical information and the purpose
of classification, different algorithms need to be applied. Pre-
vious studies have confirmed that the electrical impedance of
spinal surgery area changes linearly with frequency34, and

the electrical impedance of different tissues varies signifi-
cantly, with low complexity of data rules, which is suitable
for classification by SVM. Some studies applied SVM algo-
rithm to distinguish benign and malignant prostate tissue
based on electrical impedance, with an accuracy of 81%35.
Previous studies have found that the electrical impedance
data measured in spinal surgery area are prone to interfer-
ence and noise, and the electrical impedance data measured
at multiple frequencies give a high dimension to the data
set36. Support vector machine has good performance in low-
complexity classification tasks, while principal component
analysis can suppress noise to a certain extent and achieve
data dimension reduction. Joint application can improve the
generalization ability of classification methods37,38. At the
same time, the classification of multiple tissues needs multi-
ple classifiers. For the classification task with multiple classi-
fiers, application ensemble learning can improve the
accuracy of the classification task39–41. Considering the data
rule complexity, model complexity, algorithm characteristics,
and other factors comprehensively, this study uses the
method of support vector machine to construct the classifica-
tion model of five kinds of tissues and calculate the classifica-
tion critical value of different tissues. The classification
method of support vector machine combined with principal
component analysis of our verification results has low accu-
racy in spinal cord identification and cannot meet clinical
needs. Considering ensemble learning can fuse classifiers to
improve the overall classification performance, this study
further adopts support vector machine ensemble learning
method to classify. Based on this algorithm, 48 tissue classifi-
cation critical values of five tissues at 12 frequencies were
obtained in this study. In the validation of test sets, it was
found that this method has higher accuracy and can meet
clinical requirements. These data indicate that support vector
machines can be used to classify bioelectrical impedance in
spinal surgery and provide reliable tissue identification infor-
mation for spinal surgeons. This technique could be used to
recognize tissues that are not easily discernible to the naked
eye, during tissue dissection, decompression in open surgery.
For example, we could use this technique to identify whether
the lamina is penetrated, whether the spinal cord is injured
during laminectomy, so as to avoid spinal cord injury. Fur-
thermore, it can be extended to be utilized in minimally
invasive spine and joint surgery.

Strength and Limitations
In this study, the tissue recognition accuracy had achieved
100% in live animal experiments, which had not been
achieved in similar studies. And we quantitatively obtained
the classified electrical impedance threshold of the spine sur-
gery field tissues for the first time. These exciting results are
due to our first application of SVM, PCA, and ensemble
learning to establish a method for spine surgical area tissue
classification based on electrical impedance.

However, there are still some limitations to our study.
Firstly, there was mis-classification between spinal cord and
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cancellous bone based on PCA with SVM, due to the data
set used in being small. This caused the mis-classification
between spinal cord and cancellous bone based on PCA with
SVM, so a larger data set is needed to train the algorithm
with better performance of tissue recognition by PCA and
SVM. Secondly, the interference of blood and flushing fluid
in the surgical area was not completely removed in the mea-
surement of tissue electrical impedance in this study, which
may lead to deviation of results. Regardless of these limita-
tions, this study provides a new idea for surgical area tissue
recognition based on machine learning.

Future Work
This technique could translate into a novel tissue classifica-
tion probe. To translate this technique, the electrical imped-
ance acquisition platform needs to be iteratively optimized.
Clinical trials were conducted to establish human tissue elec-
trical impedance data sets, and to further confirm the safety,
effectiveness, reliability, and availability of the technique.

Conclusion

In this study, the bioelectrical impedance of cortical bone,
cancellous bone, spinal cord, muscle, and nucleus pulposus

in the spinal operation area of swine were significantly differ-
ent, and could be used as a basis for tissue recognition. In
addition, SVM can effectively use the electrical impedance
gap of different tissues to establish a tissue recognition
method with high accuracy and good generalization, and
find the critical value of impedance classification between
different tissues. This study had realized 100% tissue classifi-
cation by recognized electrical impedance using SVM and
ensemble learning, which solved the problem of low tissue
classification accuracy of current technique. In the future,

more animal experiments are needed to iteratively optimize
the tissue recognition algorithm, so as to promote the appli-
cation of our technique in clinical practice and provide doc-
tors with an accurate method to recognize tissue in
surgical area.
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