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Abstract

The PGNAA system for the cement measurement was simulated based on Monte Carlo

method. The sizes of the moderator and reflector for the 14 MeV DT neutron generator were

optimized for fast and thermal neutron outputs. The DT neutron generator was simulated at

the pulse mode, and the gamma-ray detector was set as LaBr3(Ce) scintillator. The charac-

teristic peaks of the major elements (Ca, Si, Al, Fe) can be identified from the gamma-ray

spectra which induced at the different time intervals of the neutron radiation. For the different

thicknesses of the cement sample the ratios of the gamma-ray peaks were observed, and

the result showed that when the thickness was between 20 to 30 cm, the ratios became sta-

ble. With the ratios, we can calculate the iron modulus, silica modulus and lime saturation

factor.

Introduction

Prompt Gamma Neutron Activation Analysis (PGNAA) facilities have been widely used in

many industry fields, such as coal analysis, cement measurement, explosive detection, elemen-

tal analysis of special materials and etc. [1–8]. Using the facilities, the samples are irradiated by

the neutrons output from the neutron sources, and the gamma rays which are induced from

the thermal neutron capture reactions and fast neutron inelastic scattering reactions between

the neutron sources and samples, are recorded by the gamma-ray detectors. Different energies

of the gamma rays will be distributed to different channels by the electric multi-channel collec-

tors, and then the gamma-ray spectra can be obtained. By analyzing the gamma-ray spectra

researchers can identify the elements through their characteristic peaks, and the parameters

which they are concerned with can be calculated [9–11].

In the PGNAA system for cement measurement the 14 MeV DT neutron generator is a

potential neutron source that can be the substitution of the traditional radioisotope neutron

source [12]. Comparing with the radioisotope neutron sources, the neutron generator can be

turned off by the electronic control power unit, and it is more convenient for the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0252078 June 14, 2021 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gao Y, Li J, Li J, Liu L (2021) Simulation

of the cement measurement based on the pulse DT

neutron generator: A Monte Carlo study. PLoS ONE

16(6): e0252078. https://doi.org/10.1371/journal.

pone.0252078

Editor: Hui Yao, Beijing University of Technology,

CHINA

Received: November 25, 2020

Accepted: May 7, 2021

Published: June 14, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0252078

Copyright: © 2021 Gao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its S1 File.

Funding: The author(s) received no specific

funding for this work.

https://orcid.org/0000-0003-4824-5712
https://doi.org/10.1371/journal.pone.0252078
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252078&domain=pdf&date_stamp=2021-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252078&domain=pdf&date_stamp=2021-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252078&domain=pdf&date_stamp=2021-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252078&domain=pdf&date_stamp=2021-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252078&domain=pdf&date_stamp=2021-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252078&domain=pdf&date_stamp=2021-06-14
https://doi.org/10.1371/journal.pone.0252078
https://doi.org/10.1371/journal.pone.0252078
https://doi.org/10.1371/journal.pone.0252078
http://creativecommons.org/licenses/by/4.0/


transportation, storage and replacement [13–21]. The problem is that the 14 MeV neutrons

need to be moderated to thermal neutron energy range to induce the gamma-rays from ther-

mal neutron capture reactions. In this study the PGNAA system based on the pulse DT neu-

tron generator was simulated using MCNP code. By setting the DT neutron generator at pulse

mode, the gamma ray spectra induced from fast neutron inelastic scattering reaction and ther-

mal neutron capture reaction can be recorded respectively in the pulse time and the spare

time. It means that the characteristic gamma-ray peaks overlapped together can be separated,

and the background signal induced by the fast neutrons can also be reduced effectively. There-

fore, the major elements (Ca, Si, Al, and Fe) in the cement sample can be identified more

clearly in the different gamma-ray spectra. The thickness of the cement raw materials on the

conveyor belt cannot be kept in a stable value. With the thickness of the cement sample

increase the ratios of the peaks were calculated, and the results showed that the ratios became

stable in a certain thickness range of the cement sample.

Simulation setup

In the simulation the Monte Carlo code MCNP was used to setup the model of the experiment

structure. MCNP is a general-purpose, continuous-energy, generalized-geometry, time-depen-

dent, Monte Carlo radiation-transport code designed to track many particle types over broad

ranges of energies. The commonly used editions of this code was MCNP5 and MCNPX.

MCNP6 is the new edition which integrate MCNP5, MCNPX and the new CAD graphics pro-

cessing code. In this paper MCNP5 code was used for our simulation. The code can be used to

calculate the particle transportation of neutron, electrons and protons, and design 3-D model

of the experiment structure using the input file. Using the code, the particles of the source can

be defined and traced from the initialized position to the targets until the particles react with

the last target. In our simulation the neutrons were emitted from the neutron source, and

reacted with the structures including reflector, moderator, and measured sample. The induced

gamma rays from the reactions of the inelastic scattering and thermal neutron capture were

recorded in the different energy bins in the output file.

The model was composed of the DT neutron generator, the reflector, the moderator, the

cement sample and the gamma-ray detector [22–27]. The DT neutron generator was devel-

oped by Institution of Radiation Technology in Northeast Normal University, and with the

power unit it can be set to work at the DC or pulse mode. It was surrounded by the reflector

and the moderator. The cement sample was placed on the top of the moderator. The gamma-

ray detector was located above the cement sample, and was shielded by the lead and boron car-

bide shells to protect the detector from the neutrons and gamma rays. The schematic was

shown in Fig 1.

The cross section data used in the MCNP code is from the ENDF/B-VII library, and for the

moderator the scattering of the thermal neutrons was considered, so the S(α, β) card was

added to the materials setup. The flux of neutrons and induced gamma rays were counted by

the point detector tally (F2 card). The pulse height tally (type-8 card) was used to calculate the

energy deposition of the photons in the 5 @ × 5 @ × 10 @ LaBr3 scintillator crystal gamma-ray

detector. For the energy spectra the Gaussian expansion was performed by the GEB function

in the FT8 special tally card as follow: FWHM ¼ aþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ cE2
p

, where E is the incident

gamma-ray energy, and a, b and c are the coefficients, which were defined as a = 0.01141 MeV,

b = 0.02853 MeV1/2, and c = 0.248 MeV−1 in this calculation [28].

For the simulation of the pulse mode the TME card was added together with the Si and Sp

cards, which used to set the time intervals of the pulse. The thermal neutron flux increased

with the pulse time, and at the same time the background signals caused by the fast neutrons
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were enhanced. In our simulation the duty circle can be set to the range of 0.2 to 0.35, and to

minimize the background noise it was set to 0.2 and the pulse time was 20 μs.

The cement sample provided by the cement plant was composed of CaO, SiO2, Al2O3,

Fe2O3, MgO, K2O, SO3, Na2O and etc. The contents were measured by the X-ray fluorescence

analysis spectrometer (XFA). The major compounds were CaO, SiO2, Al2O3, and Fe2O3, and

the contents of other compounds were very low. In the simulation the four major compounds

were used, and the contents were normalized to the total mass of the four major materials as

70.5%, 21.0%, 2.5%, and 3.5% respectively.

Reflector and moderator calculations

The calculations for the reflector and moderator were divided into two steps. In the first step

the reflector was optimized to maximize the total neutron flux. The 14 MeV fast neutrons pro-

duced by the DT neutron generator were emitted in a 4π solid angle. The reflector was used to

scatter the neutrons to the up direction, which can compensate the yield of the neutrons. Some

materials were evaluated such as lead, bismuth, copper, nickel, graphite and etc. The thick-

nesses of the reflector (t1, t2, t3) were calculated, and the results were shown in Figs 2–4. It can

be seen that the thickness t2 gave a big influence to the total neutron flux about 2 times

increase, and when the thickness reached 20 cm the flux increased slowly. According to the

simulation results, we set the thicknesses of t1, t2, t3 to 1 cm, 20 cm, and 15 cm respectively.

The materials of W, WC, W2C and Cu had a better effect compared with other materials, but

their weight and price were higher, so we chose lead as the material of the reflector [29–32].

In the second step the moderator was setup on the top of the reflector. The materials of the

high-density polyethylene (HDPE), graphite, H2O and D2O were evaluated as the moderator

Fig 1. A schematic of the structure for cement measurement based on DT neutron generator.

https://doi.org/10.1371/journal.pone.0252078.g001
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Fig 2. The neutron flux versus the thicknesses of t1 with different materials.

https://doi.org/10.1371/journal.pone.0252078.g002

Fig 3. The neutron flux versus the thicknesses of t2 with different materials.

https://doi.org/10.1371/journal.pone.0252078.g003
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with different thicknesses to maximize the output of thermal neutrons. During the transport

of the neutrons the scattering and absorption reaction occurred at the same time. At the begin-

ning the fast and epithermal neutrons were moderated to the thermal energy level by the scat-

tering effect, so the thermal neutrons increased. After certain thicknesses moderation, thermal

neutrons decreased because the absorption effect became dominated. The results were shown

in Fig 5. It can be observed that using the HDPE the flux of the thermal neutrons increased

faster than other materials, and the optimal thickness was about 7 cm. The energy distributions

of neutrons were compared with 1cm, 3cm, and 7cm thick HDPE in Fig 6, where it can be

seen clearly that the fast neutrons were moderated to the thermal energy with the increase of

the HDPE thickness.

Gamma-ray spectra at the pulse mode

The cement samples were made up of calcium oxide (CaO), silicon dioxide (SiO2), aluminum

oxide (Al2O3), and iron oxide (Fe2O3) with different weight ratios. When the cement sample

was irradiated by the neutrons output from the 14 MeV DT neutron generator. The gamma-

ray spectra were induced by the neutron inelastic scattering (NIS) and thermal neutron cap-

ture (TNC) reactions. The characteristic peaks of the major elements (Ca, Si, Al, Fe), were

related to both of the reactions, so we need both the thermal neutrons and fast neutrons.

We set the DT neutron generator at the pulse mode. For the pulse mode the duty circle was

set at 0.2, which meant the time circle was divided into 20 μs fast neutron emitting time, and

80 μs spare time. At the formal time interval, the 14 MeV fast neutrons kept emitting, and at

the following 80 μs the fast neutrons were moderated to thermal neutrons by the moderator

and the cement sample. The gamma-ray spectra at the different time intervals were tallied as

shown in Figs 7 and 8. The spectrum induced by the 14 MeV fast neutrons was called the fast

Fig 4. The neutron flux versus the thicknesses of t3 with different materials.

https://doi.org/10.1371/journal.pone.0252078.g004
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Fig 6. The energy distributions of neutrons with different thicknesses of HDPE increase.

https://doi.org/10.1371/journal.pone.0252078.g006

Fig 5. The thermal neutron flux versus the thicknesses of moderator with different materials.

https://doi.org/10.1371/journal.pone.0252078.g005
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Fig 7. The gamma-ray spectra at different time intervals at the energy range of 0 to 4 MeV.

https://doi.org/10.1371/journal.pone.0252078.g007

Fig 8. The gamma-ray spectra at different time intervals at the energy range of 3 to 8 MeV.

https://doi.org/10.1371/journal.pone.0252078.g008
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spectrum, and the other one was called the thermal spectrum. It can be seen that the 0.85 MeV

of Fe, 1.01 MeV of Al, 1.78 MeV peak of Si, and 3.7 MeV peak of Ca, which induced by the

inelastic scattering reactions between the fast neutrons and cement sample, were shown in the

fast spectrum, and the 3.55 MeV of Si, 4.92 MeV of Si, 4.42 MeV of Ca, 6.42 MeV of Ca, 7.63

and 7.65 MeV of Fe, which induced by the thermal capture reactions, were shown in the ther-

mal spectrum. With the pulse mode used, the peaks became more remarkable than the DC

mode, because they were not overlapped by each other. For example, the 3.7 MeV peak of Ca

in fast spectrum can separate with the 3.54 MeV of Si in the thermal spectrum.

Calculation results and discussion

The thickness of the cement raw materials will affect the measurement of the characteristic

peaks in the gamma-ray spectra. With the transport of the neutrons, the scattering and absorp-

tion reaction occurred at the same time. The fast and epithermal neutrons were moderated to

the thermal energy range by the scattering effect, so the thermal neutrons increased. After cer-

tain thickness moderation, thermal neutrons decreased because the absorption effect became

dominated. As the gamma rays were induced by the NIS and TNC reactions, the absorption of

the gamma rays occurred at the same time. After certain thicknesses the absorption reaction of

gamma rays became dominated, So the gamma-ray spectra increased first and then decreased.

Different thicknesses of the cement sample were studied under the pulse mode simulation

(Figs 9 and 10). Characteristic peaks of the major elements (Ca, Si, Al, and Fe) were shown in

Fig 11. We calculated the Ca/Fe, Ca/Si, and Ca/Al ratios using their characteristic peaks in the

gamma-ray spectra. When the thickness of the cement sample was at the range between 18 to

25 cm, the ratios were stable (Fig 12).

Fig 9. The fast spectra with different thicknesses.

https://doi.org/10.1371/journal.pone.0252078.g009
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Fig 10. The thermal spectra with different thicknesses.

https://doi.org/10.1371/journal.pone.0252078.g010

Fig 11. The characteristic peaks as a function of the thickness of the cement samples.

https://doi.org/10.1371/journal.pone.0252078.g011
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The ratios of the elements were used to calculate the lime saturation ratio (KH), silica mod-

ulus (SM) and iron modulus (IM). The equations were listed as following, and the results were

listed in Table 1, and the errors were less than 3%.

KH ¼
CaO � 1:65� Al2O3 � 0:35� Fe2O3

2:8� SiO2

SM ¼
SiO2

Al2O3 þ Fe2O3

IM ¼
Al2O3

Fe2O3

Conclusions

By setting the DT generator at the pulse mode, the gamma-ray spectrum induced by the fast

neutron inelastic scattering reaction can be separated from the spectrum induced by the ther-

mal neutron capture reaction. For example, the Ca peak at 1.94 MeV can be separated with the

Fig 12. The ratios of the major elements as a function of the thickness of the cement sample.

https://doi.org/10.1371/journal.pone.0252078.g012

Table 1. Calculation of the parameters of the cement sample.

Thickness KH SM IM

23 cm 0.371 2.473 1.428

25 cm 0.369 2.467 1.431

27 cm 0.362 2.462 1.427

https://doi.org/10.1371/journal.pone.0252078.t001
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Si peak at 1.78 MeV. When the thickness of the raw materials changed, the gamma-ray peaks

of the elements cannot be stable values, In the simulation we found that the ratios of the major

elements (Ca, Si, Al, Fe) were stable in the range 18 cm to 25 cm, so they can be used to calcu-

late the parameters of KH, SM and IM.
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