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Abstract 

Objective:  Sulfodiicoccus acidiphilus HS-1T is the type species of the genus Sulfodiicoccus, a thermoacidophilic 
archaeon belonging to the order Sulfolobales (class Thermoprotei; phylum Crenarchaeota). While S. acidiphilus HS-1T 
shares many common physiological and phenotypic features with other Sulfolobales species, the similarities in their 
16S rRNA gene sequences are less than 89%. In order to know the genomic features of S. acidiphilus HS-1T in the order 
Sulfolobales, we determined and characterized the genome of this strain.

Results:  The circular genome of S. acidiphilus HS-1T is comprised of 2353,189 bp with a G+C content of 51.15 mol%. 
A total of 2459 genes were predicted, including 2411 protein coding and 48 RNA genes. The notable genomic fea-
tures of S. acidiphilus HS-1T in Sulfolobales species are the absence of genes for polB3 and the autotrophic carbon fixa-
tion pathway, and the distribution pattern of essential genes and sequences related to genomic replication initiation. 
These insights contribute to an understanding of archaeal genomic diversity and evolution.

Keywords:  Crenarchaeota, Sulfolobales, Sulfodiicoccus, polB3, cdc6, 3-Hydroxypropionate/4-hydroxybutyrate, 
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Introduction
Sulfodiicoccus acidiphilus HS-1T, represented a novel 
genus, was recently isolated in our laboratory and val-
idly described [1]. The genus belongs to the order 
Sulfolobales, a well-known taxon of the phylum Crenar‑
chaeota, widely inhabits hot acidic environments all over 
the world [2–5]. The 16S rRNA gene sequence simi-
larities between S. acidiphilus and other species in the 
order Sulfolobales were less than 89%. Given the low 16S 
rRNA gene similarities with other Sulfolobales species, 
we hypothesized that the strain also harbored distinct 

genomic features in Sulfolobales species. Therefore, we 
determined the complete genome of S. acidiphilus HS-1T 
and compared it with other genomes in Sulfolobales spe-
cies. Genomic analysis revealed that S. acidiphilus HS-1T 
has several distinguishing genomic features.

Main text
Methods
Organism information
The isolation and characterization of S. acidophilus 
HS-1T representing a novel genus Sulfodiicoccus was 
reported previously [1, 6]. The phylogenetic position 
of S. acidiphilus based on 16S rRNA gene sequences is 
shown in Additional file  1: Figure S1. The general fea-
tures of S. acidiphilus HS-1T are shown in Additional 
file 1: Table S1. HS-1T is an irregular cocci, non-motile, 
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thermoacidophilic archaeon. Optimal growth occurs 
at 65–70 °C and pH 3–3.5. The strain is obligately aero-
bic and can utilize the following organics as a sole car-
bon source: yeast extract, beef extract, casamino acids, 
peptone, tryptone, xylose, galactose, glucose, maltose, 
sucrose, raffinose, lactose, aspartic acid and glutamic 
acid. Chemolithotrophic growth does not occur when S0, 
FeS2, K2S4O6, Na2S2O3 or FeSO4 acts as an electron donor 
under aerobic conditions (O2 as an electron acceptor). 
The cells are regular to irregular cocci with a diameter of 
0.8–1.5 μm (Additional file 1: Figure S2).

Genomic DNA preparation, genome sequencing 
and assembly
HS-1T was cultivated in a 5  L glass bottle using ~ 4  L 
modified Brock’s basal salt (MBS) medium [7], supple-
mented with yeast extract (1  g/L) and glucose (1  g/L) 
under aerobic conditions (65  °C, pH 3). Approximately 
1  L of the culture in early exponential phase was cen-
trifuged (OD600 = ~ 0.1, 8000×g, 4  °C, 10  min), and the 
supernatant was removed. DNA was extracted from the 
resulting cell pellets using the Genomic DNA Buffer Set 
(QIAGEN) and the Genomic-Tip 500/G (QIAGEN), 
according to the manufacturer’s protocols. The quantity 
and purity of the extracted DNA was checked spectro-
photometrically and through agarose gel electrophoresis. 
The genome sequencing of the S. acidiphilus strain HS-1T 
was performed by Macrogen Inc. (South Korea) using a 
PacBio RS II sequencer (Pacific Biosciences, Menlo Park, 
CA, US). De novo assembly was conducted using the 
Hierarchical Genome Assembly Process v.3.0 (https​://
githu​b.com/Pacif​icBio​scien​ces/Bioin​forma​tics-Train​ing/
wiki/HGAP).

Genome annotation
Annotation of the protein coding genes and the COG 
(cluster of orthologous groups) assignments were per-
formed using the on-line annotation server DFAST [8]. 
The tRNA and rRNA genes were identified using tRNAs-
can-SE [9, 10] and DFAST, respectively. Pseudogenes 
were identified using LAST [11] implemented in DFAST. 
Protein coding genes with Pfam domains [12] were 
searched using a CD-search program [13] with an e-value 
threshold of less than 1e−2 (database: Pfam v.30.0). Sig-
nal peptides were predicted using PRED-SIGNAL [14]. 
Transmembrane helices were predicted using TMHMM 
[15]. CRISPR repeats were detected using the CRISPR 
recognition tool CRT [16]. Genes in internal clusters 
were predicted using the CD-HIT Suite (sequence iden-
tity cut-off: 0.3, minimal alignment coverage for longer 
and shorter sequences: 0.7, other parameters: default) 
[17].

Search of replication origin
The replication origin (oriC) and origin recognition box 
(ORB) in the chromosome were predicted by Ori-finder 2 
[18]. Another replication origin in the chromosome was 
manually searched. Repeat sequences in the predicted 
oriC region were searched by the REPuter program [19].

Reexamination of chemolithotrophic growth on hydrogen
The autotrophic growth of HS-1T on hydrogen was 
reexamined. MBS medium (10  mL, pH 3) was added 
to a glass test tube and the headspace was filled with 
H2/CO2/air (80:20:10, 120 kPa). A 50 μL of active cul-
ture was inoculated into the test tube and incubation 
occurred at 65 °C for 2 weeks.

Genome project history
The complete genome sequence of HS-1T (= JCM 
31740T = InaCC Ar79T) was deposited in GenBank 
under accession number AP018553. The raw data 
(PacBio reads) used for the assembly was deposited 
in the DNA Data Bank of Japan under accession num-
ber DRA008516. The Bioproject accession number is 
PRJDB6753. A summary of the genome project is pro-
vided in Additional file 1: Table S2.

Results and discussion
Genome properties
A complete circular genome sequence (2,353,189  bp) 
was successfully obtained from a total of 225,345 sub-
reads (a total of 1,538,043,255  bp), and a plasmid was 
absent. The G+C content is 51.15 mol%, which is iden-
tical to the reported value of 52.0  mol% estimated by 
HPLC method [1]. The genome was predicted to contain 
a total of 2459 genes, of which 2411 code for proteins 
and 48 code for RNAs (rRNA: 3, tRNA: 45). The genome 
harbors each one copy of 5S, 16S and 23S rRNA genes. 
Genes of 16S and 23S rRNA are encoded in a gene clus-
ter with a 191  bp spacer region, while 5S rRNA gene is 
found in different location. Among the 2411 protein cod-
ing genes, 1219 were assigned putative functions. A total 
of 837 and 244 genes could be assigned COG functional 
categories and pseudogenes, respectively (Additional 
file  1: Tables S3, S4, Figure S3). Three CRISPR repeat 
regions were detected (positions: 1664810–1679609, 
1679646–1680862, and 1688612–1701897). No plasmids 
were detected. Other genomic statistics such as predicted 
Pfam domains, signal peptides, and transmembrane heli-
ces are summarized in Additional file 1: Table S3.

Insights from the genome sequence
Replication initiation genes and  oriC  All previously 
identified species of the order Sulfolobales (whose com-
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plete genomic sequences are available) have three copies 
of the cdc6 gene (a cell division control gene, Additional 
file  1: Table  S5). In contrast, only one copy of the cdc6 
gene (HS1genome0091) was found in the HS-1T genome 
(Fig. 1a). One replication origin (named oriC-1, position: 
87,046–87,335) located directly upstream of the cdc6 
gene was predicted by the Ori-finder 2. The oriC-1 had 
a relatively high content of adenine and thymine residues 
(A/T rich) (56.55%) and contained three ORBs as typical 
archaeal genomes with the following sequence: ACC​CCT​
CTG​TTT​CCA​CTG​GA [18, 20–22] (Fig. 1b).A previously 
reported uncharacterized motif (UCM) that exists in the 
oriC regions of several Crenarchaea [23] has also been 
located in HS-1T oriC-1. These facts indicate that oriC-1 is 
a DNA replication origin. Another replication initiation-
related gene, whiP (HS1genome1070) [23], was found on 
the opposite side of the cdc6 (Fig.  1a), however, neither 
oriC nor ORB sequences were found around whiP by Ori-
finder 2. We then manually searched for putative oriC 
regions, and an A/T rich intergenic region (64.91%, posi-
tion: 1,016,172–1,016,607, named as oriC-2) was found 
directly upstream of whiP. Further attempts to search for 
repeat sequences in oriC-2 using the REPuter program 
[19] confirmed the presence of 12 direct repeats (8–11 bp, 
Fig. 1b). The role of the direct repeats is unclear, although 
they may be involved in the recognition of the replication 

origin for the DNA initiation protein WhiP. Perhaps the 
direct repeats alternatively function as an ORB. Further 
experiments such as DNaseI footprint analyses [23, 24] 
are required to know the function.

Pathways involved in autotrophic growth
Two CO2 fixation pathways have been reported in the 
thermophilic autotroph Crenarchaeota, namely the 
3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle 
and the dicarboxylate/4-hydroxybutyrate (DC/HB) cycle 
[25]. Most species in the order Sulfolobales are thought to 
possess the HP/HB cycle but not the DC/HB cycle [25–
27]. Both cycles are absent in HS-1T (Fig.  2). The other 
known autotrophic pathways (Calvin–Bassham–Ben-
son cycle, reductive citric acid cycle (Amon–Buchanan 
cycle), reductive acetyl-CoA pathway (Wood–Ljungdahl 
pathway) and 3-hydroxypropionate cycle) [28] have not 
been identified in HS-1T. These observations are con-
sistent with the incapability of chemolithoautotrophic 
growth of HS-1T [1]. In the previous paper, we men-
tioned the capability of chemolithoautotrophic growth 
of HS-1T using hydrogen as an electron donor. Based on 
the genomic information, we carefully reexamined the 
capability of chemolithoautotrophic growth with serial 
inoculation using the chemolithoautotrophic medium, 
and no growth occurred after 2nd inoculation. Thus, we 

TTACTTCCT TCTTAAAATTA TTCCTTAT TGGGATTTCAC AAAATTAAA ATTAAATA
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Fig. 1  Predicted oriCs in the Sulfodiicoccus acidiphilus HS-1T genome. a Positions of the predicted oriCs, b ORB, UCM and repeat sequences found 
upstream of cdc6 and whiP 
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revise our previous description regarding the autotrophic 
growth of HS-1T on hydrogen, to “HS-1T does not grow 
on hydrogen autotrophically.”

Lack of polB3 in  the genome of HS‑1T  Three groups of 
family B DNA polymerases (PolB1, PolB2, and PolB3) 
have been associated with archaea: PolB1 is only distrib-
uted in the superphylum that includes Thaumarchaeota, 
Aigarchaeota, Crenarchaeota and Korarchaeota (also 
known as TACK superphylum); PolB2 is patchily distrib-
uted in most of the archaeal lineages; and PolB3 is dis-

tributed in all archaea except for Thaumarchaeota [29]. 
Surprisingly, the HS-1T genome lacks polB3, although 
all the crenarchaeal genomes reported before harbor the 
gene. In the order Sulfolobales, polB3 is located on the 
downstream region of dnaG, with a high genomic synteny 
around the dnaG sequence among Sulfolobales species, 
while the genome structure of the downstream region of 
dnaG of HS-1T is different from those in the genomes of 
other Sulfolobales species (Fig. 3). Since all the other spe-
cies in the order Sulfolobales have a polB3 downstream of 
a dnaG, HS-1T may have lost polB3 and the downstream 
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Fig. 2  Incomplete DC/HB and HP/HB cycles of Sulfodiicoccus acidiphilus HS-1T. The annotated ORF number is shown in parentheses. Gray arrows 
indicate pathways that are missing in HS-1T. HP/HB: 3-hydroxypropionate/4-hydroxybutyrate cycle; DC/HB: dicarboxylate/4-hydroxybutyrate cycle
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region of dnaG during the course of its evolution. The 
roles of PolB1, PolB2 and PolB3 in Saccharolobus solfa‑
taricus (synonym: Sulfolobus solfataricus), a model organ-
ism of the order Sulfolobales, were previously investigated 
in vivo by Choi et al. [30]. The authors showed that PolB1 
was catalytically much more efficient and processive than 
PolB2 and PolB3, suggesting that PolB1 plays a catalytic 
role as the main replicative DNA polymerase. They also 
suggested that PolB2 and PolB3 have limited catalytic roles 
in translesion DNA synthesis and may not be involved in 
chromosomal DNA replication [30]. The lack of a polB3 
gene in S. acidiphilus HS-1T indicates that PolB3 is not 
essential for either DNA replication or translesion DNA 
synthesis in Sulfolobales or the phylum Crenarchaeota.

Limitations
This study focused on noteworthy genomic features 
of S. acidiphilus HS-1T that are distinct from other 
Sulfolobales species. Although our genomic analyses 
revealed some exceptions of genomic features in Sul‑
folobales, further molecular biology assessment and bio-
chemical analyses are needed to resolve the issues raised 
in this manuscript.

Additional file

Additional file 1: Table S1. Classification and general features of Sulfo-
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