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Abstract
The COVID-19 pandemic led to a sudden global increase in
the production, consumption, and mismanagement of personal
protective equipment (PPE). As plastic-based PPE such as
disposable face masks and gloves have become widely used,
human exposure to PPE-derived pollutants may occur through
indirect and direct pathways. This review explores the potential
health impacts related to plastic-based PPE through these
pathways. Face masks release microplastics, which are
directly inhaled during use or transported through the envi-
ronment. The latter can adsorb chemical contaminants and
harbor pathogenic microbiota, and once consumed by organ-
isms, they can translocate to multiple organs upon intake,
potentially causing detrimental and cytotoxic effects. However,
more research is required to have a comprehensive overview
of the human health effects.
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Introduction
Plastics are one of the most ubiquitous materials used
across the planet. In the last 60 years, global plastic
production has increased 20-fold, reaching 368 million
www.sciencedirect.com
tons in 2019 [1]. However, the improper management of
plastic waste and its environmental persistence has
resulted in the accumulation of plastics in many envi-
ronments [2,3]. Plastic debris and particularly micro-

plastics (herein referred to as MP; plastics smaller than
5 mm) are considered ubiquitous pollutants and have
been reported in water, soil, air, living organisms [4,5], as
well as in processed food and drinking water [6].
Therefore, human exposure to MPs is inevitable, and it
is imperative to determine their impacts on human
health.

The global immensity and impact of the COVID-19
pandemic were defined by the rapid and effective
spread of SARS-CoV-2, the virus responsible for

COVID-19. This led to a global pandemic declared by
the World Health Organization on March 11, 2020 [7].
The pandemic has resulted in an unprecedented surge
in the production and consumption of single-use plas-
tics (SUPs), including personal protective equipment
(PPE) [8]. PPE are wearable items that protect the
user against infectious diseases, such as SARS-CoV-2,
and these items are mostly made from synthetic SUP
[9]. The monthly global consumption of face masks and
gloves is 129 billion and 65 billion, respectively [10].
This massive consumption of PPE has created an un-
bearable burden for conventional solid waste manage-

ment worldwide, leading to the exacerbation of plastic
pollution with new types of litter. Exposure to pollut-
ants related to COVID-19 PPE (e.g. MPs, plastic ad-
ditives, and viruses) may occur through direct and
indirect pathways. We define direct pathways as ways in
which individuals are immediately exposed to these
pollutants during PPE use and management, while in-
direct pathways result in exposure over extended du-
rations as PPE undergoes different processes. Given
the health concerns related to plastic pollution, the
unprecedented quantity of PPE being consumed and

mismanaged into the environment worldwide, it is
necessary to critically analyze the threats of PPE to
human health. In this review, we present how PPE
pollution is driven by the COVID-19 pandemic and
how the direct and indirect exposure pathways of this
pollutant can potentially implicate human health
(Figure 1).
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Figure 1

Schematic representation of the direct and indirect impacts of COVID-19 PPE. PPE, personal protective equipment.
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Indirect pathways to exposure
COVID-19 PPE can leak out of waste management
systems and pollute different environments through
various pathways. In coastal environments, PPE pollu-
tion has been attributed to littering during tourist and
recreational activities [11,12], incorrect solid waste
disposal (e.g. illegal dumping sites) [13], and lack of
proper PPE disposal guidelines and infrastructure (e.g.
signposts and waste bins) [14e16]. PPE has also been
reported in rivers [17] and highly populated urban

centers [8,18]. The current evidence puts into
perspective the weaknesses of solid waste management
around the world and the lack of environmental aware-
ness among the general public.

Once released into the environment, PPE will undergo
continuous weathering and mechanical stress from
exposure to environmental factors. Stressors such as UV-
lighting and/or mechanical abrasion can result in the
generation of MPs [19]. This was initially theorized in
the early stages of the global pandemic [20,21] and was

later confirmed through laboratory experiments [22,23].
Particularly, artificial aging through UV-light irradiation
and contact with quartz sand (mimicking marine
Current Opinion in Toxicology 2021, 27:47–53
conditions) promotes MP release from face masks,
which is estimated to produce millions of particles per
mask [24,25]. Moreover, leachates from commercially
available face masks in the UK revealed the presence of
potentially hazardous heavy metals (e.g. cadmium and
lead), as well as organic chemicals and additives
(e.g. plastic oligomers, surfactants, and dye-like mole-
cules) raising the question of what long-term health
risks face masks can pose [26]. Similar concerns have
arisen with environmental harm for disposable protec-
tive gloves (e.g. nitrile, latex, and foil gloves), as they

might be a source of plastic additives, such as plasti-
cizers and emulsifiers, and heavy metals [27].

Human uptake of MPs can occur through ingestion,
inhalation, and dermal contact. Inhalation is the primary
route of biological entry for humans [28], and it is
estimated that a person inhales between 26 and 130 MP
per day [29]. Common sources of airborne MPs in both
indoor and outdoor settings are synthetic fibers shed
from clothing and textiles [30] and abraded plastic
materials [10]. It should, however, be noted that MP

size, density, and hydrophobicity will influence their
deposition and absorption in the respiratory system
www.sciencedirect.com
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[31]. Prata et al. [29] reported that the elimination of
accumulated MPs in the lungs is difficult because of MP
polymeric structures and fibrous morphologies that
cause lung inflammation. Furthermore, Gasperi et al.
[32] theorized that fibrous MPs can evade the lungs’
self-cleaning mechanism leading to cytotoxic (toxic to
cells) effects in the respiratory system.

It has been increasingly recognized that MPs are
chemical pollutants and vectors of microorganisms
that can have adverse effects on humans [28]. MPs are
vectors of chemical contaminants as they can adsorb
heavy metals, polycyclic aromatic hydrocarbons, and
pesticides [33]. Furthermore, the surface of MPs is a
suitable substrate for biofilm-forming pathogenic
bacteria and viruses [34] and can also act as a platform
for the propagation of microorganisms [35]. Because
the SARS-CoV-2 virus can remain active on inert sur-
faces for different residency times [36], the non-

aerosolized transmission of the virus among humans,
via fomites, is a widespread cause of concern [37].
Fomites can exist as a variety of different materials,
such as synthetic-based materials. SARS-CoV-2 has
been found to remain active on polypropylene surfaces
from 3 days [36] to 7 days, with the latter occurring on
a face mask [37]. The ability of SARS-CoV-2 to remain
active on plastic surfaces can result in the spread of
the virus from items like PPE. Liu et al. [38] found
that the highest quantities of airborne SARS-CoV-2
were present within healthcare rooms where medical

personnel removed their PPE; a potential explanation
was that the virus can form aerosolized fomites from
contaminated clothing [38]. These non-respiratory
particles are aerosolized from contaminated surfaces
and have been shown to carry other viruses that infect
biota [39].

Given the widespread prevalence of plastics to make
disposable and reusable PPE, it is feasible that
contaminated PPE can pose a human health risk as
they can act as potential vectors of SARS-CoV-2
[10,40]. Although pre-pandemic specific protocols

existed for managing infectious waste deriving from
the healthcare system through sterilization, incinera-
tion, and safe disposal (e.g. [41]), such regulations
were not widespread for municipal solid waste man-
agement across the globe, which currently receive
most of the PPE waste produced. This situation could
potentially lead to some populations coming into
direct contact with contaminated debris. In South
Africa, Ryan et al. [42] described the informal waste
collectors that are actively ‘breaking open bags of
refuse to search for recyclable materials to sell’. Such

individuals may come into direct contact with used
and contaminated PPE, while using without minimal
PPE protection wearing PPE themselves. These in-
teractions with PPE may be reflected for informal
waste collectors in various countries.
www.sciencedirect.com
Despite this potential form of transmission, SARS-CoV-
2 primarily spreads through respiratory transmission. In
2020, the Health Expert Statement Addressing Safety of
Reusables and COVID-19, which was supported by
numerous experts in the healthcare industry, deter-
mined that surface contact and successful transmission
of COVID-19 were not probable for the general popu-
lation (see: https://www.greenpeace.org/usa/wpcontent/

uploads/2020/06/Health-Expert-Statement_Updated.
pdf). In fact, the publication encouraged the use of
reusable plastics as opposed to SUP. However, a popu-
lation that interact more frequently with PPE
(e.g. healthcare workers and informal waste collectors)
face a higher risk of contacting SARS-CoV-2 exposure
from surfaces relative to the general public.

Direct pathways to exposure
Although the use of face masks can protect users from
airborne respiratory particles, wearing masks presents a

risk of MP inhalation during usage because of the
detaching of MPs from their surface [43,44]. Han and
He [44] reported the presence of microparticles
suspected to beMPs on the inner side of new face masks
and N95 respirators. This study highlighted the need to
regulate the material integrity and fragmentation of face
coverings. The authors suggest that the detected mi-
croparticles are part of the face mask structure or maybe
the result of contamination during the manufacturing
process or from plastic packaging. The prolonged use
and disinfection process can damage the structure of

face masks, exacerbating the detachment of MPs. Li
et al. [43] conducted a breathing simulation with face
masks being used, and they found that most of inhalable
MPs from masks had a granular and fiber-like form (20e
100 mm in size). Disinfection processes have been
shown to damage the mask structure in various magni-
tudes; in particular, alcohol treatments have caused the
most damage. In both experiments, the detachment of
MPs varied between types of masks and quality of the
material, N95 masks had the highest performance as
characterized by less MP inhalation relative to the other

masks. Face masks made from cloth fabrics may pose a
higher risk of releasing MPs as some fabrics, such as
velvets and fleeces, may shed nylon, polyester, poly-
ethylene, and polypropylene microfibers [29]. Still,
there is very limited knowledge about the quantities and
characteristics of MPs released from face masks during
usage.

Despite the increasing awareness of inhalation and
ingestion of MPs from face masks, studies testing the
toxicity of MPs inside the human body toward cells and

other biological systems remains unresolved [4,45]. MPs
have been reported to enter or be deposited in the
central airway and distal lung (e.g. alveoli, alveolar ducts,
and terminal bronchioles), and once inhaled, they can
cause chronic inflammation, DNA damage, granulomas
or fibrosis, cellular damage, secretion of cytokines, and
Current Opinion in Toxicology 2021, 27:47–53
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Table 1 In vivo and in vitro studies that demonstrate potential human health implications from MP exposure.

Type of study MP size Polymer type Exposure methods Dosage and time Findings Ref.

MPs translocation
from the lung to the
placenta

20 nm Polypropylene Intratracheal
instillation during
gestation

2.64 × 1014 MPs, 24 h The exposure resulted in the translocation of
MPs to placental and fetal tissues and
rendered the fetoplacental unit vulnerable
to adverse effects

[57]

MPs in human-derived
cells

25–200 mm Polypropylene Addition to cultures
(media) of somatic
cells, blood cells,
and murine immune
cells

0.1–4.5 mg per well,
24 h

MPs induced and triggered pro-inflammatory
cytokines that caused a local immune
response

[51]

MPs and various
phthalate esters
(PAEs) on human
lung epithelial cells

100 nm Polystyrene Addition to cells MPs at 10, 20, 100,
200, 500 or
1000 mg mL−1, 24 h

Cells exhibited changes in viability, oxidative
stress, and inflammatory reaction.

[52]

MPs on human cells 1 and 10 mm Polystyrene Addition to cells 0.05–100 mg mL−1,
24, 48, 72, and 96 h

Exposure significantly retards cell
proliferation and triggered morphological
changes

[53]

MPs in human-derived
cells

5−25 mm, 25–75 mm,
and 75–200 mm

Polystyrene Dispersed in cell
culture medium

1000, 100, and
10 mg mL−1, 1 day
and 4 days

MPs increased acute inflammation, cell death
by chemical toxicity, and induced cell
membrane damage by physical toxicity

[54]

MPs on human
intestinal epithelial
cells

0.05–0.1 mm and
0.04–0.09 mm

Polystyrene Exposure in cell
culture medium

1–100 mg mL−1, 24 or
48 h

Cells uptake and internalized MPs, however,
no toxic effects were observed.

[55]

MPs on human lung
epithelial cell

25 nm and 70 nm Polystyrene Dispersion in cell
medium

2.5–300 mg mL−1, 24 h MPs significantly affected cell viability,
activated inflammatory gene transcription,
and changed the expression of proteins.

[56]
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oxidative stress [46]. In vivo and in vitro studies have
provided evidence for cellular permeability, teratoge-
nicity, and pulmonary toxicity of airborne MPs (Table 1).
Similarly, Prata et al. [47] reviewed the human effects of
exposure to atmospheric or airborne MPs, which could
broadly contribute to immune disorders, neuro-
degeneration, and inflammations. More concerning,
Ragusa et al. [48] observed polypropylene MPs in the

amniochorial, maternal, and fetal membranes of human
placenta samples collected during vaginal birth of
healthy women. The preliminary study shed initial light
on the movement of plastics through complex process of
reproduction, but more robust work is required. Another
important issue regarding inhaled or ingested MPs is the
complexity of the chemical makeups of plastics.
Chemical toxic additives used in the manufacturing
processes of plastic, including plasticizers, phthalates,
UV stabilizers, and bisphenol A, have been shown to
leach and cause adverse health effects in humans

through estrogenic activity [49]. Studies that demon-
strate potential human health implications associated
with exposure to MPs are provided in Table 1.
Conclusion
The COVID-19 pandemic has led to the increased
consumption and mismanagement of SUP. Although the
use of PPE has become a global necessity to prevent the
transmission of the virus, humans are increasingly
exposed via inhalation and ingestion to MPs and their
associated chemical contaminants. Under various use
and exposure conditions, including the potential of MPs
surface to interact with human tissues, MPs have been
reported to be able to cause a range of biological re-
sponses. Despite the potential risks, knowledge on the
concentrations at which MPs are being inhaled or
ingested, as well as the effects of their exposures on

human health is limited. As plastic production, con-
sumption and exposure to humans are only increasing
over time, more studies focusing on the impacts of MPs
on human health are required, so that we can better
understand exposure pathways and toxicity of MPs to
humans on all levels from cellular to the organ.
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