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Genome-wide chromatin accessibility and nucleosome occupancy profiles have been widely investigated, while the long-

range dynamics remain poorly studied at the single-cell level. Here, we present a new experimental approach, methyltrans-

ferase treatment followed by single-molecule long-read sequencing (MeSMLR-seq), for long-range mapping of nucleosomes

and chromatin accessibility at single DNA molecules and thus achieve comprehensive-coverage characterization of the cor-

responding heterogeneity. MeSMLR-seq offers direct measurements of both nucleosome-occupied and nucleosome-evicted

regions on a single DNA molecule, which is challenging for many existing methods. We applied MeSMLR-seq to haploid

yeast, where single DNA molecules represent single cells, and thus we could investigate the combinatorics of many (up

to 356) nucleosomes at long range in single cells. We illustrated the differential organization principles of nucleosomes sur-

rounding the transcription start site for silent and actively transcribed genes, at the single-cell level and in the long-range

scale. The heterogeneous patterns of chromatin status spanningmultiple genes were phased. Together with single-cell RNA-

seq data, we quantitatively revealed how chromatin accessibility correlated with gene transcription positively in a highly

heterogeneous scenario. Moreover, we quantified the openness of promoters and investigated the coupled chromatin

changes of adjacent genes at single DNA molecules during transcription reprogramming. In addition, we revealed the cou-

pled changes of chromatin accessibility for two neighboring glucose transporter genes in response to changes in glucose

concentration.

[Supplemental material is available for this article.]

In eukaryotic organisms, cells are faced with genetic information
storage and packaging problems. As the carrier of genetic informa-
tion, instead of folding into a disorganized yarn ball, DNA strands
wrap around thousands of protein cores like “beads on a string.”As
the fundamental unit of chromatin, a nucleosome consists of
∼147 bp of DNA wrapping around a histone octamer composed
of four core histones (H2A, H2B, H3, and H4) (Luger et al. 1997).
Nucleosomes are connected by stretches of “linker DNA.”Dynam-
ic packaging of nucleosomes results in two different chromatin ac-
cessibility statuses: open (accessible and active genomic regions
with sparse nucleosome occupancy); and closed (inaccessible
and inactive genomic regions with dense nucleosome occupancy).
Positioning of nucleosomes and dynamic changes of chromatin
status play important regulatory roles in DNA-templated processes
such as transcription, DNA replication and repair (Bell et al. 2011).

Current genome-wide methods of nucleosome occupancy
and/or chromatin accessibilitymapping aremainly based on three
types of assays followed by short-read sequencing technologies: (1)
the nucleosome’s protection of nucleosomal DNA sequences from
endogenous and exogenous enzymes (e.g.,MNase-seq, DNase-seq,
ATAC-seq,NOMe-seq, andMPE-seq) (Schones et al. 2008; Songand
Crawford 2010; Cui and Zhao 2012; Kelly et al. 2012; Buenrostro
et al. 2015a; Ishii et al. 2015); (2) chromatin immunoprecipitation

using a specific histone antibody (e.g., ChIP-seqwithH3) (Wal and
Pugh 2012); and (3) solubility differences between nucleosomal
DNA and naked linker DNA (e.g., FAIRE-seq) (Bianco et al. 2015).
In particular, NOMe-seq treats target samples with exogenous
methyltransferase to detect nucleosomeoccupancyand chromatin
accessibility: The nucleosome protects nucleosomal DNA from be-
ing methylated by exogenous methyltransferase, while cytosines
in naked linker DNA sequences are methylated to 5-methylcyto-
sine (5mC) (Kelly et al. 2012). The following bisulfite sequencing
identifies this methylation profile, as bisulfite can convert un-
methylated cytosine to uracil, which discriminates 5mC from un-
methylated cytosine.

Thesemethods canmap averaged patterns of nucleosome oc-
cupancy and chromatin accessibility in a population of cells, fail-
ing in precise identification at the single-cell level. Although the
single-cell versions of thesemethods have been recently developed
(Small et al. 2014; Buenrostro et al. 2015b; Jin et al. 2015; Pott
2017; Clark et al. 2018; Lai et al. 2018; Li et al. 2018), the corre-
sponding sparse sequencing coverage and short read length lack
information for addressing complex long-range chromatin status
and nucleosome occupancy. Therefore, the heterogeneity of nu-
cleosome occupancy and chromatin accessibility is rarely studied.
Moreover, it is even more challenging to define nucleosome occu-
pancy patterns and dynamics and chromatin accessibility at single
DNAmolecules, so it is hard to detect subtle butmeaningful differ-
ences between seemingly identical cells. This is a critical gap in
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understanding themechanism of hownucleosomes assemble, dis-
assemble, and slide. In addition, in contrast to the well-solved
phasing problems (e.g., exon-splicing and allele-specific DNA
methylation), the phased status of nucleosomes and chromatin ac-
cessibility at single DNAmolecules remains incomplete (Kuleshov
et al. 2014; Tilgner et al. 2018).

The emerging single-molecule long-read sequencing technol-
ogy (i.e., Oxford Nanopore Technologies, ONT) provides unique
data features that are capable of filling the gap: (1) 5mC can be
directly detected at the single-base resolution at the single-mole-
cule level based on ONT electrolytic current signal dynamics with-
out bisulfite conversion (Rand et al. 2017; Simpson et al. 2017); (2)
unlike the other sequencing platforms (such as Sanger sequencing
and second-generation sequencing [e.g., Illumina]), PCR amplifi-
cation is not required for ONT sequencing, so each ONT read
can reveal the genomic events at the single-molecule level; (3)
ONT reads are ultralong (up to 2.3 Mb) (Payne et al. 2018) so
that they can cover combinatorics of many nucleosomes and
different chromatin statuses spanning multiple genomic ele-
ments. Leveraging the informative ONT sequencing technology,
we developed an experimental approach, methyltransferase treat-
ment followed by ONT single-molecule long-read sequencing
(MeSMLR-seq) and the corresponding bioinformatics method, to
investigate heterogeneous and dynamic insight into long-range
chromatin status and nucleosomes. Instead of bisulfite conversion
(with PCR amplification) and short-read sequencing, the footprint
of exogenous 5mCs from GpC-specific methyltransferase treat-
ment is detected at singleDNAmolecules (without any PCR ampli-
fication) by ONT sequencing in the MeSMLR-seq protocol and is
next used to detect nucleosome occupancy and chromatin accessi-
bility computationally.

We applied MeSMLR-seq to haploid Saccharomyces cerevisiae
cells, where single DNA molecules represent single cells, so it al-
lows the “one-to-one” link between sequencing read (i.e., sequenc-
ing molecule) and haploid cell. Thus, each single MeSMLR-seq
read can be used to mimic a single cell in a given genomic region,
and the heterogeneity can be investigated without single-cell se-
quencing. With the unique output of MeSMLR-seq, we revealed
the chromatin basis of gene transcription.

Results

Overview of MeSMLR-seq

In brief, the experimental approach MeSMLR-seq contains two
main steps: (1) methyltransferase (M.CviPI) treatment to convert
cytosine to 5mC at GpC sites at naked linker DNA and open chro-
matin; and (2) ONT sequencing to detect the 5mC profile that is
subsequently used to identify nucleosomeoccupancyand chroma-
tin accessibility (Fig. 1). The first step has been shown feasible at
both the bulk-cell and single-cell level byNOMe-seq and other pre-
vious studies (Small et al. 2014; Pott 2017; Clark et al. 2018; Li et al.
2018). In addition, ONT has been reported to detect 5mC at CpG
sites (Rand et al. 2017; Simpson et al. 2017), based on which an
in-house tool (named NP-SMLR) (see Supplemental Code) was de-
veloped tomap the 5mCprofile at GpC sites forMeSMLR-seq data.

In the proof-of-concept application of MeSMLR-seq to a hap-
loid Saccharomyces cerevisiae (BY4741 strain), an additional step
was applied to digest the cell wall that serves as a barrier against
methyltransferase treatment of genomic DNA: Yeast cells were
treated with Zymolyase to generate spheroplasts (Fig. 1). After
the subsequent methyltransferase treatment, extracted genomic
DNA without any PCR amplification was directly submitted to li-
brary preparation and ONT sequencing. The genomic DNA that
underwent in vivo spheroplast methylation was referred to as
the target sample of MeSMLR-seq. In addition, we prepared nega-
tive control and positive control samples as training data for 5mC
detection (see the next section “Detection and phasing of nucleo-
some occupancy at single DNAmolecules”). Native genomic DNA
extracted from yeast withoutM.CviPI treatment was used as a neg-
ative control (all cytosines at GpC sites were unmethylated) since
there is no endogenous 5mC on the yeast genome, as previously
reported (Capuano et al. 2014). Genomic DNA treated with
M.CviPI (without spheroplast methylation) was used as a positive
control (all cytosines at GpC sites were converted to 5mCs).

As the efficiency of M.CviPI methylation served a critical role
in thewhole protocol, it was evaluated at selected genomic regions
by bisulfite sequencing as previously described (Small et al. 2014).
The methylation efficiency of the positive control sample was
99.37%, and 13 single colonies of the selected region from target

Figure 1. Overview of MeSMLR-seq. Experimental approach (methyltransferase treatment plus ONT sequencing) in yeast and the corresponding bio-
informatics analyses (5mC detection, chromatin accessibility mapping, and nucleosome phasing).
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sample were all successfully methylated, indicating high methyla-
tion efficiency.

Using the ONT GridION platform with R9.4.1 chemistry, we
sequenced one flow cell per sample and generated 0.9 million
(positive control), 1.2 million (negative control), and 1.3 million
(on average for six target samples) reads (i.e., sequencing mole-
cules) separately, which were uniquely aligned to the yeast ge-
nome (Supplemental Table S1). The longest sequencing
molecule was 63.1 kb. In particular, from the target sample where
yeast was grown in rich media (1% yeast extract, 2% peptone, and
2% glucose), we generated 1.4 million sequencing molecules with
a median length of 7.2 kb, covering 821× of the yeast genome.

Detection and phasing of nucleosome occupancy at single DNA

molecules

We first identified 5mC methylation status for every GpC site on
each DNA molecule based on the ONT sequencing current signal
(referred to as the event level). Since the previous studies (Rand
et al. 2017; Simpson et al. 2017) showed the event level depended
on the context sequence (e.g., 6-mer), our positive and negative
control data were used to train signal distributions for each 6-mer
containing target GpC dinucleotides under the occasions of meth-
ylation and unmethylation. The event levels of a given 6-mer from
the target sample were compared with the corresponding trained
distributions to obtain a posterior of methylation for every GpC
site on eachmolecule, which we denoted as themethylation score
(Supplemental Fig. S1A). There was no obvious bias of 5mCmeth-

ylation calling between themolecules that were aligned to forward
andreverse strands, and theareasunder the receiveroperatingchar-
acteristic curve (AUC)were both0.86 (Fig. 2A). Correlation analysis
of methylation status of paired GpC sites at single molecules
showed a pattern with a periodic distance of 170–180 bp, which
was the same as the length of nucleosomal DNA (147 bp) plus reg-
ular linker DNA (20–30 bp) (Fig. 2B). Therefore, we can identify nu-
cleosome occupancy at single molecules from the methylation
profiles by developing the bioinformatics method Nucleosome
Positioning detection by Single-Molecule Long-Read sequencing
(NP-SMLR) as below (see Supplemental Code).

Let X1 X2…Xl be a molecule, where Xi is the i-th base. Denote
si as the methylation score of Xi, if Xi is the cytosine of the GpC
dinucleotide. Suppose that the methylation scores of all GpC sites
are independent. Nucleosome occupancy detection refers to find-
ing a path π= π1π2…πl that maximizes the likelihood of signals:

p∗ = argmax
p

∏n

t=1

Pr(sit |pit ).

πi takes the value from {L, N1, N2, …, N147}. L represents the
linker region; Nm represents the m-th base within a nucleosome;
i1, i2,…, in are the positions of cytosines that belong to GpC dinu-
cleotides. The elements of path π are restricted such that: (1) Nm is
followed by Nm+1 (1≤m≤146); (2) N147 is followed by L; and (3) L
is followed by L or N1. The problem is essentially an alignment be-
tween a sequence of nucleotides and a sequence of nucleosomal
statuses. NP-SMLR adopts a dynamic programming algorithm

Figure 2. 5mCdetection and nucleosome occupancy detection byMeSMLR-seq data. (A) ROC curve of 5mC detection on GpC sites. Themolecules that
were aligned to forward (fwd) and reverse (rev) genomic strands were analyzed separately. (B) Correlation coefficients between methylation scores of mu-
tually paired GpC sites from the same molecules with respect to their corresponding distances. (C) Dynamic programming algorithm for nucleosome oc-
cupancy detection (NP-SMLR). A matrix regarding the nucleotide sequence (row) and nucleosomal statuses (column) is made, followed by initialization,
iterative update for entries, and backtrack search for optimal path (see Methods for details). (D) Accuracy of nucleosome occupancy detection under dif-
ferent nucleosome coverage and GpC frequencies.
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(Needleman and Wunsch 1970) for solution: A matrix regarding
the nucleotide sequence and nucleosomal statuses is made, entries
are updated iteratively, and the optimal path is obtained through
backtracking (Fig. 2C; Supplemental Fig. S1B).

Due to the lackofmore advanced experimental technology to
generate a gold standard, we evaluated the accuracy of nucleosome
occupancy detection at the single-molecule level by simulation
tests. The tests were performed under different settings of nucleo-
some coverage (proportion of bases covered by nucleosomes, rang-
es from 30% to 90%) and GpC frequency (ranges from 1% to 10%)
(Fig. 2D). The accuracy increased with GpC frequency, while the
effect of nucleosome coverage wasmild. In the case of the yeast ge-
nome with 3.75% density of GpC sites, NP-SMLR was very robust
to reach the accuracy of 80% regardless of different nucleosome
coverages, which represented different scenarios of chromatin
status (Fig. 2D). These results highlight the accuracy and robust-
ness of MeSMLR-seq on single-molecule long-range mapping of
nucleosomes.

Performance of nucleosome occupancy detection at the bulk-cell

level

In terms of nucleosome occupancy at the bulk-cell level, MeSMLR-
seq provided consistent and comparable results with the widely
used method MNase-seq (Supplemental Methods; Hughes and
Rando 2014; Weiner et al. 2015). The averaged Pearson’s correla-
tion coefficient between three MeSMLR-seq data (forwardly, re-
versely aligned molecules, and their combination) and three
MNase-seq replicates was 0.75 (Fig. 3A). The 77% of nucleosomes
called by MeSMLR-seq were also detected by MNase-seq (Fig. 3C).
For an example of theDAL (degradation of allantoin) gene cluster,
the nucleosome peaks called byMeSMLR-seq andMNase-seq were
generally well aligned (Fig. 3B). In the long-range scale, single
MeSMLR-seq reads can phase a number of nucleosomes (themedi-
an number was 37 and the maximal number was 356 in our data),

so that it captures the dynamics and heterogeneity of nucleosome
occupancy among DNA molecules (Fig. 3D; Supplemental Table
S2). For instance, 35–61 nucleosomes (median number 58) were
phased at the singlemolecules covering theDAL gene cluster across
a 10-kb genomic region (Fig. 3E), which illustrated large-range var-
iation as well as local subtle differences of nucleosome occupancy.

Direct long-range evidence of differential nucleosome

organization

A few single-cell epigenome sequencing approaches have revealed
the heterogeneity of chromatin status and nucleosome position-
ing within a cell population (Small et al. 2014; Buenrostro et al.
2015b; Jin et al. 2015; Pott 2017; Clark et al. 2018; Lai et al.
2018; Li et al. 2018). Recently, Lai et al. reported the differential
nucleosome organization principles for silent and active genes us-
ing single-cell MNase-seq (Fig. 4A; Lai et al. 2018). However, these
studies lacked a long-scale nucleosome occupancy scene at the sin-
gle-cell resolution due to short sequencing length and sparse data
coverage within single cells. As shown above, MeSMLR-seq can
determine the heterogeneous long-range phasing of nucleosomes,
so we can investigate nucleosome organization logic in a compre-
hensive way (Fig. 3E).

We focused on the nucleosome organization surrounding
transcription start sites (TSSs), which play an important role in
transcription regulation (Voss and Hager 2014). For each gene,
we measured the heterogeneity of nucleosome positioning by the
standard deviation of the distances between +1 nucleosome and
the TSS over all single cells. Compared to active genes, silent genes
showed a larger heterogeneity of nucleosome positioning among
different cells (Fig. 4B; Supplemental Fig. S2A). Next, we evaluated
the uniformity of nucleosome spacing within single cells by the
variation of the distance between adjacent nucleosomes. In
contrast to active genes, the nucleosomes surrounding the TSS of
silent genes were more uniformly spaced (Fig. 4C; Supplemental

Figure 3. Performance evaluation of MeSMLR-seq on bulk-level nucleosome occupancy and single-molecule long-range phasing of nucleosomes. (A)
Correlation of nucleosome occupancy profiles generated by MeSMLR-seq and MNase-seq. For MeSMLR-seq, the molecules that were aligned to forward
(fwd) and reverse (rev) genomic strands were analyzed separately. (B) Nucleosome occupancy profiles at the bulk-cell level provided by MeSMLR-seq and
MNase-seq. (C) Overlap of nucleosomes detected by MeSMLR-seq and MNase-seq at the bulk-cell level. (D) Number of nucleosomes phased at single se-
quencingmolecules ofMeSMLR-seq data under 2%glucose condition. (E) Detection and phasing of nucleosomes at the single-molecule level byNP-SMLR.
Each gray line represents a molecule. Green oval represents nucleosome.
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Fig. S2B). For instance, at the bulk-cell level, nucleosomes sur-
rounding the TSS of the lowly expressed gene AUA1 (FPKM=0)
were poorly positioned (Fig. 4D), while there were well-positioned
nucleosomes (including −1, +1, +2, +3, and +4 nucleosomes) sur-
rounding the TSS of the active gene EMW1 (FPKM=77) and a pro-
nounced nucleosome-depletion region (NDR) upstream of the TSS
(Fig. 4E). At the single-cell level, the positioning of +1 nucleosome
of AUA1 had a continuous shift pattern across different cells,
whereas it was relatively steady for EMW1 (Fig. 4D,E). Compared
with EMW1, the distances between +1 nucleosomes and the TSS
for AUA1 were more approximate to a uniform distribution
(Supplemental Fig. S3A,B), which represented the ideal occasion
for a continuous shift pattern. In addition, the spacing of nucleo-
somes surrounding the TSS of AUA1was relatively uniformwithin
single cells (Fig. 4D; Supplemental Fig. S3C), while there was a pro-
nounced NDR upstream of the TSS of EMW1, which disrupted the
uniformity of nucleosome spacing (Fig. 4E; Supplemental Fig.
S3D). MeSMLR-seq resolves these differential nucleosome organi-
zation principles with direct and convincing evidence at a long-

range scale from single molecules/cells that are hard to obtain by
the bulk-cell and short-read sequencing approaches.

Single-molecule long-range measurement of chromatin

accessibility

Based on the methylation profiles of MeSMLR-seq data, we also
mapped the chromatin accessibility of the yeast genome at both
the bulk-cell level and single-molecule level. To assess the perfor-
mance on the bulk-cell chromatin accessibility mapping, we com-
pared MeSMLR-seq with two widely used methods, ATAC-seq
(Schep et al. 2015) and DNase-seq (Supplemental Methods;
Zhong et al. 2016). The genome-wide chromatin accessibility pro-
file revealed by MeSMLR-seq data was highly consistent with
ATAC-seq (averaged Pearson’s r=0.80) and DNase-seq (averaged
Pearson’s r=0.82) (Fig. 5A,B; Supplemental Fig. S4). In addition,
>83% (1615/1934) of significantly accessible regions called by
MeSMLR-seq were also supported by either ATAC-seq or DNase-
seq (Fig. 5C). These results indicate that MeSMLR-seq provides

Figure 4. Differential nucleosome organization principles for silent and active genes. (A) Previous studies revealed nucleosome organization patterns
surrounding the TSS of silent (left) and active (right) genes (Lai et al. 2018). Nucleosome positioning in promoter regions of silent genes showed large var-
iation among cells but was highly uniformly spaced within each cell. In contrast, nucleosome positioning surrounding the TSS of active genes showed little
variation among cells but relatively nonuniform spacing within each cell. (B) Heterogeneity of nucleosome positioning for silent (FPKM=0) and active
(FPKM>50) genes. The heterogeneity of nucleosome positioning was measured by the standard deviation (SD) of the distances between +1 nucleosomes
and the TSS. The P-value was calculated by the Wilcoxon rank-sum test. (C) Uniformity of nucleosome spacing for silent (FPKM=0) and active (FPKM>50)
genes. See Methods for the definition of uniformity. The P-value was calculated by the Wilcoxon rank-sum test. (D) Long-range nucleosome positioning
patterns for the silent AUA1 across different cells. Each row represents a cell, and nucleosome is labeled as blue bar. (E) Long-range nucleosome positioning
patterns for the actively transcribed gene EMW1 across different cells.
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comparable results with the existingmethods on the bulk-cell level
chromatin accessibility mapping.

At the single-molecule level, a MeSMLR-seq read can fully
cover multiple adjacent genes (median number was 4 and maxi-
mal number was 40 in our data); therefore, we could examine
the long-range chromatin accessibility at the single-molecule/-
cell level (Fig. 5D; Supplemental Table S3). For example, 34
MeSMLR-seq molecules fully covered the 9-kb genomic region,
Chr II: 370,000–379,000, that encompasses four genes (NRG2,
TIP2, BAP2, and TAT1). Based on the 5mC footprint, we identified
the chromatin status (“open” or “closed”) of the promoters for four
genes on each molecule and thus defined and quantified the cou-
pled chromatin status patterns. In total, these molecules detected
13 out of 16 (42, four genes with binary status “open” or “closed”)
possible combinatorial patterns of the coupled chromatin statuses
of four gene promoters (Fig. 5E). For instance, four genes in Pattern
1 (supported by twomolecules) all had “open” promoters, whereas
the promoters of four genes were all closed in Pattern 6 (supported
by 14 molecules). Therefore, MeSMLR-seq is able to analyze the
coupled chromatin statuses of adjacent genes and to investigate
the heterogeneity of chromatin status within a cell population,
which is challenging for the existing methods.

Heterogeneous openness of a gene promoter

Leveraging the single-molecule and long-range information of
MeSMLR-seq data, we can discover and measure different levels

of promoter openness beyond reporting a binary status. In the pro-
moter region (Chr XVI: 66,400–67,550) of the cell cycle regulation
gene CLN2, the bulk-level chromatin accessibility profiles generat-
ed by the existing methods and MeSMLR-seq all showed a signifi-
cant openness (Fig. 6, upper panel), while it was not clear if the
promoters of CLN2 among all cells were open, or if the open re-
gions were similar in size. Based on the single-molecule nucleo-
some occupancy profiles in the promoter region, 304 molecules
that fully covered this region were clustered into three groups
with different levels of promoter openness: closed (Cluster 1
with 176molecules); narrowly open (Cluster 2 with 75molecules);
and widely open (Cluster 3 with 53 molecules) (Fig. 6, lower-right
panel). The 5mC profiles at the molecules from three clusters also
showed the difference of the widths of openness (Fig. 6, lower-left
panel). This unique output ofMeSMLR-seq is bringing new oppor-
tunities to perform quantitative analysis of the heterogeneous and
dynamic promoter status.

In addition, theMeSMLR-seq data revealed nucleosome occu-
pancy and chromatin accessibility profiles consistent with the
previous studies based on bulk-cell short-read data (Hughes and
Rando 2014) upstream of the TSS, gene body region, and binding
region of several important transcriptional regulators (Supplemen-
tal Note 1; Supplemental Figs. S5, S6), as well as revealing the dy-
namics of chromatin status during transcription changes in
response to different nutrition conditions (Supplemental Note 2;
Supplemental Fig. S7).

Figure 5. Performance evaluation of MeSMLR-seq on bulk-level chromatin accessibility mapping, and single-molecule long-range mapping of chroma-
tin accessibility. (A) Correlation of chromatin accessibility profiles generated byMeSMLR-seq, ATAC-seq, andDNase-seq. (B) Chromatin accessibility profiles
at the bulk-cell level provided byMeSMLR-seq, ATAC-seq, andDNase-seq. (C) Overlap of the significantly accessible regions (peaks) called byMeSMLR-seq,
ATAC-seq, and DNase-seq. (D) Number of genes covered by single sequencing molecules of MeSMLR-seq data under 2% glucose condition. (E) Single-
molecule long-range mapping of chromatin accessibility by MeSMLR-seq. Each line represents a molecule. GpC site is labeled as a rainbow-color dot,
with methylation score from 0 (blue) to 1.0 (red). Thirteen combinatorial patterns of the promoter status of four genes are shown with different numbers
of supporting sequencing molecules/cells. A promoter was defined as “open” (highlighted by red box) if the methylation scores of the including GpC sites
had a median value greater than 0.5, and “closed” (highlighted by blue box) otherwise.

Wang et al.

1334 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1


Quantitative relationship between gene expression and chromatin

accessibility in cell populations

Though the analyses above showed that the promoters of the high-
ly expressed genes over a cell population were generally more ac-
cessible than the lowly expressed genes (Supplemental Fig. S5),
the quantitative relationship between promoter openness and
gene transcription in a cell population remained unclear. Based
on uniqueMeSMLR-seq data, wewere able to calculate the fraction
of a cell subpopulation with an open promoter of a given gene.
With single-cell RNA-seq data for 2812 yeast cells generated in
this study (SupplementalMethods), we also calculated the fraction
of cells with expression (read count ≥1) of a given gene (referred to

as expression frequency). The expression frequency within a cell
population was positively correlated with the fraction of cells
with an open promoter (Fig. 7A). For example, the genes with an
open promoter in ≥40% cells had a significantly larger expression
frequency than the ones with an open promoter in <10% cells (P-
value <2.2 ×10−16, Wilcoxon rank-sum test) (Fig. 7A).

When grouping the genes based on expression frequency, we
observed similar positive correlation (Fig. 7B). In addition, consid-
ering the bulk-cell expression, the highly expressed geneswere pre-
sent in relatively large fractions of a cell subpopulation with an
open promoter in comparison to the lowly expressed ones (P-value
<2.2×10−16, Wilcoxon rank-sum test) (Fig. 7C). These results sug-
gest that chromatin accessibility of a promoter at the single-

Figure 6. Heterogeneous promoter openness of CLN2 in a cell population revealed byMeSMLR-seq. The bulk-level chromatin accessibility profiles (upper
panel) were provided by ATAC-seq, DNase-seq, andMeSMLR-seq. MeSMLR-seq molecules were clustered into three groups with different promoter open-
ness (by k-means clustering of the nucleosome occupancy profiles, bottom right panel): closed, narrow open, and wide open. Each row represents a mol-
ecule (i.e., a cell), and nucleosome is labeled as blue bar. The correspondingmethylation profiles at GpC sites on eachmolecule are shown on the bottom left
panel. Each line represents a molecule (i.e., a cell). GpC site is labeled as a rainbow-color dot, with methylation score from 0 (blue) to 1.0 (red).
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molecule/-cell level detected by MeSMLR-seq data can contribute
to the prediction of gene expression level and frequency in a cell
population.

Coupled chromatin accessibility changes of adjacent genes during

transcription reprogramming

Making full use of the single-molecule and long-range advantages
of MeSMLR-seq data, we explored the coupled chromatin status
changes of two adjacent glucose transporter genes, HXT3 and
HXT6, during transcription reprogramming. The transport of glu-
cose across the plasma membrane is the first step of glucose me-
tabolism, and the glucose (also called hexose) transporter genes
play essential regulatory roles in glucose sensing, signaling, and
utilization in a yeast cell (Ozcan and Johnston 1999). Hxt3 and
Hxt6 have different affinities to glucose (low-affinity for Hxt3
and high-affinity for Hxt6) and thus respond differently to the
change of glucose concentration. With the decrease of glucose
concentration, the expression of HXT3 decreased, whereas
HXT6 increased, which corresponded to their low- and high-affin-
ity to glucose (Fig. 8A).

For each glucose concentration (2%, 1%, 0.5%, and 0.125%),
we countedMeSMLR-seqmolecules to estimate the fractions of cell
subpopulationswith two opposite coupled chromatin accessibility
patterns: “Open-HXT3 and Closed-HXT6” and “Closed-HXT3 and
Open-HXT6”. The fraction of cell subpopulation with the coupled
pattern “Open-HXT3 and Closed-HXT6” decreased along with the
reduction of glucose concentration, whereas “Closed-HXT3 and
Open-HXT6” increased (Fig. 8B). The changes of two coupled pat-
terns significantly matched the expression dynamics of two genes
in response to a glucose concentration change (P-value <3.9 ×
10−8, χ2 test) (Fig. 8). These proof-of-concept results highlight
the promising utility of MeSMLR-seq for studying complex epige-
netic changes during transcription reprogramming.

Discussion

In this study, we showed the consistent bulk-level nucleosome
occupancy and chromatin accessibility profiles generated by
MeSMLR-seq with existing methods. With the unique output of
MeSMLR-seq, we investigated the organization principles of nucle-

osomes surrounding TSSs and studied the heterogeneity of combi-
natorial chromatin statuses over multiple genomic regions.
Together with single-cell RNA-seq data, the relationship between
chromatin accessibility and gene transcription was investigated
quantitatively. Finally, we revealed the coupled chromatin chang-
es of adjacent genes during transcription reprogramming.

A large number of studies have demonstrated key regulatory
roles fornucleosomepositioning andchromatin accessibility in eu-
karyotic gene expression (Li et al. 2005, 2007; Petesch andLis 2008;
Jiang and Pugh 2009) as well as DNA repair, recombination and
other DNA-dependent processes (Lipford and Bell 2001; Dalal
et al. 2007; Schwartz et al. 2009; Tilgner et al. 2009; Cole et al.
2011; Lai and Pugh 2017). The relationship between nucleosome
positioning, chromatin accessibility, and gene expression has
been studied most extensively (Rando and Winston 2012).
However, unlike thewell-studied heterogeneity of gene expression
based on single-cell analyses, the heterogeneity of nucleosome po-
sitioning and chromatin accessibility is poorly studied due to lim-
itations in experimental and sequencing techniques. Previous
bulk-cell studies based onwell-developed experimental techniques
established the fundamental knowledge base, while their corre-
sponding versions at the single-cell platforms have not yet led to
more details. This is largely due to the sparse sequencing coverage
and short read length. MeSMLR-seq provides an alternative way
to address this bottleneck: Long read length guarantees the full
length of the genomic region of interest (e.g., whole gene body to-
gether with the flanking neighborhood) can be covered by many
single reads (that is, single DNA molecules). In the application to
haploid organisms, a MeSMLR-seq read population represents the
cell population, so the heterogeneity at the cell level can be inves-
tigated. In this study, MeSMLR-seq provides a long-range chroma-
tin status landscape and nucleosome occupancy detection at the
single-molecule/-cell level. The investigationof coupled chromatin
changes and differential nucleosome organization principles in re-
sponse to nutrition changes underline the unique MeSMLR-seq
output for exploring these complex epigenetic events.

However, it should be noted that the molecule-cell link does
not hold in diploid or polyploid organisms, as the molecule popu-
lations are a mix of allele-specific and cell-specific events. It leads
to challenges and opportunities in the further development of
new experimental (e.g., single-cell barcoding) and statistical (e.g.,

Figure 7. Quantitative relationship between chromatin accessibility and gene expression. (A,B) Quantitative relationship between chromatin accessibility
and gene expression in a cell population. The former (A) was measured by the fraction of cells with an open promoter, and the latter (B) by the fraction of
cells with expression (based on single-cell RNA-seq data). Genes were binned by one of the indices and the distribution of the other is shown. The gene was
considered as “expressed” in a cell if the corresponding UMI (uniquemolecular identifier) count was≥1. (C) Quantitative relationship between the bulk-cell
gene expression and the cell population ratio of an open promoter. Genes were binned based on the bulk-cell gene expression level (RNA-seq data).

Wang et al.

1336 Genome Research
www.genome.org



data deconvolution) approaches. Once cell subpopulations can be
reconstructed from a molecule population, we could distinguish
the allele-specific epigenome precisely from different cell subpop-
ulations and achieve more accurate investigation of how epigenet-
ics events behave differently at different alleles. Regardless of the
wide interest in the cell-level study, the characterization of nucle-
osome positioning and chromatin status at single DNA molecules
by MeSMLR-seq will also bring very unique and informative data
to reveal the dynamic nucleosome positioning mechanism, such
as assembly, disassembly, and sliding.

Besides the single-molecule information, the long length of
MeSMLR-seq reads,which allows correlation analysis of exogenous
and endogenous methylation statuses over different positions,
couldbe informative for some research topics: (1)Correlationof ex-
ogenous 5mC events has shown the nucleosome occupancy pat-
tern in this study (Fig. 2B), and thus DNA loops or other larger
spatial chromatin domains that affect exogenous methylation
could also be identified, which would require specific library prep-
aration to generate even longerONT reads; (2) as endogenous 5mC
can also be detected, MeSMLR-seq can be applied to higher organ-
isms (e.g., human) to study howmethylation status at different ge-
nomic regionscoordinates, but it couldalsoprovidedirect evidence

to address the controversial topics about how methylation status
and nucleosome positioning and chromatin openness correlates.
For example, in human cells, the endogenous 5mCmainly occurs
atCpGsites andcanbedistinguished fromexogenousGpC-specific
5mC detection using ONT data. Thus, the DNAmethyome, nucle-
osome occupancy, and chromatin accessibility can be simultane-
ously measured on a single DNA molecule in human. Further, the
ultralong length of ONT reads (up to Mbps) enables the analysis
of the coupleddynamicsofDNAmethylationandchromatin status
of adjacent genes, since the median distance between adjacent
genes is 36 kb in human.

From a technical viewpoint, there are relatively few applica-
tions of ONT data in epigenetics research, as the corresponding ex-
perimental approaches or bioinformatics methods are rarely
developed, although numerous applications of ONT data have
been published rapidly with improved data quality and cost
efficiency. In addition to the previously reported studies of
identifying methylation and three-dimensional spatial organiza-
tion of chromatin (https://nanoporetech.com/resource-centre/
pore-c-using-nanopore-reads-delineate-long-range-interactions-
between-genomic-loci),MeSMLR-seq contributes a new technique
in the toolkit of single-molecule long-read sequencing to obtain

Figure 8. Relationship between chromatin accessibility and coexpression of HXT3 and HXT6. (A) Expression levels of HXT3 and HXT6 in response to glu-
cose concentration change. FPKM frombulk-cell RNA-seq datawas taken as the expression level. (B) Change of the coupled chromatin statuses ofHXT3 and
HXT6 in response to different glucose concentrations. Chromatin accessibility in promoters of HXT3 and HXT6 at the single-cell level is shown. Each line
represents a molecule (i.e., cell). GpC site is labeled as a rainbow-color dot, with methylation score from 0 (blue) to 1.0 (red). A promoter was defined as
“open” (highlighted by red box) if the methylation scores of the including GpC sites had a median value greater than 0.5, and “closed” (highlighted by
blue box) otherwise. Cells are shown in four groups that corresponded to four glucose concentrations. The cell fractions are also shown on the bar charts.
The P-value was calculated by a χ2 test under the null hypothesis that alternative openness status of the two genes was independent of glucose
concentration.
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first-hand details of epigenetics at single DNA molecules. More
innovative studies with single-molecule long-read sequencing
should be explored and expected to advance our studies to dis-
cover novel and complex biological insights.

Methods

Yeast strain and growth

The Saccharomyces cerevisiae BY4741 strain was used in this study.
Yeast cells were separately grown at 30°C in media including 1%
yeast extract, 2% peptone, and different carbon sources. Yeast cells
were collected in themid-log phase (OD600 of 0.3–0.6) and subject-
ed to MeSMLR-seq, bulk-cell RNA-seq, and single-cell RNA-seq ex-
periments (Supplemental Table S4; Supplemental Methods).

MeSMLR-seq experiment

Preparation andmethylation of yeast spheroplasts were performed
as previously described (Fig. 1; Small et al. 2014). Briefly, yeast cells
were treatedwith Zymolyase (final conc. = 0.25mg/mL; amsbio) in
1M sorbitol and 50mMTris (pH 7.4), and 10mM β-mercaptoetha-
nol. Spheroplasts were washed twice using 1 M sorbitol before
methyltransferase treatment. GpC-specific methyltransferase
M.CviPI (NEB) supplemented with 160 µM SAM S-adenosylme-
thionine was used to methylate spheroplasts at 37°C for 45 min.
Genomic DNA was extracted using PCI (phenol:chloroform:iso-
amyl alcohol, 25:24:1) and purified by a Genomic DNA Clean &
Concentrator-10 kit (Zymo Research).

We denote the above mentioned genomic DNA that under-
goes in vivo spheroplast methylation as the target sample of
MeSMLR-seq. Native genomic DNA extracted from yeast without
M.CviPI treatment was used as the negative control (all cytosines
at GpC sites are unmethylated). There is no endogenous 5mC in
the yeast genome, as reported in a previous study (Capuano et al.
2014). Genomic DNA treated with M.CviPI (without spheroplast
methylation) was used as a positive control (all cytosines at GpC
sites are 5mCs).

The efficiency of M.CviPI methylation was evaluated using
bisulfite sequencing as previously described (Small et al. 2014).
First, bisulfite conversion was performed using a EZ DNA
Methylation-Lightning kit (Zymo Research). Second, PCR amplifi-
cation targeted to specific genomic regions was performed by
ZymoTaq PreMix (Zymo Research). The CHA1 gene region (Chr
III: 15,713–16,074), CYS3 gene region (Chr I: 130,966–131,117),
GAL10 gene region (Chr II: 278,464–278,738), and PHO5 gene re-
gion (Chr II: 430,248–430,388) were amplified for evaluating the
methylation efficiency of the positive control. The PHO5 gene re-
gion (Chr II: 430,843–431,498), which was shown in Figure 1 of
the previous study (Small et al. 2014), was used to estimate the ef-
ficiency of spheroplast methylation (i.e., the target sample of
MeSMLR-seq). Third, TA cloning was performed by a TOPO TA
Cloning kit (Life Technologies). Single colonies were picked and
plasmids were extracted using a QIAprep Spin Miniprep kit
(QIAGEN). Finally, plasmids were sequenced by Sanger sequenc-
ing. For a positive control, we estimated the efficiency of methyl-
ation as the percentage of 5mC over all GpC sites (totally 53
GpC sites for four target gene regions). Three single colonies
were sequenced per gene region; and the methylation efficiency
of the positive control was ([53 ×3]−1)/(53×3) = 99.37%. For the
target sample of MeSMLR-seq, we considered it as successfully
methylated if the single colony included at least one 5mC. In total,
10 colonies were sequenced, and the methylation success rate of
the target sample was up to 100% (10/10). The Sanger sequences
for templates and colonies are provided in Supplemental Table S5.

Native genomicDNA (negative control),methylated genomic
DNA (positive control), and extracted genomic DNA after sphero-
plast methylation (target sample) were directly submitted to ONT
sequencing. In brief, the genomic DNA was fragmented (size = 8
kb) using Megaruptor. A sequencing library was prepared using
the 1D Ligation Sequencing kit (SQK-LSK108). ONT sequencing
was performed using the GridION platform with R9.4.1 flow cells.

MeSMLR-seq data preprocessing

The software Albacore developed by ONT was used to perform
base-calling for ONT raw signals. The base-called ONT sequencing
datawere aligned to the sacCer3 reference genomeusing BWA soft-
ware (version 0.7.17-r1188) (Li and Durbin 2010) with the “mem”

mode and the “-x ont2d” parameter. Nanopolish (version 0.8.5)
(Simpson et al. 2017) with the “eventalign” mode and the
“‐‐scale-events” parameter was used to generate the alignments be-
tween event levels and 6-mers for each sequencing molecule,
whichwere utilized for the followingGpC-specific 5mCdetection.

Sincewe used theONT1D sequencing strategy in this study, a
DNAmolecule from a yeast cell might be sequenced twice (i.e., for-
ward and reserve strands). Thus, to achieve the “one-to-one” link
between the ONT sequencing molecule and haploid yeast cell,
we classified all molecules into two groups based on their aligned
genomic strands: forward and reverse.

The information of MeSMLR-seq data (including data size,
read length, error rate, alignment rate, and genome coverage)
was summarized in Supplemental Table S1.

GpC-specific 5mC detection at the single-molecule level

and single-base resolution by MeSMLR-seq

For each 6-mer pattern that includes cytosine of GpCdinucleotide,
represented here by k, we trained two models for the event level;
one was for unmethylated cytosine and the other for methylated
cytosine. We modeled the event level for unmethylated cytosine
by a Gaussian distribution N (m0, s

2
0). From the negative control

data preprocessed by “nanopolish eventalign,” we pooled the
event levels that were aligned to k and estimated μ0 and s2

0 by
the sample mean and variance, respectively. Considering the fact
that the efficiency of exogenous methylation was not always
100% (99.37% in our experiment) (Supplemental Fig. S1A, right
panel), we modeled the event level for methylated cytosine by a
Gaussian mixture model rN (m1, s

2
1)+ (1− r)N (m2, s

2
2), 0 < ρ<1.

The parameters μ1, μ2, s2
1, s

2
2, and ρ were estimated based on the

event levels from positive control data by EM algorithm. Denote
the probability density functions of the two models as fN(x;k)
(unmethylated cytosine) and fP (x;k) (methylated cytosine), respec-
tively. Namely,

fN (x; k) = 1����
2p

√
s0

e
−(x−m0)

2

2s2
0 ,

fP(x; k) = r
1����
2p

√
s1

e
−(x−m1)

2

2s2
1 + (1− r)
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2p

√
s2

e
−(x−m2)

2

2s2
2 .

The x in the above formulas represents the value of the event
level. The area of the overlapped region under the two probability
density functions fN (x;k) and fP (x;k) is calculated. The discrimina-
tion of the 6-mer k is defined as 1 − the area of overlap.

Given a sequencing molecule from the target sample, we de-
tected 5mC for all GpC sites. For each of the GpC sites, we listed all
the 6-mers on the reference genome that cover the cytosine at the
dinucleotide (Supplemental Fig. S1A, left panel). The 6-mer with
>1GpC site included or >10 aligned event levels from themolecule
was excluded for 5mC detection. Among the remaining 6-mers,

Wang et al.

1338 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.251116.119/-/DC1


the onewith themaximal discriminationwas chosen for the calcu-
lation of methylation score. Denote k′ as the selected 6-mer, and x′

as the event level that was aligned to k′. The event level x′ was fil-
tered out if one of logfP (x′;k′) or logfN (x′;k′) was <−10; otherwise,
the methylation score of the GpC site was calculated as

s = fP(x′; k′)
fP(x′; k′)+ fN (x′; k′)

.

The score s was essentially the posterior probability of meth-
ylation given a noninformative prior. If multiple event levels were
aligned to k′, then fP (x′;k′) and fP (x′;k′) were replaced by the prod-
uct of the multiple likelihood.

As a cross-validation, we randomly split each of the negative
control and positive control data into two halves. One of the
halves was used to train the models. Using the trained models,
we detected 5mC on the other half. With the real methylation sta-
tus of the test data being known, we were able to evaluate the
detection results. It turned out that the area under the ROC curve
was 0.86 (Fig. 2A).

Nucleosome occupancy detection at the single-molecule level

by MeSMLR-seq

We developed a bioinformatics method, named NP-SMLR, to
detect and phase nucleosomes at the single-molecule level (Fig.
2C; Supplemental Code).

Let X1 X2…Xl be a molecule, where Xi is the i-th base. Denote
si as the methylation score of Xi, if Xi is the cytosine of the GpC
dinucleotide. Suppose that the event levels of all GpC sites are in-
dependent. Nucleosome occupancy detection refers to finding a
path π= π1π2…πl that maximizes the likelihood of signals

p∗ = argmax
p

∏n

t=1

Pr(sit |pit ).

πi takes the value from {L, N1, N2, …, N147}. L represents the
linker region; Nm represents the m-th base within a nucleosome;
i1, i2,…, in are the positions of cytosines that belong to GpC dinu-
cleotides. The elements of path π are restricted such that: (1) Nm is
followed by Nm+1 (1≤m≤146); (2) N147 is followed by L; and (3) L
is followed by L or N1.

Based on themethylation scores of all GpC sites from all mol-
ecules in negative and positive control training data, we can fit two
density curves using the “density” command in R (version 3.3.0;
R Core Team 2016), respectively. The two density functions are
denoted as qN (·) and qP (·), respectively (Supplemental Fig. S1B).
A dummy methylation score si=−1 is added for Xi if it is not a cy-
tosine of GpC dinucleotide. Define

pi(pi) W 1{si=−1} + 1{si=−1} · Pr(sit |pit )

= 1{si=−1} + 1{si=−1} · qP(si)1{pi=L} · qN (si)1{pi=L} .

Let api ,pi+1 be the compatibility indicator of two adjacent
states such that

api ,pi+1 = 1{pi=Nm , pi+1=Nm+1,1≤m≤146} + 1{pi=L,pi+1=N1} + 1{pi=L,pi+1=L}.

The objection function can therefore be expressed as

L = p1(p1)
∏n

i=2

pi(pi)api−1,pi .

Define

ℓk,z = max
p1 ···pk ,pk=z

p1(p1)
∏k

i=2

pi(pi)api−1,pi .

Then, the maximum of objection function can be obtained
by iteration

ℓk+1,j = max
z

ℓk,z · pk+1(j) · az,j,
max

p
L = max

j
ℓn,j.

Accordingly, π∗ can be obtained through dynamic program-
ming (Fig. 2C). We start by building an l×148matrix V. Line i cor-
responds to Xi, the i-th base of the molecule. Column 1
corresponds to the linker, and the other columns (from Column
2 to Column 148) correspond to N1, N2, …, N147, separately.
Initialize V[1, 1] = p1(L), and V[1, j] = p1(Nj−1), 2≤ j≤148.
Elements in Line i(2≤ i≤n) are then calculated iteratively. For
Column 1, the element V[i, 1] is set as max{V[i−1, 1], V[i−1,
147]}qP(si) if Xi is cytosine of GpC, or max{V[i−1, 1], V[i−
1, 147]} otherwise. For Column j (2≤ j≤148), V[i, j] is set as V[i−
1, j−1]qN(si), or V[i−1, j−1] otherwise. When updating an ele-
ment, we record the position of the previous element that leads
to the maximal value and store the position as a pointer. After up-
dating all elements, the maximal element in the last line is found
(elements that equal to 1 are not considered), and the nucleosome
occupancy detection is completed through the backtracking of
pointers. All calculations are performed in log scale to avoid round-
ing error.

We evaluated the accuracy of nucleosome occupancy detec-
tion (NP-SMLR) through simulation tests under different nucleo-
some coverage and GpC frequency (Fig. 2D). In detail, DNA
sequence (3-kb length) was simulated with randomly assigned
GpC sites at a given frequency. Lengths of linkers between nucleo-
somes were sampled independently and sequentially. Each time,
the linker length was sampled from the normal distribution
N(n1, g21) with probability τ, and N(n2, g22) with probability 1− τ,
corresponding to regular nucleosome array and open region with
specific biological functions, respectively. We set ν2 > ν1 and
g22 . g21. Nucleosomes were then placed on the DNA sequence,
with their distance being set as the above simulated linker length.
Methylation scores for GpC sites occupied by nucleosomes were
generated based on the score distribution of negative control
data, whose density function was qN (·). For GpC sites within link-
ers, qP (·) was used instead. NP-SMLR was applied on the simulated
sequence. Denote Ẑi and Zi as the predicted and real indicators of
whether the i-th base locates in nucleosome or not, respectively.
The accuracy was defined as

A = 1
l

∑l

i=1

1{Ẑi=Zi}
,

where l is the length of the simulatedDNA sequence. In simulation
tests, we set ν1 = 15, γ1 = 5, γ2 = 10, τ=0.1. We set ν2 as 15, 50, 100,
200, 300, 400, 500, and 600, respectively, to achieve different nu-
cleosome coverage (defined as the proportion of bases covered by
nucleosomes). For each parameter setting, the above simulation
was carried out 1000 times.

Bulk-cell level nucleosome occupancy analyses based on

MeSMLR-seq data

The genomic coordinates of all nucleosomes predicted by
NP-SMLR at the single-molecule level were pooled and subjected
to iNPS software (version 1.2.2) (Chen et al. 2014) with default pa-
rameters to generate bulk-cell level nucleosome occupancy profiles
and to call nucleosome peaks.

The nucleosome occupancy profiles were used to generate
Figure 3, A and B, Figure 4, D and E (upper panel), Supplemental
Figure S5, A and B, and Supplemental Figure S6, D and E. The
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nucleosome peaks called by iNPS were used for the comparison
with MNase-seq (Fig. 3C).

Measurement of nucleosome positioning heterogeneity

The heterogeneity of nucleosome positioning was measured by
the variation of the +1 nucleosome positioning relative to the
TSS across different cells (Fig. 4B; Supplemental Fig. S2A). For
each molecule/cell, we first defined the nucleosome whose center
was located downstream from the TSS and closest to the TSS as the
+1 nucleosome. Next, we sorted the distances between the +1 nu-
cleosome and the TSS and removed the upper 10% values for ro-
bustness. The standard variance of the remaining values was
used to represent the heterogeneity of nucleosome positioning
for each gene.

Measurement of nucleosome spacing uniformity

The uniformity of nucleosome spacing was measured by the vari-
ation of the distance between adjacent nucleosomes (i.e., the
length of linker region) (Fig. 4C; Supplemental Fig. S2B). For
each gene, the molecules that fully covered the region (from 500
bp upstream of to 100 bp downstream from the TSS) were chosen.
For each molecule, we calculated the lengths of all linker regions
that were located in the region “−500, +100”. Then, we calculated
the absolute deviation of linker length pair-wisely. The sum of the
deviation valueswas divided by the number of linker pairs. The ob-
tained value, which described the variation of nucleosome dis-
tance, was namely the nucleosome spacing uniformity.

Chromatin accessibility mapping at the single-molecule level

based on MeSMLR-seq data

Based on the methylation scores of all GpC sites per molecule, we
detected accessible chromatin regions along themolecule. Given a
singlemoleculeX1X2…Xl, whereXi is the i-th base, we defined the
interval from Xi to Xj as an accessible region if: (1) Xi and Xj were
adjacent GpC sites; (2) the corresponding methylation scores si
and sj were >0.5; and (3) the distance between Xi and Xj was
<100 bp. The continuous accessible regions were merged. Given
an accessible region, the chromatin accessibility score was defined
as the median methylation score among all GpC sites within this
region.

In this study, we only considered the accessible regions with
the length ≥100 bp for each molecule. A genome-wide chromatin
accessibility profile was generated through merging accessible re-
gions of all molecules. The chromatin accessibility profile was
used to generate Figure 5, A and B, Figure 6 (upper panel),
Supplemental Figure S4, A and B, Supplemental Figure S5C,
Supplemental Figure S6, B and C, and Supplemental Figure S7A.

Chromatin accessibility peak calling at the bulk-molecule/-cell

level based on MeSMLR-seq data

We defined significantly accessible genomic regions as described
in the previous study (Grünberg et al. 2016). Let Gi be the i-th
base of the genome. Denote X(1)

i , X(2)
i , . . . , X(M)

i as the bases from
M sequencing molecules that covered Gi, and s(1)i , s(2)i , . . . , s(M)

i as
the corresponding methylation scores if Gi is a GpC site. Define
ri = 1/M

∑M
j=1 1{s(j)i .0.5}, which is the ratio of methylated bases

(methylation score >0.5), and denote �r as the average of ratios of
all GpC sites.We defined the interval betweenGi andGj as a signif-
icantly accessible region if: (1) Gi and Gj were adjacent GpC sites;
(2) ri . 1.5�r, and rj . 1.5�r; and (3) the distance between Gi to Gj

was <100 bp. The continuous accessible regions were merged to

generate a longer accessible genomic region (referred to as “chro-
matin accessibility peak”).

In this study, we only considered the peaks with the length
≥100 bp. For sequencing molecules aligned to forward and reverse
genomic strands, we defined chromatin accessibility peaks sepa-
rately. The overlapped peaks between the forward and reverse
strands were used for the comparison with two existing methods
(i.e., ATAC-seq and DNase-seq) (Fig. 5C).

Definition of gene promoter region and measurement of gene

accessibility

To quantitatively measure the accessibility of genes, we first de-
fined the promoter region for each gene. Briefly, chromatin acces-
sibility peaks (including both forward and reverse strands) were
called using MeSMLR-seq data for each biological sample. For
each biological sample, the overlapped peaks between forward
and reverse strands for MeSMLR-seq were merged together. Next,
we combined themerged peaks of MeSMLR-seq from all biological
samples and the overlapped peaks between two biological repli-
cates of DNase-seq. For each gene, (1) if there was only one peak
that was located within the upstream 500 bp and downstream
100 bp of the TSS (named “−500, +100” region), the peak was de-
fined as the promoter region; or (2) if there were multiple peaks
that were located in the “−500, +100” region, the peak that had
the longest overlap was defined as the promoter region; or (3) if
there was no peak locating in the region “−500, +100”, the region
“−500, +100” was defined as the promoter region.

At the single-molecule level, the accessibility score of a gene
was calculated as the median methylation score among all GpC
sites within the promoter region. For all molecules covering the
promoter of a given gene, we categorized them into two chromatin
statuses: “open” if the accessibility score was >0.5; “closed” other-
wise. The defined promoter region and the corresponding accessi-
bility score were used to generate Figure 5E, Figure 6 (upper panel),
Figure 7, Figure 8, Supplemental Figure S6A, and Supplemental
Figure S7D.

Analyses of dynamic gene expression and chromatin accessibility

among three carbon sources

Differentially expressed genes were identified using Cuffdiff (ver-
sion 2.2.1) (q-value <0.01) (Trapnell et al. 2010) between glucose
(Glu) and other two carbon sources, galactose (Gal) and raffinose
(Raf). Overall, there were 700 up-regulated and 682 down-regulat-
ed genes in Gal (Glu vs. Gal) and 605 up-regulated and 727 down-
regulated genes in Raf (Glu vs. Raf). These differentially expressed
genes were used to generate Supplemental Figure S7, B–D. Gene
enrichment analyses in Supplemental Figure S7C were performed
using DAVID (version 6.8) (Huang da et al. 2009).

For the differential chromatin accessibility analyses, we first
calculated the bulk-cell-level chromatin accessibility as the ratio
of those with “open” status among the molecules that fully cov-
ered the gene promoter. For each gene, the differential chromatin
accessibility score was computed as the difference of bulk-cell-level
chromatin accessibility between two carbon sources (Glu minus
Gal for “Glu vs. Gal”; Glu minus Raf for “Glu vs. Raf”).

Data access

TheMeSMLR-seq data generated in this studyhave been submitted
to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA510813. The bulk-
cell RNA-seq and the single-cell RNA-seq data generated in this
study have been submitted to the NCBI Gene Expression
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Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE131702. The Sanger sequences data generated in
this study are summarized in Supplemental Table S5. The public
sequencing data used in this study are summarized in
Supplemental Table S6. The source code of NP-SMLR is in the
Supplemental Material (Supplemental_Code.zip) and is also avail-
able at https://github.com/Au-Lab/NP-SMLR.
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