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Abstract: Nitrogen is a critical nutrient in beverage fermentations, influencing fermentation performance and formation of com- 
pounds that affect organoleptic properties of the product. Traditionally, most commercial wine fermentations rely on Saccharomyces 
cerevisiae but the potential of alternative yeasts is increasingly recognised because of the possibility to deliver innovative products 
and process improvements. In this regard, Saccharomyces uvarum is an attractive non-traditional yeast that, while quite closely re- 
lated to S. cerevisiae , displays a different fermentative and aromatic profile. Although S. uvarum is used in cider-making and in some 
winemaking, better knowledge of its physiology and metabolism is required if its full potential is to be realised. To address this gap, 
we performed a comparative analysis of the response of S. uvarum and S. cerevisiae to 13 different sources of nitrogen, assessing key 
parameters such as growth, fermentation performance, the production of central carbon metabolites and aroma volatile compounds. 
We observed that the two species differ in the production of acetate, succinate, medium-chain fatty acids, phenylethanol, phenylethyl 
acetate, and fusel/branched acids in ways that reflect different distribution of fluxes in the metabolic network. The integrated anal- 
ysis revealed different patterns of yeast performance and activity linked to whether growth was on amino acids metabolised via the 
Ehrlich pathway or on amino acids and compounds assimilated through the central nitrogen core. This study highlights differences 
between the two yeasts and the importance that nitrogen metabolism can play in modulating the sensory profile of wine when using 
S. uvarum as the fermentative yeast. 
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Graphical abstract 

Depending on the pathway responsible for their catabolism, amino acids either promote growth or aroma production during fermen- 
tation by Saccharomyces uvarum. 

 

 

 

 

 

 

 

 

 

 

et al., 1990a ) . Two critical roles for YAN are described in S. cere- 
visiae , the quintessential yeast for producing alcoholic beverages. 
First, the nitrogen content of grape juice has been reported as 
the main factor limiting yeast growth during wine fermentation 
( Varela et al., 2004 ) , with a direct impact on yeast fermentative 
activity and consequently on the fermentation kinetics ( Bely 
et al., 1990b ) . It is generally accepted that YAN concentration 
below 150 mg/L affects yeast metabolism and causes stuck or 
sluggish fermentations ( Bell and Henschke, 2005 ; Blateyron and 
Sablayrolles, 2001 ) , which are major issues in the wine industry. 
The presence of residual sugars associated with stuck fermenta- 
tion is not desirable in many wine styles and becomes a risk for 
Introduction 

Nitrogen is one of the most important nutrients affecting wine
fermentation. The composition and amount of nitrogen de-
pend on the grape variety, viticultural management practices,
soil, climate, and degree of ripeness ( Bell and Henschke, 2005 ) .
This nutrient is present in grape juice as a complex mixture of
nitrogen-containing compounds, only some of which—amino
acids, ammonium, and small peptides—are available to yeast.
The total amount of nitrogen that can be accessed by yeast for
growth is referred to as ‘Yeast Assimilable Nitrogen’ ( YAN ) and
its content in wine musts varies between 60 and 500 mg/L ( Bely
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evelopment of spoilage microorganisms. To face this problem,
itrogen additions in the form of di-ammonium phosphate are
ommonly used in wine making. Second, studies assessing the
nfluence of the quantity and quality of the nitrogen source on
east metabolism revealed an effect on both the formation of
entral carbon metabolites, including glycerol ( Albers et al., 1996 ) ,
nd on the production of volatile compounds, which together
ffect mouthfeel, flavour and aroma ( Gobert et al., 2019 ) . In
articular, it was reported that levels of YAN have a great impact
n the formation of higher alcohols and branched acids ( Rollero
t al., 2015 , 2017 ) . To a certain extent, this is because the branched
nd aromatic amino acids, which are catabolised through the
hrlich pathway ( Hazelwood et al., 2008 ) , are precursors of
olatile compounds in S. cerevisiae ( Fairbairn et al., 2017 ) . In an
ndication of complexity, however, amino acids are not major
ontributors to the production of aroma compounds during wine
ermentation because of their low content in grape juice with
espect to the production of volatile compounds, as shown by
 quantitative analysis of nitrogen metabolism in S. cerevisiae
 Crépin et al., 2017 ; Rollero et al., 2017 ) . 
When considering the production of volatile compounds, it is

mportant to recognise that nitrogen catabolic and biosynthetic
athways function in parallel, and the balance between these is
oordinated by regulatory processes to generate an appropriate
esponse to nitrogen availability ( Ljungdahl and Daignan-Fornier,
012 ) . The α-ketoacids originated from the Ehrlich pathway and
he central carbon metabolism ( CCM ) are significant as they are
recursors of both amino acids and aromatic/branched higher al-
ohols and acids. They play a key role in the nitrogen network
ehaving as metabolic nodes, around which the flux distribution
s regulated depending on anabolic requirements and nitrogen
vailability. Furthermore, higher alcohols and branched acids are
recursors for the synthesis of esters, compounds with a positive
mpact on the sensory quality of wine ( fruity or floral notes ) . The
ormation of acetate esters result from the esterification of higher
lcohols with acetyl-CoA by the acetyltransferases Atf1 and Atf2
 Lilly et al., 2006 ; Verstrepen et al., 2003 ) , and branched ethyl esters
rom branched acids with ethanol by Eeb1 and Eht1 ( Saerens et al.,
006 ) . Other volatile compounds that contribute to wine aroma
re the medium-chain fatty acids ( MCFA ) ethyl esters that result
rom the condensation of acyl-CoA and ethanol ( Saerens et al.,
006 ) and possibly through a mono-acyl glycerol lipase ( Marullo
t al., 2021 ) . These substances are related to lipid and acetyl-CoA
etabolism, therefore, the fatty acids content of grape juice im-
acts the production of ethyl esters ( Liu et al., 2019 ) . In addition,
owever, the nitrogen source has a slight impact on their produc-
ion ( Barbosa et al., 2009 ; Seguinot et al., 2018 ) . 
The nitrogen sources that compose YAN are transported and

ssimilated by a wide range of permeases and catabolic path-
ays, supporting yeast activity in different manners ( Bianchi et
l., 2019 ) . Several different classifications that refer to distinct
hysiological mechanisms have been proposed to assess the effi-
iency of these nutrients to support yeast activity. First, nitrogen
reference based on the efficiency to support growth has been
eported in S. cerevisiae where the amino acids were classified as
ot efficient ( Lys, His, and Gly ) , medium efficient ( Val, Phe, Leu, Ile,
et, Tyr, Thr, Trp, and Pro ) and highly efficient ( Asn, Asp, Gln, Glu,
er, Ala, Arg, and NH 4 ) to sustain growth ( Fairbairn et al., 2017 ;
atson, 1976 ) . This classification is related to the activity through
mino acid degradation pathways fulfilling anabolic require-
ents. Second, the efficiency to maintain high metabolic activity
uring the stationary phase of fermentation has been considered
o determine the yeast nitrogen preference. This concept relies
n the amount of nitrogen to be added during the stationary
hase of wine fermentation to maintain a high metabolic activity,
rotein turnover and cellular maintenance ( Manginot et al., 1998 ) .
inally, the order of consumption of nitrogen sources provided as
 mixture of ammonium and amino acids has been studied in a
hemically defined medium mimicking the wine context ( Crépin
t al., 2012 ) . The differentiation between first consumed ( Lys ) ,
arly consumed ( Asp, Thr, Glu, Leu, His, Met, Ile, Ser, Gln, and Phe ) ,
nd late consumed ( NH 4 , Val, Arg, Ala, Trp, and Tyr ) compounds is
ainly associated to the regulation of permeases activity through
CR and SPS-sensor systems and the kinetic characteristics of
ransporters ( Hofman-Bang, 1999 ; Ljungdahl, 2009 ) . 
In recent years, particular attention has been paid to so-called

on-conventional or non-traditional yeasts as they offer out-
tanding alternatives for the innovation of fermented products
nd the improvement of processes ( Drumonde-Neves et al., 2021 ;
leet, 2008 ; Jolly et al., 2022 ; Pretorius, 2020 ) . Saccharomyces uvarum,
 close relative of S. cerevisiae, is one of the non-traditional yeasts
ssociated with low ethanol production and strong aromatic in-
ensity because of the high production of acetate esters ( Stribny
t al., 2016 ) . S. uvarum is also a cryotolerant yeast meaning that
t displays a good fermentation performance at low temperatures
 12°C20°C ) ( Almeida et al., 2014 ; Zhang et al., 2015 ) . These inter-
sting traits make this species very attractive for cider ( González
lores et al., 2017 ) and wine production. In fact, some strains have
lready been commercialized and hybrids have been generated
or winemaking and the brewing industry ( Gamero et al., 2013 ;
ibson et al., 2017 ) . To date, information on S. uvarum metabolism
as mainly focused on CCM, showing a high capacity of this
pecies to produce glycerol and succinate, as well as an interest-
ng system of acetate production-consumption to maintain the
ryotolerant metabolism ( Henriques et al., 2021 ; Minebois et al.,
020a ) . The characteristics of nitrogen metabolism and its rela-
ionship with the formation of volatile compounds are not well-
ocumented in this species, with only one study reporting a mod-
rate impact of nitrogen availability on fermentative capacities
 Su et al., 2019 ) . Nevertheless, such knowledge is essential for the
anaged use of S. uvarum as a credible alternative to S. cerevisiae

or the modulation of the aroma profile of wine. 
This study provides a comprehensive picture of the impact of

itrogen sources on S. uvarum behaviour during fermentation and
xplores the metabolic specificities of this yeast. The nitrogen
reference of S. uvarum in terms of efficiency to support growth
nder oenological conditions was first determined. Then, the im-
act of the nitrogen source on fermentation performance, produc-
ion of central carbon metabolites and volatile compounds during
ine fermentation was characterised. The integrated analysis of
he data set provides new insights on the relationships between
he catabolism of nitrogen substrates and the metabolome in S.
varum and provides some explanations for the distinctive phe-
otypic traits of this species. This research offers crucial funda-
ental knowledge that will facilitate informed use of S. uvarum

o modulate the sensory profile of wine. 

aterial and methods 

trains and pre-cultures 
he strains used in this study are listed in Table 1 . The strains were
eactivated in YPD broth ( glucose 20 g/L, yeast extract 10 g/L, pep-
one 20 g/L ) . The pre-cultures were grown in YPD at 28°C for 16 h,
hen centrifuged 5 min at 4500 r/min. The pellet was suspended
n Yeast Nitrogen Base ( YNB ) media ( glucose 20 g/L ) without am-
onium and amino acids for 4 h at 28°C to exhaust the nitrogen
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Table 1. Strains used in this study. 

Strain Environment Geographical origin Reference 

S. uvarum MTF3098/BMV58 Wine Valencia, Spain Velluto BMV58 TM ( Gamero et al., 2013 ) 
S. uvarum CBS395/CLIB251 Fruits: Juice of Ribes nigrum The Netherlands Pulvirenti et al., 2000 
S. uvarum OS24/CBS7001/MCYC623 Insect Mesophylax adopersus Avila, Spain Kellis et al., 2003 
S. uvarum OS472/A4 End of wine fermentation Sauvignon Blanc Marlborough, New Zealand Zhang et al., 2015 
S. cerevisiae EC1118 Wine Champagne, France Novo et al., 2009 
S. cerevisiae CEN.PK113-7D Laboratory - Nijkamp et al., 2012 
S. cerevisiae S288c Laboratory - Mortimer and Johnston, 1986 

Table 2. Nitrogen conditions tested in micro-fermentations and comparative synthetic wine must ( MS ) fermentations. The amount of 
YAN was 200 mg/L in synthetic must ( MS ) and 1059.48 mg/L in minimal media ( MM ) ; * g/L solubility limit of amino acid; † mix of amino 
acids as described by Bely et al., ( 1990a ) . 

Concentration of nitrogen compound 

Nitrogen condition Nomenclature 
Number of assimilated 

nitrogen atoms per molecule 
Micro-fermentations 

in MM ( g/L ) Fermentations in MS ( g/L ) 

Ammonium sulfate NH 4 2 5 0.94 
Methionine Met 1 11.29 2.13 
Phenylalanine Phe 1 12.5 2.36 
Asparagine Asn 2 5 0.94 
Aspartate Asp 1 4.5 * 1.90 
Valine Val 1 8.87 1.67 
Isoleucine Ile 1 9.93 1.87 
Leucine Leu 1 9.93 1.87 
Glutamine Gln 2 5.53 1.04 
Glutamate Glu 1 7.5 * 2.10 
MS 200 mg/L YAN MS200 N/A N/A Ammonium chloride 0.216, mix 

of amino acids 6.16 mL/L † 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reserves. The cells were washed with 0.9% NaCl saline solution to
remove all nitrogen residues and then resuspended in the test me-
dia without the nitrogen source. The cell suspension was further
used to inoculate fermentations. 

Micro-fermentations in minimal media 

The micro-fermentations were done in microplates with seven
strains ( Table 1 ) . The minimal media ( MM ) components were glu-
cose 20 g/L, KH 2 PO 4 3 g/L, MgSO 4 .7H 2 O 0.5 g/L, vitamin mix,
and trace elements adapted from Verduyn media ( Verduyn et al.,
1992 ) . YAN was provided in excess, at the same concentration
( 1059 mg/L ) but in 10 different forms, ammonium or amino acids
as sole nitrogen sources ( Table 2 ) . For the microplate fermenta-
tions, 20 μL of pre-culture suspension at OD 600 of ∼0.5 was added
to 180 μL of fresh medium ( ∼0.05 A 600 ) in each well. This exper-
iment was done with three biological replicates of each condi-
tion using one blank per medium. The 96 flat wells microplate
was incubated in the microplate reader CLARIOStar®Plus ( BMG
LABTECH, Germany ) at 20°C. The OD 600 was measured for 60 cy-
cles of 1 hour ( 24 flashes/cycle ) with continual double orbital
shaking ( 500 r/min ) between measurements. 

Alcoholic fermentations in grape must 
Fermentations in synthetic and natural grape must were con-
ducted with S. uvarum MTF3098 and S. cerevisiae EC1118. Synthetic
grape must ( MS ) was used to mimic the composition of grape juice
allowing the variation of the nitrogen source. Two natural musts,
which have a mixture of nitrogen sources, were also used. The MS
was prepared following the composition of Bely et al., ( 1990a ) with
some adjustments. The base MS contained glucose 100 g/L, fruc- 
tose 100 g/L, malic acid 6 g/L, citric acid 6 g/L, KH 2 PO 4 0.75 g/L,
K 2 SO 4 0.5 g/L, MgSO 4 .7H 2 O 0.25 g/L, CaCl 2 .2H 2 O 0.155 g/L, NaCl
0.2 g/L, phytosterols 5 mg/L and trace elements and vitamins. YAN 

was provided at 200 mg/L as 11 different forms listed in Table 2 .
The pH of the MS was set to 3.3 with NaOH. The two natural white
grape musts were Chardonnay ( pH 3.78, 210 g/L sugar, 200 mg/L 
YAN ) and Maccabeu ( pH 3.5, 235 g/L sugar, 104 mg/L YAN ) pro-
vided by the experimental unit INRAE Pech Rouge. The MS and 
natural musts were pasteurised for 20 min and then oxygenated 
by bubbling air for 30 min before inoculation. 

Batch fermentations were performed in 330 mL fermenters 
containing 250 mL of medium, equipped with fermentation locks 
to avoid the entry of oxygen and allow CO 2 release. The initial pop-
ulation in each fermenter after inoculation was 5 × 10 5 cells/mL 
( corresponding to ∼0.04 A 600 for S. uvarum and ∼0.05 A 600 for S.
cerevisiae ) . The fermentations were carried out in biological tripli- 
cates at 20°C with continuous magnetic stirring ( 230 r/min ) with 
an automated robotic system ( PhenOFerm LabServices, Breda,
Netherlands ) capable of moving the fermenter from its location 
on the stirring plate to a precision balance ( Duc et al., 2020 ) .
The fermentation progress was monitored by CO 2 release ( g/L ) ,
weighing the fermenters every hour. A custom-developed Labview 
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pplication automatically calculated the amount of CO 2 released
rom the weight loss and the CO 2 production rate ( g/L/h ) , which
ere determined based on polynomial smoothing ( Sablayrolles
t al., 1987 ) . Samples for metabolome analysis were collected
t 60 g/L of CO 2 produced and at the end of fermentation ( CO 2 

roduction rate lower than 0.05 g/L/h ) by centrifuging 25 mL of
edium ( 3500 g, 5 min, 4°C ) to remove cells and storing the su-
ernatant at −20°C. 

nalytical methods 
he yeast population at different fermentation times was quanti-
ed with a Coulter counter ( BECKMAN®) and by measuring opti-
al density ( A 600 ) with a spectrophotometer. Growth kinetics data
as analysed using R Studio software, version 1.3.1093 ( RStudio
eam, 2020 ) . The area under the curve ( AUC ) was calculated with
rowthCurver package ( Sprouffske and Wagner, 2016 ) as a mea-
ure of growth kinetics comprising the lag phase length, growth
ate, final time and maximum biomass produced. The AUC met-
ic has been used in previous studies comparing yeast growth
epending on the nitrogen source ( Su et al., 2020 ) . This param-
ter represents the area defined by the x-axis, y-axis, growth
urve, and time ( 48 h ) that summarizes information of the lag
hase, consumption rate and maximum consumption percent-
ge. The boxplots and growth curves were made using GraphPad
rism version 8.0.2 for Windows ( GraphPad Software, San Diego,
A, USA ) . 
The methods for measuring metabolites and volatiles dur-

ng the wine fermentations were done as previously described
 Rollero et al., 2015 ) . Metabolites such as glucose, fructose,
thanol, glycerol and organic acids were determined by High-
erformance Liquid Chromatography ( HPLC ) on a Phenomenex
ezex ROA column ( HPLC HP1100 Infinity, Agilent Technologies ) .
he samples treatment for HPLC consisted of dilution of 200 μL
f sample in H 2 SO 4 0 005 N solution, followed by purification with
entrifugation in the case of MS and filtration for natural musts.
he column elution was done with H 2 SO 4 0 005 N at 60°C, with
.6 mL/min flow rate, and a refractive index detector. From the
ame samples, the measurement of volatile compounds was per-
ormed by gas chromatography/mass spectrometry ( GC-MS ) with
 Hewlett Packard 6890 gas chromatograph ( Agilent Technologies,
anta Clara, CA, USA ) equipped with a CTC Combi PAL Autosam-
ler AOC-5000 ( Shimadzu, Columbia, USA ) , coupled to a HP 5973
ass spectrometry detector ( HP, now Agilent Technologies, Santa
lara, CA, USA ) . The liquid extraction of 5 mL supernatant supple-
ented with 10 μL of a solution of deutared standards ( 100 μg/L

n ethanol ) was done with dichloromethane CH 2 Cl 2 , where the or-
anic phase was recovered, dried, and concentrated with nitro-
en gas before injection. The compounds were separated using a
0 m × 0.25 mm Phenomenex fused silica capillary column ZB-
AX, 0.25 μm film thickness ( Agilent Technologies, Santa Clara,
alifornia, USA ) , using helium as carrier gas with a flow rate of
 mL/min in constant flow mode and a linear velocity of 36 cm/s
nd with a temperature gradient between 40 and 220°C. The mea-
ured aromatic compounds were higher alcohols, esters and fatty
cids. Calibration curves were built for each compound, from ref-
rence solutions prepared in alcoholic medium ( 12% ethanol, 6 g/l
alic acid, pH3.3 ) and treated as samples. The metabolome data
as graphed using GraphPad Prism v8.0.2. 

tatistical analysis 
tatistical tests for growth analysis and metabolites production
ere made using GraphPad Prism version 8.0.2 for Windows
 GraphPad Software, San Diego, CA, USA ) . Two-way ANOVA
as performed for heatmaps with correction for multiple
omparisons using Tukey’s test, where a p -value < 0.05 was
onsidered significant. The raw data for both growth and the
etabolome at different conditions are available on Zenodo
OI:10.5281/zenodo.6627770. 
To get an overview of correlation of the nitrogen source and
etabolites produced, a principal component analysis ( PCA ) was
erformed for each group of volatile compounds using the R Stu-
io software ( Supplementary figure 1 ) . 

esults 

itrogen preference in S. cerevisiae and S. uvarum
pecies 
o evaluate nitrogen preference, we monitored the growth of three
. cerevisiae strains and four S. uvarum wine strains ( Table 1 ) dur-
ng micro-fermentations conducted in MM varying the nitrogen
ource. The area under the curve ( AUC ) values, which provide an
verall view of the efficiency of the nitrogen source to support
rowth, were compared between species ( Fig. 1 a ) . Both species
ave the same growth capacity in most of the nitrogen sources,
amely, good growth on ammonium, aspartate and glutamine, in-
ermediate behaviour on phenylalanine, leucine, valine and glu-
amate, and poor growth on isoleucine. On the other hand, me-
hionine and asparagine showed different efficiency to support
rowth between the two species. S. uvarum strains grew efficiently
n methionine while S. cerevisiae strains had poor growth. In con-
rast, growth in asparagine was low for S. uvarum but very high for
. cerevisiae . However, the nitrogen preference can also be strain
pecific ( Fig. 1 b ) : for example, S. cerevisiae CEN.PK113-7D showed
 slower growth than the other S. cerevisiae strains in aspartate,
hile the lowest growth on isoleucine and methionine was ob-
erved with strains EC1118 and S288c, respectively. Regarding S.
varum, strain CBS472 showed a different nitrogen preference
han other S. uvarum strains, most notably a higher growth ca-
acity on isoleucine than on leucine. 

ffect of the nitrogen source on fermentation 

inetics and profile 

o further understand how the nitrogen source affects the fer-
entation profile in S. uvarum , the representative wine strains S.
varum MTF3098 and S. cerevisiae EC1118 ( used as reference ) were
rown in two natural musts and eleven synthetic grape juices
ith different nitrogen sources ( Table 2 ) . Sluggish profiles were
bserved during fermentations with S. uvarum but not with S. cere-
isiae under the same conditions ( Fig. 2 a ) . Overall, S. cerevisiae dis-
layed higher fermentation performances than S. uvarum. This is
llustrated with the considerably shorter time required to com-
lete the fermentation for S. cerevisiae, where it ranged from
34377 h, compared to S. uvarum, where the range was between
01 and 477 h depending on the nitrogen source ( Fig. 2 b ) . In line
ith these observations, the maximum fermentation rate ( Rmax )
as in general lower in S. uvarum ( 0.51 g/L/h in asparagine to
.75 g/L/h in leucine ) than in S. cerevisiae ( 0.7 g/L/h in phenylala-
ine and 0.99 g/L/h in glutamine ) ( Fig. 2 c, Supplementary Table 1 ) .
he largest differences between the two strains were found in glu-
amine and asparagine fermentations, with 56 and 45% of vari-
tion, respectively. In methionine and isoleucine, S. uvarum had
ower Rmax and fast decrease of fermentation rate that caused
ncrease of total fermentation time. Surprisingly, S. cerevisiae dis-
layed a longer lag phase than S. uvarum in most of nitrogen
ources, except for asparagine. The lag phase of S. uvarum strongly
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Fig. 1 Growth efficiency in different nitrogen sources. Micro-fermentations were performed in minimal media supplemented with ammonium ( NH 4 ) , 
methionine ( Met ) , phenylalanine ( Phe ) , asparagine ( Asn ) , aspartate ( Asp ) , valine ( Val ) , isoleucine ( Ile ) , leucine ( Leu ) , glutamine ( Gln ) and glutamate 
( Glu ) as a sole source of nitrogen. Fermentations were done at 20°C for 48 h and growth was determined using the area under the curve ( AUC ) method. 
( a ) Area under the curve ( AUC ) of S. cerevisiae and S. uvarum species in different nitrogen sources. The evaluated strains were S. cerevisiae 
( CEN.PK113-7D, EC1118, S288c ) and S. uvarum ( MTF3098, CBS395, OS24, OS472 ) . ( b ) Growth of S. uvarum ( Su ) and S. cerevisiae ( Sc ) strains expressed in 
AUC. Values were normalized with the mean of all strains for each nitrogen source. This allowed the classification of the strains according to their 
capacity to use a nitrogen compound. The highest AUC represents more efficient growth while low AUC indicate difficulty to assimilate the nitrogen 
source and sustain growth. 

 

 

 

 

 

 

 

depended on the nitrogen source, being > 50 h in Ehrlich path-
way amino acids and < 50 h in nitrogen compounds assimilated
through the central nitrogen metabolism, except for asparagine
( 80 h ) . 

In addition to growth, fermentation performance was assessed
as the capacity to completely deplete sugar, a trait of interest to
the wine industry. The two species differed in their capacity to 
deplete sugars. At the end of fermentation , S. cerevisiae exhausted 
sugars in most of the conditions, except from Maccabeu and 
phenylalanine. Conversely, S. uvarum depleted sugars only when 
isoleucine or leucine were used as the sole nitrogen source.
Low amounts of residual sugars ( < 5 g/L ) , mainly in the form of
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Fig. 2 Growth kinetics of S. uvarum MTF3098 ( Su ) and S. cerevisiae EC1118 ( Sc ) . Fermentations were conducted in synthetic must ( MS ) in 11 different 
nitrogen conditions and two natural grape juices, at 20°C until the CO 2 production rate was lower than 0.05 g/L/h. ( a ) Fermentation profile on 
ammonium, asparagine, methionine, valine, isoleucine, and leucine. The accumulated CO 2 is expressed in g/L and the CO 2 production rate is 
expressed in g/L/h. ( b ) Fermentation time expressed in hours in 13 different nitrogen conditions: ammonium ( NH 4 ) , methionine ( Met ) , phenylalanine 
( Phe ) , asparagine ( Asn ) , aspartate ( Asp ) , valine ( Val ) , isoleucine ( Ile ) , leucine ( Leu ) , glutamine ( Gln ) , glutamate ( Glu ) , MS200, Maccabeu ( Macc ) , and 
Chardonnay ( Chard ) . ( c ) Heatmap of the growth parameters of S. cerevisiae and S. uvarum depending on the nitrogen sources. Fermentation rate ( Rmax ) , 
time passed until reaching Rmax ( TimeAtRmax ) , CO 2 produced at the Rmax point ( CO 2 atRmax ) , duration of the lag phase ( LagTime ) . The values were 
normalized with the mean of each parameter among the strains and all the conditions tested. 
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Fig. 3 Production of central carbon metabolites by S. uvarum and S. cerevisiae when growing on different nitrogen sources. Fermentations were 
conducted with S. uvarum ( Su ) and S. cerevisiae ( Sc ) in 13 different nitrogen conditions: ammonium ( NH 4 ) , methionine ( Met ) , phenylalanine ( Phe ) , 
asparagine ( Asn ) , aspartate ( Asp ) , valine ( Val ) , isoleucine ( Ile ) , leucine ( Leu ) , glutamine ( Gln ) , glutamate ( Glu ) , MS200, Maccabeu ( Macc ) , and 
Chardonnay ( Chard ) . ( a ) Ethanol yield of S. uvarum and S. cerevisiae calculated from biological triplicates, expressed as grams of ethanol produced per 
grams of sugar consumed. ( b ) Heatmap of the final production of central carbon metabolites ( g/L ) normalized with the mean of each compound 
among all the nitrogen conditions and strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fructose, were found during fermentations with ammonium,
valine, phenylalanine, and MS200, intermediate levels with glu-
tamate and methionine, and high concentrations ( > 11 g/L ) on
glutamine, aspartate, and asparagine ( Supplementary material ) .
Hence, the source of nitrogen inversely influenced S. uvarum
growth and fermentation performance. The amino acids assimi-
lated through the central nitrogen core efficiently support growth
but left residual sugar at the end of wine fermentations, whereas
Ehrlich amino acids fully used all sugars but only supported
slower growth. 

Central carbon metabolites during wine 

fermentation 

The physiological behaviour of S. uvarum during wine fermen-
tation with different nitrogen sources was investigated by
comparing the profile of central carbon metabolites between
the species. It is immediately apparent that the ethanol pro-
duction by S. cerevisiae was higher than that of S. uvarum in
all conditions ( Fig. 3 a ) . Taking the synthetic medium MS200
as an example, S. cerevisiae produced 91.6 g/L ethanol ( 11.6%
volume ) while S. uvarum produced 86.6 g/L ( 11% ) . The ethanol
yield, arising because of conversion of sugars to ethanol, var-
ied depending on nitrogen source in a similar pattern for
both yeasts, showing higher ethanol yields when growing on
asparagine, aspartate, and valine and lower yields on leucine and 
isoleucine. 

S. uvarum was also differentiated from S. cerevisiae when central 
carbon metabolites were considered ( Fig. 3 B ) . The most notable 
differences were increased production of glycerol and succinate,
and lower formation of acetate and α-ketoglutarate ( α-KG ) in S.
uvarum . In addition, an important effect of the nitrogen source 
on the formation of these metabolites was observed, except for 
glycerol in which the variation to the mean, calculated with data 
from the other nitrogen conditions, was < 15% in both species 
and thus nitrogen effects were subtle. We found that the use of
glutamate resulted in 10-fold increase of α-KG production by S.
uvarum relative to the mean. The increase factor was 1.67 times 
for glutamine and aspartate. α-KG formation by S. cerevisiae was 
also largely induced by glutamate and, in a lesser extent, by glu-
tamine and aspartate. Furthermore, the production of succinate 
was widely affected by the nitrogen source, with an 8.6 variation 
factor between the lowest and the highest levels of production 
by S. uvarum . Three groups of nitrogen source were distinguished,
showing low ( 1 g/L in isoleucine ) , intermediate ( ∼2 g/L in valine,
methionine and asparagine ) and high succinate production ( from 

47.5 g/L in the other nitrogen compounds ) . Unexpectedly, the 
response of succinate production to the nitrogen source by S.
cerevisiae was very different, with a variation factor among all 
conditions of only 3.7. Moreover, the production of succinate 
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Fig. 4 Heatmap summarizing the final production of volatile compounds by S. uvarum growing on different nitrogen sources. S. uvarum ( Su ) and S. 
cerevisiae ( Sc ) fermentations were achieved using 13 different nitrogen conditions providing 200 mg/L of YAN as ammonium ( NH 4 ) , methionine ( Met ) , 
phenylalanine ( Phe ) , asparagine ( Asn ) , aspartate ( Asp ) , valine ( Val ) , isoleucine ( Ile ) , leucine ( Leu ) , glutamine ( Gln ) , glutamate ( Glu ) as a sole, and MS200, 
Maccabeu ( Macc ) and Chardonnay ( Chard ) . Final concentration expressed in mg/L normalized with the mean of each volatile compound produced by 
both strains in all the nitrogen conditions tested. Green colour represents values > 7. 
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y S. cerevisiae was low during methionine and isoleucine fer-
entation, intermediate when valine, leucine, and ammonium
ere used and high on the rest nitrogen sources, reflecting a
ifferent clustering of nitrogen sources in their ability to promote
uccinate formation than that of S. uvarum . Our results showed
hat, in general, S. uvarum produced lower amounts of acetate
ut with a higher variability depending on nitrogen conditions
 from 0.100.35 g/L ) compared to S. cerevisiae ( from 0.300.48 g/L ) .
imilar to the formation of succinate, the amino acids triggering
he highest acetate production differed between the two species:
lutamine and asparagine for S. uvarum, and methionine and
spartate for S. cerevisiae . Acetate production on methionine
as very interesting with opposite effects seen: acetate levels
ere lowest ( of all the single nitrogen sources ) in S. uvarum but
ighest in S. cerevisiae . Finally, it is noteworthy that the production
f central carbon metabolites by S. uvarum using a mixture of
itrogen compounds was in the range of variation found using
 unique nitrogen source, except for glycerol ( overproduced in
atural grape juice ) and succinate ( overproduced in natural
nd synthetic grape juice ) . During fermentation on Chardon-
ay must, acetate was substantially overproduced by both

trains. 
nfluence of the nitrogen source on the volatile 

ompounds production 

o evaluate the influence of the nitrogen source on the aroma pro-
le of S. uvarum MTF3098 and S. cerevisiae EC1118, the concentra-
ions of volatile compounds at the end of fermentation were com-
ared ( Fig. 4 ) . A principal component analysis ( PCA ) revealed that
oth species and nitrogen source affected their production during
ermentation ( Supplementary figure 1 ) . 

edium chain fatty acids ( MCFA ) and MCFA ethyl esters 
CFA from C4 to C12 are produced through the elongation of

he carbon chain by the addition of C2 units from acetyl-CoA.
or this analysis, the overall MCFA production is reported in μM
f acetyl-CoA equivalents, which reflects the pathway activity. In
ost nitrogen sources, S. uvarum produced less MCFA than S. cere-
isiae ( Fig. 5 ) . First, the total MCFA formation by S. uvarum was
ffected by the nitrogen source, with low production on valine,
soleucine, leucine, glutamine, glutamate, aspartate, and ammo-
ium ( range from 300470 μM ) , moderate production on phenylala-
ine ( 562 μM ) and high production on asparagine and methionine
 724 and 723 μM, respectively ) . The MCFA production profile in S.
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Fig. 5 Final production of MCFA and MCFA ethyl esters by S. uvarum and S. cerevisiae depending on the nitrogen source. Fermentations were conducted 
using 13 different nitrogen conditions: ammonium ( NH 4 ) , methionine ( Met ) , phenylalanine ( Phe ) , asparagine ( Asn ) , aspartate ( Asp ) , valine ( Val ) , 
isoleucine ( Ile ) , leucine ( Leu ) , glutamine ( Gln ) , glutamate ( Glu ) , MS200, Maccabeu ( Macc ) , and Chardonnay ( Chard ) . Concentration expressed in μM 

acetyl-CoA equivalent considering the number of acetyl-CoA units required for the synthesis of each compound ( 2,3,4,5,6 C-units for butanoic, 
hexanoic, octanoic, decanoic, and dodecanoic acids, respectively ) . ( a ) Medium chain fatty acids ( MCFA ) . ( b ) MCFA Ethyl esters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uvarum was also influenced by the nitrogen source. During fer-
mentations with valine, isoleucine, leucine, phenylalanine, gluta-
mate, aspartate, and ammonium the MCFA profile was charac-
terised by a low amount of butanoic acid compared to the other
MCFAs. The profile of MCFAs formation obtained with S. cerevisiae
under the same conditions was quite different, with a major con-
tribution of octanoic acid. The use of methionine as sole nitro-
gen source triggered the overproduction of butanoic acid by both
strains. Finally, in asparagine and glutamine, decanoic, and dode-
canoic acids were overproduced specifically by S. uvarum . 

Formation of MCFA ethyl esters was slightly altered by the ni-
trogen source in a species-dependent way. In S. uvarum, the pro-
duction of ethyl decanoate and ethyl dodecanoate accounted for
84 and 91% of the total production. In S. cerevisiae , however, ethyl
hexanoate, ethyl octanoate and ethyl decanoate represented be-
tween 80 and 88.4% of the total MCFA ethyl esters, with limited
production of ethyl butanoate and ethyl dodecanoate. The vari-
ation in the total MCFA ethyl esters was low in S. uvarum, gener-
ally comprising between 8 and 11.9 mg/L, with slightly decreased
production on phenylalanine ( 6.5 mg/L ) and higher production on
ammonium ( 14.2 mg/L ) and asparagine ( 18.7 mg/L ) . Likewise, the
nitrogen source had a weak impact on the formation of MCFA
ethyl esters in S. cerevisiae , showing low concentrations in Ehrlich
pathway amino acids ( methionine, isoleucine, and leucine ) and
higher concentrations in nitrogen sources assimilated through
the central nitrogen metabolism ( ammonium, glutamine, and 
asparagine ) . Higher alcohols and their esters derivatives 

Higher alcohols and their acetate esters derivatives directly 
related to the reductive branch of the Ehrlich pathway were 
differently produced by the two yeast species, and the partic- 
ular influence of some nitrogen precursors on the production 
of some volatile compounds was evident. Focusing first on the 
species effect, comparing the average production for all the 
amino acids apart from the Ehrlich amino acid precursor, we 
found overproduction of phenylethanol ( 4-fold ) , phenylethyl ac- 
etate ( 17-fold ) and 2-methylpropanol ( isobutanol ) ( 1.4-fold ) , and 
underproduction of methionol ( 0.7-fold ) and propanol ( 0.5-fold ) 
in S. uvarum compared to S. cerevisiae . Other volatile compounds
in this category like 2-methylpropyl acetate ( isobutyl acetate ) ,
3-methylbutanol ( isoamyl alcohol ) and 3-methylbutyl acetate 
( isoamyl acetate ) were produced in similar concentrations by both 
strains. 

As anticipated, the production of higher alcohols and their ac- 
etate ester derivatives was considerably promoted when their spe- 
cific precursor amino acid was provided as a sole nitrogen source.
In S. uvarum , increase factors ranging from threefold ( isoamyl al- 
cohol in presence of leucine compared to the mean of all the
other conditions ) to 90-fold ( methionol in presence of methionine ) 
were found for higher alcohols, and comprised between 7.5-fold 
( isoamyl acetate in leucine ) to 17.7-fold ( isobutyl acetate in valine )
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or acetate esters. In addition, however, some less expected vari-
tions in the production of higher alcohols and acetates by S.
varum were triggered by changes of the nitrogen source, like the
wofold increase of methionol production ( compared to the mean )
esulting from the use of phenylalanine or leucine as sole nitrogen
ource. Another surprising observation was the higher production
f phenylethanol and 2-methylpropanol in the presence of gluta-
ate, glutamine, ammonium, and aspartate but lower production
ith the Ehrlich amino acids ( apart from phenylalanine and va-

ine, for phenylethanol and 2-methylpropanol, respectively ) . 

igher acids from branched chain amino acids 
verall, branched-chain carboxylic acids and their ethyl esters
erivatives were overproduced by S. uvarum compared to S. cere-
isiae . These compounds derive from the oxidation of the alde-
yde intermediates of the Ehrlich pathway, and as seen for the
igher alcohols, their formation was promoted when their re-
pective precursor amino acid was provided for growth. Indeed,
he production of 2-methylbutanoic, 3-methylbutanoic and 2-
ethylpropanoic acid was around 20-times increased compared

o the mean and their ethyl esters formation was only observed
hen isoleucine, leucine and valine were used as sole nitrogen
ources, respectively. Otherwise, basal production of 2- and 3-
ethylbutanoic acids ( 1.72 mg/L ) by S. uvarum was found, with-
ut a substantial effect of the nitrogen source ( < 40% variation
o the mean ) . Notably, however, 2-methylpropanoic acid was the
nly branched acid produced by S. uvarum that was modulated by
he nitrogen sources other than its direct Ehrlich precursor amino
cid ( valine ) . Its formation was increased compared to the mean
n the presence of isoleucine, leucine, and phenylalanine and
onversely decreased on ammonium, glutamine, asparagine, and
ethionine. 

iscussion 

n recent years, the distinctive phenotypic traits of the non- S. cere-
isiae yeasts have led to increased interest in considering these
s promising alternatives to meet the current challenges of the
inemaking sector. New, more sustainable and environmentally-
riendly production strategies have to be developed to cope with
lobal warming and indeed to respond to changes in consumer
equirements. More widespread and efficient use of these species
s restricted, however, because of insufficient knowledge of their
etabolic behaviour and no clear understanding of the similari-

ies and differences to S. cerevisiae . In this context, we investigated
he preferences for nitrogen sources and the effects of these nu-
rients on the fermentative performances and on the orientation
f metabolism in S. uvarum . 
As a component of proteins and nucleic acids, nitrogen is an

ssential nutrient for any microorganism and the efficiency of its
ssimilation strongly shapes their growth capacity and their activ-
ty. In S. cerevisiae , nitrogen sources related to the central nitrogen
etabolic core support growth more efficiently than amino acids
f the Ehrlich pathway ( Ljungdahl and Daignan-Fornier, 2012 ;
agasanik and Kaiser, 2002 ) . In this study, a similar classification
as demonstrated for S. uvarum , however, important differences
ere found between the two species in their ability to grow using
ethionine and asparagine as sole nitrogen source. In S. cerevisiae ,
ethionine assimilation is achieved through the Ehrlich pathway
nd the poor growth compared to other nitrogen sources has been
xplained by either a low efficiency of the enzymes involved in this
etabolic route to retrieve nitrogen for de novo synthesis of amino
cids ( Gutiérrez et al., 2013 ) , or by an imbalance between enzyme
ctivities resulting in intracellular accumulation of the toxic inter-
ediate 3-methylthiopropionaldehyde ( Che et al., 2020 ; Deed et
l., 2019 ) . The relatively better growth of S. uvarum on methionine
uggests higher efficiency of the transaminases Aro8p and Aro9p
r more fine-tuned regulation of the enzymes in this species. Re-
arding asparagine, the better growth of S. cerevisiae could pos-
ibly be attributed to the presence of ASP3 in some strains, but
hat cannot be the full explanation since, like S. uvarum, S. cere-
isiae EC1118 lacks this gene ( Coral-Medina et al., 2022 ; League
t al., 2012 ) . It is also noteworthy that outliers to these species-
evel findings can be observed at the strain level. 
There were substantial differences in the formation of central

arbon metabolites between the species. The higher production of
uccinate and glycerol and low production of ethanol in S. uvarum
as been reported before ( Minebois et al., 2020a ; Sipiczki, 2008 )
nd is suggested to be a strategy of cryotolerant yeasts to resist
ow temperatures ( Gamero et al., 2013 ; Lopez-Malo et al., 2013 ) .
he high glycerol production, for instance, is explained by the abil-
ty of cryotolerant strains to direct carbon flux towards glycerol,
hereas S. cerevisiae orients the carbon flux towards ethanol pro-
uction ( Arroyo-López et al., 2010 ) . These data also reflect differ-
nt partitioning of carbon fluxes in the central carbon metabolic
etwork and likely, different strategies for adapting to stresses and
onstraints of fermentation. S. uvarum synthetises glycerol and
uccinate to ensure energy production and the maintenance of
he redox balance, which are essential for growth, while S. cere-
isiae achieves this through ethanol production. In S. uvarum , the
ighest production of glycerol and succinate was found in com-
ounds from the nitrogen metabolic core, which promote more
fficient growth resulting in increased anabolic requirements and
e novo synthesis of building blocks. Consequently, a variable de-
and in energy and redox balance management may explain ni-

rogen source-dependent differences in the formation of central
arbon metabolites. 
Focusing on the pattern of acetate production, substantial vari-

tions were found between the species, most notably lower se-
retion in S. uvarum across all conditions. It has been recently
eported that the production of acetate, taking place during the
rst part of fermentation, is followed by progressive consumption
f this compound in S. uvarum , but not in S. cerevisiae ( Minebois
t al., 2020a ) . Furthermore, higher levels of intracellular acetyl-
oA were observed in S. uvarum compared to S. cerevisiae during
ine fermentation ( Henriques et al., 2021 ; Minebois et al., 2020b ) .
here was also a clear impact of the nitrogen source on the for-
ation of acetate in S. uvarum , with less secreted acetate when
hrlich amino acids were used as sole nitrogen source. Under
hese conditions, growth/fermentation was slower, but the actual
ermentation performance as determined by complete sugar util-
sation was good. An indication emerging from these studies of S.
varum -specific management of the acetate metabolic node was
einforced by our findings on the production of acetate-related
etabolites. 
Compared to S. cerevisiae , as well as lower levels of acetate

roduction in S. uvarum, there was also a lower amount of ex-
reted total MCFA ( as acetyl-CoA equivalent ) and an enrichment
n C10 and C12 MCFA and their ethyl esters at the expense of com-
ounds with a shorter carbon chain ( C4, C6, C8 ) . Taken together,
hese observations suggest that, in S. uvarum , intracellular ac-
tate is mainly directed to the production of MCFAs via acetyl-CoA
 Krivoruchko et al., 2015 ) . The reduced levels of secreted shorter
CFAs could indicate their incorporation in membranes to im-
rove plasticity and stress tolerance, rather than excretion or con-
ersion to ethyl esters as is seen in S. cerevisiae . This specific trait
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could be related to the cryophilic phenotype of this species, as an
adaptation mechanism to low temperature. Supporting this hy-
pothesis, it was reported that the cryophilic yeast S. kudriavzevii
has a different lipid composition of the membrane from S. cere-
visiae , with higher percentage of MCFAs and shorter fatty acids
chain ( Tronchoni et al., 2012 ) , which could contribute to mem-
brane fluidity and stress tolerance ( Mannazzu et al., 2008 ) . More-
over, the high production of C10 and C12 MCFA ethyl esters by S.
uvarum was observed regardless the nitrogen source. As fatty acids
provide the precursors for MCFA ethyl esters, this may be related
to lipid metabolism, for example via differences in the regulatory
enzymes Mgl2 and Yju3 ( Marullo et al., 2021 ) . Alternatively, differ-
ential expression, activity or substrate specificity of the ethanol
acyltransferases Eeb1 and Eht1 ( Saerens et al., 2006 ) may provide
the explanation. 

S. uvarum produced higher amounts of 2-methylpropanol,
phenylethanol and phenylethyl acetate than S. cerevisiae regard-
less of the nitrogen source. There are several possible explana-
tions for this. S. uvarum is reported to have a higher flux through
the pentose phosphate pathway, which would potentially re-
sult in more availability of the shikimate precursor erythrose-4-
phosphate ( Minebois et al., 2020a , 2020b ) . Alternatively, it is possi-
ble that decarboxylation of phenylpyruvate is preferentially catal-
ysed by Aro10 rather than competing decarboxylases ( Pdc1, Pdc5,
and Pdc6 ) ( Deed et al., 2019 ) . The recent identification of a new
ARO80 allele coding for a more efficient transcriptional activator
of ARO9 and ARO10 in S. uvarum and S. kudriavzevii, could sup-
port this hypothesis ( Tapia et al., 2022 ) . It is also worth noting that
Ehrlich volatiles can be synthesised from amino acid catabolism
or from the CCM, since α-ketoacids are nodes in both processes.
While the highest levels of Ehrlich volatiles are seen when grow-
ing on the cognate amino acid ( e.g. 8 mM isoamyl alcohol in pres-
ence of 14 mM leucine ) , there is also clear evidence of synthesis
via CCM. For example, when growing on a mixture of amino acids
the concentration of isoamyl alcohol ( 2.8 mM ) exceeds what could
have been provided by the available leucine ( 0.17 mM ) by more
than a factor of 10. Consequently, it can be concluded that, as with
S. cerevisiae ( Crépin et al., 2017 ) , CCM plays a major role in supply-
ing precursors for synthesis of volatile compounds during fermen-
tation on natural or synthetic grape must. Furthermore, the pro-
motion of fusel acids formation in S. uvarum may be explained by a
more efficient activity of aldehyde dehydrogenase ( ALD ) enzymes
( Boer et al., 2007 ; Vuralhan et al., 2005 ) or by differences in the
redox balance ( NAD + /NADH + pools ) between the two species. 

In conclusion, through the examination of associations be-
tween the nature of nitrogen source and the fermentation per-
formance of S. uvarum , we demonstrate both similarities and dif-
ferences to S. cerevisiae . We determined that the specificities of
S. uvarum in the efficiency of asparagine and methionine to sup-
port growth compared to S. cerevisiae , is likely to be related to its
genetic background. Moreover, with integrative data analysis we
concluded that the nature of nitrogen source has an impact on
S. uvarum growth and consequently on the requirements for en-
ergy and maintenance of the redox balance. The distinctive pro-
file of central carbon metabolites and volatile compounds of S.
uvarum compared to S. cerevisiae, highlighted its unique distribu-
tion of carbon flux in the metabolic network to fulfil anabolic re-
quirements. These peculiarities are exacerbated depending on the
nitrogen source, in relation to the efficiency of amino acids and
ammonium to support growth and fermentation. This is essential
knowledge that should be considered in order to exploit the phe-
notypic potential offered by S. uvarum in winemaking and more
widely in the food and beverage industry. 
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