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Background: Inherent to its geometry, echocardiographic imaging of the systemic

right ventricle (RV) is challenging. Therefore, echocardiographic assessment of systemic

RV function may not always be feasible and/or reproducible in daily practice. Here,

we aim to validate the usefulness of a comprehensive range of 32 echocardiographic

measurements of systemic RV function in a longitudinal cohort by serial assessment of

their correlations with cardiac magnetic resonance (CMR)-derived systemic RV ejection

fraction (RVEF).

Methods: A single-center, retrospective cohort study was performed. Adult patients

with a systemic RV who underwent a combination of both CMR and echocardiography at

two different points in time were included. Off-line analysis of echocardiographic images

was blinded to off-line CMR analysis and vice versa. In half of the echocardiograms,

measurements were repeated by a second observer blinded to the results of the

first. Correlations between echocardiographic and CMR measures were assessed

with Pearson’s correlation coefficient and interobserver agreement was quantified with

intraclass correlation coefficients (ICC).

Results: Fourteen patients were included, of which 4 had congenitally corrected

transposition of the great arteries (ccTGA) and 10 patients had TGA late after an atrial

switch operation. Eight patients (57%) were female. There was a mean of 8 years

between the first and second imaging assessment. Only global systemic RV function,

fractional area change (FAC), and global longitudinal strain (GLS) were consistently, i.e.,

at both time points, correlated with CMR-RVEF (global RV function: r =−0.77/r =−0.63;
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FAC: r = 0.79/r = 0.67; GLS: r = −0.73/r = −0.70, all p-values < 0.05). The ICC of

GLS (0.82 at t = 1, p = 0.006, 0.77 at t = 2, p = 0.024) was higher than the ICC of FAC

(0.35 at t = 1, p = 0.196, 0.70 at t = 2, p = 0.051) at both time points.

Conclusion: GLS appears to be the most robust echocardiographic measurement of

systemic RV function with good correlation with CMR-RVEF and reproducibility.

Keywords: echocardiography, magnetic resonance imaging, transposition of great vessels, observer variation,

congenital heart disease

INTRODUCTION

In congenital heart disease with a systemic right ventricle (RV),
the RV supports systemic circulation. This includes transposition
of the great arteries (TGA) after atrial switch operation and
congenitally corrected TGA (ccTGA) (Figure 1). The systemic
RV is morphologically and functionally different from the
left ventricle (LV) and is more suitable to process volume
than pressure. Systemic RV failure is a well-known, long-term
complication as are tricuspid valve regurgitation, conduction
abnormalities, and arrhythmias (1, 2). Progression from
subclinical to clinical systemic RV dysfunction can be sudden
and unexpected, hampering identification of the ideal window
of intervention. Early and reliable detection of reduced systemic
RV function is essential but challenging for several reasons. The
shape of the systemic RV limits the possibilities for calculations
based on spatial assumptions, such as ejection fraction (3),
and pronounced trabeculations impair the measurement of
the volume of the systemic RV. Cardiac magnetic resonance
(CMR) imaging is regarded as the gold standard for volumetric
and functional assessment of systemic RV (4, 5) although it
is often not feasible because patients may have pacemakers
or implantable cardioverter defibrillators with epicardial or
abandoned leads. Thus, transthoracic echocardiography (TTE)
is still the main tool for the assessment of systemic RV
function in clinical practice (3). Previous studies evaluated
echocardiographic indices of systemic RV function, such as
global longitudinal strain (GLS), fractional area change (FAC),
isovolumic acceleration (IVA), the myocardial performance
index (MPI), and tricuspid annular plane systolic excursion
(TAPSE), which may all have value in the evaluation of systemic
RV function (6–15).

There is a gap between the research setting and daily
clinical practice: systemic RV geometry in combination with
previous thoracotomies makes specific echocardiographic
views difficult to obtain. Reported correlations between
echocardiographic variables and CMR-derived RVEF differ (3),
and interobserver variability may influence the reliability of
individual measurements (11, 16, 17). No studies have evaluated
the consistency of the correlation between both imaging
techniques over time.

This study aims to distill echocardiographic variables
that are feasible to obtain in daily clinical practice, are
consistently correlated with CMR-derived RVEF, and can be
measured reliably.

METHODS

We aimed to validate the usefulness of a comprehensive
range of echocardiographic variables of systemic RV function
in a single-center cohort. Echocardiographic variables were
compared with CMR-RVEF at two different points in time. All
reported echocardiographic variables of systemic RV function
were included. When applicable, different methods of evaluating
a single variable were compared. Interobserver agreement and
feasibility of the variables were assessed.

Study Design and Patient Selection
A retrospective cohort study was conducted. Adult patients with
a systemic RV in a biventricular circulation (TGA after Mustard
or Senning procedure or ccTGA) from the outpatient congenital
cardiology clinic of the Leiden University Medical Center were
screened for availability of a combination of both CMR and TTE
images at two different points in time at least 5 years apart.
The CMR and TTE images at the same points in time should
be no more than 1 year apart. All consecutive patients meeting
these criteria were included. Complex (cc)TGA was defined as
(cc)TGA with important additional malformations present at
birth, including ventricular septal defects, left ventricular outflow
tract (LVOT) obstruction, and aortic arch malformations. The
Leiden University Medical Center’s medical research ethics
committee waived the need for informed consent. The protocol
is in accordance with the 2013 Declaration of Helsinki.

Selection of Echocardiographic Variables
To identify a comprehensive range of echocardiographic
variables of systemic RV function, a PubMed search was
conducted with the following key terms: “systemic right
ventricle,” “(congenitally corrected) transposition of the great
arteries,” “echocardiography,” “atrial switch,” “Mustard,”
“Senning.” From the articles found, studies in which
echocardiography was conducted in cohorts of patients
with a systemic RV (TGA after atrial switch procedure, ccTGA,
or both) were screened for echocardiographic variables reflecting
systemic RV function. Both studies in which echocardiographic
variables were compared with CMR-RVEF and studies assessing
associations between echocardiographic variables and clinical
variables (such as exercise capacity) or clinical events/outcomes
were screened. From these studies, all variables that could be
reasonably measured in our cohort were added to the protocol.
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FIGURE 1 | (A) Transposition of the great arteries after Mustard or Senning repair. (B) Congenitally corrected transposition of the great arteries. Ao, aorta; Baff,

systemic venous baffle; LA, (morphologically) left atrium; Pt, pulmonary trunk; PV atrium, pulmonary venous atrium; RA, (morphologically) right atrium; Subp. LV,

subpulmonary LV; Sys. RV, systemic RV; VCI, inferior vena cava; VCS, superior vena cava.

Echocardiography
Clinically indicated echocardiograms performed with
commercially available ultrasound systems were analyzed
off-line in EchoPac, GE Medical Systems. Length, weight, and
heart rate at the time of imaging were noted. Measurements were
performed off-line by one researcher (TZ) who received training
from three experienced congenital imaging cardiologists: PK
(European Association of Cardiovascular Imaging [EACVI]
certified for >10 years), DH (EACVI member), and EH
(head of the imaging lab, supervisor of EACVI candidates).
To assess interobserver agreement, measurements were
repeated by PK in half of the echocardiograms, blinded
to the measurements of TZ. Both observers were blinded
to the MRI measurements. Table 1 describes the variables
that were measured or calculated. If several methods to
calculate the same variable were available, all were applied
to allow comparison (e.g., MPI). In total, 32 variables of
systemic RV function were assessed. For completeness, atrial
dimensions and subpulmonary LV function variables were
additionally assessed.

Global systemic RV function was visually assessed from
the apical four-chamber view and parasternal long and short
axis views. Systemic RV free wall thickness was measured in
end-diastole in the parasternal long axis view. Systemic RV
dimensions and areas and subpulmonary LV dimensions were
measured in the apical four-chamber view in all patients.
Trabeculations were included in the cavum. FAC was calculated
as the percentage of change between the end-diastolic and
end-systolic areas. Speckle tracking GLS and strain rate (SR)

were determined in the apical four-chamber view by the
software package in EchoPac after manual determination of the
endocardial border (24). The placement of the automatically
allocated markers was adjusted manually after visual inspection
during movement to include the entire myocardium, including
the free wall, apex, and septum. GLS was determined for both
the systemic RV and subpulmonary LV. For the systemic RV,
longitudinal strain and SR were also calculated separately for
the mid-free wall and mid-septal regions. TAPSE and mitral
annular plane systolic excursion (MAPSE) were determined
in M-mode by placing the cursor in the lateral aspect of,
respectively, the tricuspid and mitral valves. The effective
regurgitant volume of the tricuspid valve was determined with
the proximal isovelocity surface area method in the color doppler
and continuous wave doppler images of the tricuspid valve
(25). Early and late diastolic velocities were measured from
the pulsed wave doppler image of the tricuspid valve inflow.
The rate of pressure build-up in the systemic RV (dP/dt)
was calculated from the continuous wave image of tricuspid
regurgitation in the interval for the regurgitation velocity to
increase from 1 to 3 m/s. Tricuspid valve regurgitation itself
was assessed semiquantitatively based on integration of several
variables in accordance with the ESC recommendations as
described elsewhere (22). The MPI was calculated as (isovolumic
contraction time + isovolumic relaxation time)/ejection time.
In patients with reduced ventricular function, the isovolumic
contraction and relaxation times are longer and the ejection time
shorter. Thus, a higher MPI reflects reduced ventricular function
(26). MPI was calculated in four ways (Supplementary Figure 1):
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TABLE 1 | Echocardiographic variables studied.

Variable Specification Unit Reference values

DIMENSIONS

LA lengtha Left atrial end-systolic length mm

LA volume index (LAVI)a Left atrial end-systolic volume (Simpson’s biplane

method) indexed by body size

mL/m2

RA lengtha Right atrial end-systolic length mm

RV apex-base length RV end-diastolic length mm 84mm (11)

Mid-RV diameter RV end-diastolic diameter at half of the apex-base length mm

RV base diameter Maximal RV end-diastolic diameter in basal 1/3 of the

ventricle

mm 49mm (11); 47mm (12); 45.6mm (18)

RV free wall thickness End-diastolic thickness in PLAX mm 10mm (18)

SYSTEMIC RV FUNCTION

RV global function Visual assessment of systemic right ventricular function Normal, mildly abnormal,

moderately abnormal,

severely abnormal

62% moderately or severely abnormal (11)

RV FAC Fractional area change: (RV end-diastolic area-RV

end-systolic area)/RV end-diastolic area*100%

% 31.7% (19); 24% (11); 32% (12); 23% (20);

22.9% (18); 38.7% (9); 44%• (14); 38%

(15)

RV GLS Maximum global longitudinal strain in AP4CH % −13.3% (21); −14.2% (11); −12% (20);

−13.5% (16); −12.5% (18); −18.7%• (14);

−14.6% (15); −15.5% (12)

RV SR S Maximum global systolic strain rate %/s −0.61%/s (15); −0.59 (18)

RV SR E Maximum global strain rate during early diastole %/s 0.68 (18)

RV SR A Maximum global strain rate during late diastole %/s 0.32 (18)

RV septal strain Maximum mid-septal longitudinal strain in AP4CH % −12.2% (11); −12.1 (15)

RV septal SR S Maximum mid-septal systolic strain rate %/s

RV septal SR E Maximum mid-septal strain rate during early diastole %/s

RV septal SR A Maximum mid-septal strain rate during late diastole %/s

RV free wall strain Maximum mid-lateral longitudinal strain in AP4CH % −14.7% (11); −15.0 (15)

RV free wall SR S Maximum mid-lateral systolic strain rate %/s −1.06%/s (11)

RV free wall SR E Maximum mid-lateral strain rate during early diastole %/s

RV free wall SR A Maximum mid-lateral strain rate during late diastole %/s

IVA PW-TDI AP4CH Isovolumic acceleration: Vmax/time to Vmax during

isovolumetric acceleration

m/s2

IVA TDI AP4CH Isovolumic acceleration: Vmax/time to Vmax during

isovolumetric acceleration

m/s2 0.9 m/s2 (15); 1.33 (18)

MPI PW-TDI AP4CH Myocardial performance index (Isovolumetric contraction

time + isovolumetric relaxation time)/ejection time

–

MPI TDI AP4CH Myocardial performance index (Isovolumetric contraction

time + isovolumetric relaxation time)/ejection time

– 0.41 (15); 0.53 (19)

MPI TV inflow/RV outflow Myocardial performance index (Isovolumetric contraction

time + isovolumetric relaxation time)/ejection time

– 0.57 (14); 0.47 (9); 0.63 (18)

MPI CW-TR/RV outflow Myocardial performance index (Isovolumetric contraction

time + isovolumetric relaxation time)/ejection time

–

Tricuspid valve lateral velocity Velocity measured with PW-TDI cm/s 7.2 (8); 9 (12); 8 (15); 9.1 (14); 9.7 (9); 5.1

(18); 8 (16); 8.4 (11); 5.2 (19)

Tricuspid valve septal velocity Velocity measured with PW-TDI

TAPSE Tricuspid annular plane systolic excursion mm 12mm (11); 12mm (20); 13mm (16);

9.8mm (18); 14.3mm (9); 16.4 mm• (14)

12.5mm (15); 14mm (12); 13mm (8)

MAPSE septal Mitral annular plane systolic excursion (septal aspect)

Tricuspid valve dP/dt Continuous wave Doppler tricuspid regurgitation: time

between 1 and 3 m/s (=time necessary for RV pressure

to increase 32 mmHg)

mmHg/s 1,625 (12); 868 (15); 1,167 (9); 1,024 (16);

833 (11);

Tricuspid valve regurgitation Based on integration of a.o. jet density/contour, vena

contracta width, and proximal isovelocity surface

area-radius [see (22)]

Mild, moderate, severe > mild: 40% (11); 63% (20); 33% (16)

(Continued)
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TABLE 1 | Continued

Variable Specification Unit Reference values

DYSSYNCHRONY

Intraventricular delay (strain) Time to peak strain RV free wall–time to peak strain RV

septal wall

ms 48ms (19)

Interventricular delay (strain) Time to peak strain RV free wall—time to peak strain LV

free wall

ms 63ms (19)

Interventricular delay (output) Time between Q wave and start output RVOT in CW

Doppler—Time between Q wave and start output LVOT

in CW Doppler

ms 50ms (23)

DIASTOLIC FUNCTION SYSTEMIC RV

Tricuspid valve E/A ratio – 1.7 (8)

Tricuspid valve E/e’ ratio – 7.6 (8)

LEFT VENTRICULAR DIMENSIONS AND FUNCTION

Left ventricular end diastolic

diameter

Measured in PLAX and AP4CH mm 34 (14); 32 (19)

LV GLS Maximum global longitudinal strain in AP4CH −18.6% (21)

MAPSE Mitral annular plane systolic excursion mm 21.8mm• (14); 19mm (8)

aonly for patients with congenitally corrected transposition of the great arteries; AP4CH, apical four-chamber view; CW doppler, continuous wave doppler; FAC, fractional area change;

GLS, global longitudinal strain; IVA, isovolumic acceleration; LA, left atrial; LV, left ventricle; LVOT, left ventricular outflow tract; MAPSE, mitral annular plane systolic excursion; MPI,

myocardial performance index; PLAX, parasternal long-axis view; PW-TDI, pulsed-wave tissue doppler imaging; RA, right atrial; RV, right ventricle; RVOT, right ventricular outflow tract

SR A, maximal late diastolic strain rate; SR E, maximal early diastolic strain rate; SR S, maximal systolic strain rate; TAPSE, tricuspid annular plane systolic excursion.

(21): N = 129, Mustard/Senning/ccTGA, 31% NYHA>1. Mean RVEF 52%. (11): N = 42, Mustard/ccTGA, median NT-pro-BNP 27.4 pmol/L (232 ng/L) (20): N = 105,

Mustard/Senning/ccTGA, 29% NYHA>1. Mean RVEF 42%, mean percent predicted peak VO2 69%. (16): N = 35, Mustard/Senning. Twelve percent NYHA>1. Mean RVEF 44%.

(18): N = 64, Mustard/Senning. Optimal cutoff for prediction of events (incident heart failure or ventricular tachycardia): GLS−10% (9): N = 37, Mustard/Senning. Twenty-two percent

NYHA>1. Optimal cutoff for CMR-RVEF 50%: FAC 33%. (14): N = 33, ccTGA, 36% NYHA>1. Optimal cutoff for CMR-RVEF 45%: GLS−16.3%. •: values given for the part of the group

with CMR-derived RVEF≥45%; (15): N = 47, Mustard/Senning, 13% NYHA>1. Median percent predicted peak VO2 value 64.5%. Mean RVEF 47%. (12): N = 48, Mustard/Senning,

mean RVEF: 48%. Optimal cut-off for RVEF 45%: FAC 29.5% and GLS−14.2%. (8): N = 46, Mustard/Senning/ccTGA, 24% NYHA>1. Median NT-pro-BNP 475 ng/L (23): N = 8,

Mustard/Senning/ccTGA/DORV, undergoing CRT. Values given measured after CRT. (19): N = 28, Mustard/Senning, mean FAC = 31.7.

first, from the pulsed wave tissue doppler image of the tricuspid
valve in the apical four-chamber view and, second, from manual
analysis of the tissue doppler image. Third, it was calculated
from the continuous or pulsed wave doppler image of the
tricuspid valve inflow and the continuous or pulsed wave doppler
image of the RV outflow tract. Last, it was calculated from
the continuous wave signal of tricuspid valve regurgitation
and the continuous or pulsed wave doppler image of the RV
outflow tract. The first two methods only require one image,
which limits variation because of heart rate but only uses the
motion of the lateral aspect of the tricuspid valve and, therefore,
may have the disadvantage of reflecting regional rather than
global ventricular performance. The third and fourth methods
may reflect ventricular performance more globally but have
the disadvantage that measurements have to be performed in
separate images, allowing differences in heart rate to introduce
variation (27).

The isovolumic acceleration was calculated as the slope of
velocity increase of the lateral aspect of the tricuspid valve during
isovolumic contraction (28). It was calculated from the pulsed
wave tissue doppler image of the lateral tricuspid valve in the
apical four-chamber view and from the tissue doppler image in
which the cursor was manually placed at the lateral aspect of the
tricuspid valve.

Systolic and early and late diastolic velocities of the lateral
aspect of the tricuspid valve and systolic velocity of the
septal aspect of the tricuspid valve were measured in the

pulsed wave tissue doppler and the tissue doppler apical
four-chamber images.

Intraventricular dyssynchrony was calculated as the difference
between the time to peak strain in speckle tracking analysis
between the systemic RV mid-lateral and mid-septal wall (16, 19,
29). Interventricular dyssynchrony was calculated in two ways: as
the difference between time to peak strain between the systemic
RV mid-free wall and the subpulmonary LV mid-free wall and
as the difference between onset of Q-start ejection between the
RVOT and LVOT (30).

Cardiac Magnetic Resonance Imaging
MRI studies were performed with a 1.5-T whole-body MRI
scanner (Philips Medical Systems, Best, the Netherlands). The
routine clinical protocol included electrocardiographically gated
breath-hold, steady-state, free precession imaging in transverse
orientation. Length, weight, and heart rate at the time of
imaging were noted. To assess cardiac dimensions and systolic
function, end-diastolic and end-systolic endocardial contours
were manually drawn with software (MASS; Medis Medical
Imaging Systems, Leiden, the Netherlands) by an experienced
cardiothoracic radiologist (RW) who was blinded to the
echocardiographic measurements. Trabeculations were included
in the cavity. Systemic RV dimensions and free wall thickness
were measured in end-diastole in the four-chamber view. Stroke
volume was calculated by subtracting the end-systolic from the
end-diastolic volume. Systemic right ventricular ejection fraction
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(RVEF) was calculated as the percentage of volume change
between the end-diastolic and end-systolic volumes. Cardiac
output was calculated by multiplying the stroke volume by
heart rate.

Statistical Analysis
For all analyses, IBM SPSS statistics 25 was used. Data
are presented as mean ± standard deviation (SD) (or
median and interquartile range [IQR] as appropriate) or
frequencies and percentages. Changes between variables over
time were tested with Student’s T-test. Correlations between
echocardiographic and CMR imaging variables were tested with
Pearson’s or Spearman’s correlation analysis as appropriate.
Interobserver agreement was visually assessed by calculation of
the mean difference between observed values and constructing
the limits of agreement (±1.96 SD of the difference, thus
including 95% of measurements) according to Bland and
Altman (31). Interobserver agreement was statistically assessed
with calculation of intraclass correlation coefficients (ICC).
Agreement between systemic RV dimensions as measured on the
echocardiograms and the CMR images was also assessed with
calculation of the ICC. All correlations and ICCs were calculated
separately for the two points in time. P-values of <0.05 were
considered statistically significant.

RESULTS

Patient Characteristics
Fourteen patients were included. The majority of patients
underwent a Mustard or Senning procedure for TGA. Heart rate
and body surface area were not significantly different between
the first and the second time point. The QRS duration increased
between the first and second time point; however, few patients
had a QRS duration > 130ms (1 at T = 1 and 2 at T = 2).
The overall New York Heart Association (NYHA) class worsened
between the first and second time points (Table 2).

Cardiac Function at T = 1 and T = 2
Overall, there were few significant changes in imaging
variables between the first and second time points; only
the echocardiographic RV apex-base diameter increased
significantly (Table 2) (the CMR-derived apex-base diameter
did not). To provide context for the values and aid in the
interpretation, Table 1 shows reference values for the variables
given as published in 12 previous, frequently cited imaging
studies in patients with systemic RV (Table 1).

Correlations Between Echocardiographic
and CMR Variables
Only three echocardiographic variables of systemic RV function
were consistently correlated with CMR-RVEF: visually assessed
global systemic RV function (T = 1: r = −0.77 and p = 0.002;
T = 2: r = −0.63 and p = 0.024), FAC (T = 1: r = 0.79
and p = 0.001; T = 2: r = 0.67 and p = 0.018), and GLS
(T = 1: r = −0.73 and p = 0.005; T = 2: r = −0.70 and
p= 0.011) (Figure 2). The late global diastolic SR of the systemic

RV (SR A) was consistently significantly correlated with CMR-
derived cardiac output. Septal SR A was consistently significantly
correlated with LV SV (Figure 3). All other echocardiographic
variables were not (consistently) significantly correlated with
CMR variables (Supplementary Tables 1–8). As the variables
describing atrial dimensions (Table 1) were less clinically relevant
in the patients who underwent atrial switch (the majority)
and, thus, had surgically altered atria, these variables were not
analyzed further.

As SR A and septal SR A (global and septal strain rate
during late diastole, respectively) might be heart rate–dependent,
analysis was repeated with correction for heart rate (using the
partial correlations command in SPSS). After this correction,
the correlations between SR A and RV CO and between septal
SR A and LV SV were no longer significant. The correlation
between FAC and RVEF was still apparent at T = 1 and just
under the level of significance at T = 2. The correlation between
GLS and RVEF was not altered by correction for heart rate
(Supplementary Table 9).

Of note, regarding systemic RV dimensions, the
echocardiographic apex-base diameter showed consistent
significant agreement with the CMR-derived apex-base diameter
(ICC = 0.74 and p = 0.002 at T = 1; ICC = 0.62 and
p = 0.009 at T = 2). The other dimensions (mid-diameter, base
diameter, and wall thickness) did not show consistent significant
agreement between echocardiographic and CMR measurements
(Supplementary Table 10).

The Influence of Tricuspid Regurgitation
To address the possible influence of tricuspid regurgitation
(TR) on the assessment of systemic RV function, correlations
were calculated between the degree of TR, global RV function,
FAC, and GLS, and CMR-RVEF (Supplementary Table 11). No
significant correlations were found.

Interobserver Agreement
The ICC for FAC is poor at T = 1 (ICC = 0.35, p = 0.196)
and moderate at T = 2 (ICC = 0.70, p = 0.051). For GLS, the
ICC is good at both time points (ICC = 0.82, p = 0.006, and
ICC = 0.77, p = 0.024, respectively). The measurements of both
observers are visualized in Bland–Altman plots (Figure 4). This
visually confirms that the limits of agreement (dotted lines) of
GLS seem acceptable although the limits of agreement of FAC
seem moderately large.

Interobserver agreement was also determined for each of the
different ways of calculating the MPI. The MPI calculated from
the TR curve and the RVOT signal was most reliable with ICC
coefficients of 0.84 (p= 0.001) and 0.91 (p= 0.001), respectively.
The other methods were considerably less reliable. None of the
methods consistently correlated with CMR-RVEF, CO, or SV (see
Supplementary Material).

Feasibility
From most echocardiograms, FAC (96%), GLS (96%), and
(septal) SR A (both 93%) were successfully obtained. For RV
dP/dt and LV end-diastolic diameter from the parasternal long
axis image, the image quality was often insufficient. The older

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 March 2021 | Volume 8 | Article 644193

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zandstra et al. Echocardiography of the Systemic RV

TABLE 2 | Patient characteristics and imaging values at T = 1 and T = 2.

T = 1 T = 2

Clinical characteristics Mean ± SD, median [IQR], or N (%) Mean ± SD, median [IQR], or N (%) p-value

Female 8 (57%)

ccTGA 4 (29%)

Mustard/Senning 10 (71%)

Complex (cc)TGA 9 (64%)

VSDa 0 (0%) 0 (0%)

LVOT stenosisa 4 (29%) 4 (29%)

Prior TVR/TVP 0 (0%) 0 (0%)

Age 35 ± 7 43 ± 7

QRS duration (ms) 106 [92–116] 112 [108–119] 0.038*

Heart rate (bpm) 70 ± 17 69 ± 15 0.342

Rhythm 1,000

Sinus rhythm 13 (93%) 12 (86%)

Atrial rhythm 1 (7%) 2 (14%)

BSA (m2) 1.9 [1.8–2.0] 1.9 [1.8–2.0] 0.638

NYHA class 0.025*

I 7 (50) 2 (14)

II 6 (43) 11 (79)

III 1 (7) 1 (7)

ECHOCARDIOGRAPHIC VARIABLES

RV apex base diameter (mm) 77 ± 9 80 ± 9 0.011*

RV mid diameter (mm) 43 ± 9 45 ± 7 0.230

RV basal diameter (mm) 50 ± 6 52 ± 5 0.749

RV free wall thickness (mm) 8 ± 2 9 ± 4 0.432

RV FAC (%) 27 ± 7 24 ± 5 0.071

RV global function moderately or severely reduced (N, %) 3 (21%) 4 (29%) 0.317

RV GLS (%) −14.5 ± 3.0 −15.0 ± 2.7 0.508

TAPSE (mm) 12 ± 3 14 ± 2 0.304

Tricuspid regurgitation > mild (N, %) 5 (36%) 4 (29%) 0.813

LV GLS (%) −20.9 ± 3.7 −19.4 ± 2.5 0.283

MAPSE (mm) 19 ± 3 20 ± 4 0.673

CMR VARIABLES

RV apex base diameter (mm) 80 ± 13 81 ± 11 0.313

RV mid diameter (mm) 45 ± 7 45 ± 6 0.779

RV basal diameter (mm) 54 ± 7 56 ± 5 0.155

RV free wall thickness (mm) 6 ± 2 5 ± 1 0.591

RV end diastolic volume (mL) 204 ± 48 200 ± 48 0.295

RVEF (%) 39 ± 6 40 ± 6 0.788

RV stroke volume (mL) 79 ± 16 80 ± 18 0.430

LVEF (%) 56 ± 6 59 ± 9 0.396

LV stroke volume (mL) 83 ± 26 76 ± 20 0.308

*significant p-value; ahemodynamically significant lesion at t = 1 or t = 2; bpm, beats per minute; BSA, body surface area; ccTGA, congenitally corrected transposition of the great

arteries; CMR, cardiac magnetic resonance imaging; FAC, fractional area change; GLS, global longitudinal strain; LV, left ventricle; LVEF, left ventricular ejection fraction; LVOT, left

ventricular outflow tract; MAPSE, mitral annular plane systolic excursion; NYHA, New York Heart Association; RV, right ventricle; RVEF, right ventricular ejection fraction; SD, standard

deviation; TAPSE, tricuspid annular plane systolic excursion; TGA, transposition of the great arteries; TVP, tricuspid valve annuloplasty; TVR, tricuspid valve replacement; VSD, ventricular

septal defect.

echocardiograms did not contain pulsed-wave TDI images, but
measurements were possible in 10 out of the 14 echocardiograms
at T = 2.

In addition, CMR-RVEF could not be determined in one
patient at T = 1 and in one other patient at T = 2 because the
raw images were no longer available.
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FIGURE 2 | Correlations between echocardiographic variables and CMR-RVEF. Normal values for MRI were based on reference values for the subpulmonary RV (32).

CMR-RVEF, cardiac magnetic resonance imaging-derived (systemic) right ventricular ejection fraction; FAC, fractional area change; GLS, global longitudinal strain.

DISCUSSION

Key Findings and Context Within Literature
We aimed to identify reproducible echocardiographic variables
that consistently correlated, i.e., at two points in time, with the
gold standard of CMR-RVEF in a cohort of patients with systemic
RV from daily clinical practice. The key findings are (Figure 5)
that, in this cohort of patients with a systemic RV, (1) FAC,
GLS, and global systemic RV function are consistently correlated
with CMR-RVEF; (2) GLS shows a good interobserver agreement
although the agreement is lower for FAC; (3) measurement of
FAC and GLS is feasible in most cases (96%); and (4) other

echocardiographic variables, including the MPI, IVA, TAPSE,

and s’ were not consistently correlated with CMR-RVEF.
To our knowledge, this is the first study to take a range

of this extent of echocardiographic measurements of systemic

RV function into account and to assess these for consistent

correlation over two points in time. From these variables, FAC

and especially GLS appear to be most useful. This is in line with

previous work: Other studies consistently describe significant

correlations between FAC and CMR-RVEF and GLS and CMR-

RVEF although correlations between other echocardiographic

variables and CMR-RVEF are less robust (11, 12, 14). Previous
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FIGURE 3 | Correlations between echocardiographic and CMR variables other than RVEF. CMR-CO, cardiac magnetic resonance imaging-derived cardiac output;

CMR-LV SV, cardiac magnetic imaging-derived (subpulmonary) left ventricular stroke volume; SR A, maximal late diastolic strain rate.

FIGURE 4 | Bland–Altman plots. Open circles: T = 1. Filled circles: T = 2. The differences between the two observers are plotted on the y-axis and the mean value of

the variable on the x-axis. The mean differences of all observations are close to zero in both cases, indicating no important bias between the two observers. No formal

conclusion can be drawn from the constructed limits of agreement because measurements from the same patients at both time points are included. FAC, fractional

area change; GLS, global longitudinal strain; obs., observer.

work also highlights the clinical relevance of FAC and GLS
in patients with systemic RV. Lower FAC and higher (worse)
GLS were associated with high-sensitive troponin T, a heart
failure marker (33). Worse GLS was further associated with

lower VO2max, heart failure, higher NYHA class, ventricular
arrhythmias, and mortality (11, 12, 14, 15, 18, 21).

Estimation of the global RV function by visual assessment
also correlated well with CMR. Although it is imprecise,
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FIGURE 5 | Graphical representation of selection of echocardiographic variables abstracted from literature to assess systemic RV function. FAC, fractional area

change; GLS, global longitudinal strain; IVA, isovolumic acceleration; LV, left ventricle; MAPSE, mitral annular plane systolic excursion; MPI, myocardial performance

index; PLAX, parasternal long-axis view; PW-TDI, pulsed-wave tissue doppler imaging; RV, right ventricle; SR A, maximal late diastolic strain rate; SR E, maximal early

diastolic strain rate; SR S, maximal systolic strain rate; TAPSE, tricuspid annular plane systolic excursion.

it allows for an adequate first impression. Given the
challenging echocardiographic windows in patients with a
systemic RV, there is still is a place for visual assessment
of the global systemic RV function in cases that do not
allow quantification.

Measurement of GLS was more reliable than measurement
of FAC. This is to be expected as it is difficult to exactly
delineate the endocardial border of the systemic RV: Complex
geometry, difficult delineation of the free wall, and the presence of
trabeculations and a pronounced moderator band all contribute
to this. Slight differences in delineation of the endocardial border
between observers may lead to considerable differences in the
calculated FAC. Previous studies demonstrate good interobserver
agreement for GLS (11, 34) and fair to good agreement for FAC
(35, 36). However, the interobserver agreement of FAC has not
often been studied in systemic RV but rather in subpulmonary
RV, which is easier to delineate. The strength of GLS is that
the software shows how the drawn speckles move along with
the respective myocardial segments during the cardiac cycle,
and discrepancies can be adjusted before definitive calculation.
In the case of FAC, checking whether the drawn end-diastolic
outline and end-systolic outline actually follow the same contour
is less straightforward.

We found no consistent significant correlations between
CMR-RVEF and any type of MPI (also called TEI index).
Previous studies show conflicting results (6, 9, 10, 16, 37).
The reliability of the MPI is limited for each of its possible
calculations: when calculated from the TR/pulsed wave signal
of TV inflow and the doppler signal of the RVOT, a possible
error is introduced due to a difference in heart rate between the
two different images. When calculated from (pulsed wave)-TDI
images, in which it may be difficult to define the intervals, the
measurement is imprecise.

We also found no consistent significant correlations between
CMR-RVEF and TAPSE, neither lateral nor septal. Previous
studies show conflicting results (10, 19). TAPSE provides limited
information because it measures local myocardial function. In
the systemic RV, circumferential shorteningmay contribute more
than longitudinal shortening compared with the subpulmonary
RV, reducing the ability of TAPSE to reflect global systemic RV
function (11). The same limitation may apply to s’, which also
shows no consistent correlation with RVEF.

Myocardial dyssynchrony is an important problem in
patients with systemic RV, especially in patients receiving
univentricular pacing (38). Resynchronization therapy is
increasingly and successfully used (23, 30). Following previously

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 March 2021 | Volume 8 | Article 644193

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zandstra et al. Echocardiography of the Systemic RV

published methodology, we calculated an intraventricular and
an interventricular delay with measurements of the time to
peak longitudinal strain in the RV free wall, the septum, and
the LV free wall and calculated an interventricular delay from
the times to start of output in the doppler signals of the RVOT
and LVOT (Supplementary Table 7) (16, 19, 29, 30). Only one
of these studies assessed the relation between these measures of
dyssynchrony and CMR-RVEF and found a significant negative
correlation (19). In the present study, however, we found no
consistent correlations with CMR-RVEF. Possible explanations
for this include that too few patients with considerable
dyssynchrony were included in this cohort as few patients had
a QRS duration>130ms, that the optimal echocardiographic
variable to identify dyssynchrony in patients with a systemic
RV has yet to be identified, or that RVEF lacks correlation with
dyssynchrony and can overestimate cardiac output in cases of
dyssynchrony. Future studies correlating echocardiographic
measures of dyssynchrony with invasive measurement of cardiac
output as well as CMR-RVEF would be valuable.

The current data show no consistent correlation between
dP/dt and CMR-RVEF. DP/dt reflects contractility: it assesses
the time the systemic RV takes for the build-up of a certain
level of pressure during isovolumic contraction and is, therefore,
afterload independent. However, its measurement is highly
subject to variation, especially with higher values.

Surprisingly, we found that SR A (late diastolic SR) was
consistently positively correlated with CMR-cardiac output, and
septal SR A was consistently negatively correlated with CMR-LV
stroke volume. However, both of these correlations disappeared
after correction for heart rate, possibly because a higher heart rate
shortens diastolic filling time and generally increases diastolic
strain rate. This may imply that strain rate measurements need
to be corrected for heart rate.

In patients with a systemic RV, TR is a common consequence
of systemic RV annulus dilation (39) and may lead to
overestimation of systemic RV function. However, the present
results do not show significant correlations between TR and
the echocardiographic variables correlating with CMR-RVEF.
Previous work in patients with a systemic RV additionally shows
that TR was not correlated with CMR-RVEF (40). Although TR
may also lead to overestimated systemic RV function as measured
by CMR-RVEF, CMR-RVEF correlates well with clinical events in
patients with a systemic RV (4, 5), and therefore, can still be used
to assess systemic RV function regardless of TR.

Of note, although in this study no functional
echocardiographic variables changed significantly over time, the
RV apex-base diameter was significantly larger at T = 2. Also,
the CMR and echocardiographic apex-base measurements show
good agreement. This might indicate that RV lengthening may
be a sensitive parameter of deterioration, which may be visible
before the functional variables significantly deteriorate. This
needs to be confirmed in larger studies.

Study Limitations
A considerable part of our cohort of patients with systemic RV
did not meet the inclusion criteria regarding the availability of
CMR and echocardiographic images, reflecting routine clinical

practice but also limiting the sample size and introducing
a possible selection bias causing patients with intracardiac
devices to potentially be underrepresented. Furthermore, some
correlation coefficients are based on a small sample size as
their measurement was not feasible in a considerable number of
cases. However, this reflects the practical applicability in routine
clinical practice. Also, the interpretation of the RV wall thickness
in the context of RV hypertrophy is limited as this requires
short axis cine images unavailable in all but one patient. The
measurements given were performed in four-chamber views,
which is an inferior alternative. Last, the applicability of GLS
is limited by variability introduced by spatial and temporal
smoothing algorithms (although this affects segmental strain
more than global strain, which we used) and by intervendor
agreement (41). In this study, all measurements were performed
in Echopac by GE Medical Systems.

CONCLUSION AND CLINICAL
IMPLICATIONS

In conclusion, from all echocardiographic variables available
from literature, GLS appears to be the most robust variable to
quantify systemic RV function over time. FAC can also be used
well-provided that the endocardial border is traced in a consistent
manner over time. In case no quantification of the systemic RV
function can be made, visual assessment is an adequate substitute
(Figure 5).
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