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Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand
dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG) signal analysis is used to identify motion; however,
standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a
technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording
and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES) and volitional sEMG
combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part
protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a
universal template, called forearm electrode set (FELT), was built. Second, volitional and evoked movements were recorded
during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was
possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG
from the raw signal, which is highly important for closed-loop FES control.

1. Introduction

Neurological disabilities are caused by damage of the ner-
vous system (which includes the brain and spinal cord); this
damage results in the loss of capacity to move and manipu-
late things, especially if fine movements are required [1]. The
effects of many neurological conditions can vary greatly
from person to person, as well as from time to time for
the same person. People with neurological conditions, such
as a stroke, may present hand motor impairment and deficit
in motor execution, severe fatigue and/or weakness, impaired
hand dexterity, tremors, spasticity, abnormal muscle syn-
ergies, and deficit in motor planning and motor learning
[2]. Stroke survivors may have great difficulty to modulate

muscle activation, and their ability to span region is
curtailed [3].

Biomedical signals, such as surface electromyography
(sEMG), play a significant role in the measurement of the
electrical muscle contraction. Plus, its analysis is one of
the standard procedures used to identify muscle actions
in normal and pathologic conditions. sEMG signals can be
used for various applications, which include identifying neu-
romuscular diseases, controlling signals for orthotic or pros-
thetic devices [4], anticipating movements of the muscles [5],
controlling machines or robots, or detecting hand gestures to
improve the quality of life [6].

sEMG patterns during movements exhibit a great deal of
intersubject, intermuscle, and context-dependent variability.
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Understanding the sEMG interactions in hand movements is
a challenge [7]. Several researches have been directed to
determine the extent to which each muscle participates in
each synchronous and time-varying synergies for an individ-
ualized human hand motor pattern [8] or to predict the
sEMG patterns associated with static hand postures [9].
These studies show the importance of considering different
intensities and durations of sEMG bursts, temporal patterns,
strength of the muscle contraction [10], and muscle synergy
as a framework for sEMG patterns of hand postures.

sEMG patterns are used for neuromuscular biofeedback
[11], robot-aided [12] training, and neurorehabilitation, as
well as to control devices such as neuroprosthesis based on
functional electrical stimulation (FES), to mimic a neuro-
muscular function for both upper and lower extremities
[13], or to enhance hand motor recovery when physical ther-
apy alone is ineffective in stroke patients [14] or with spinal
cord injury [15].

Several techniques have been employed for addressing
human hand movement patterns from sEMG signal. Tech-
niques, such as an adaptive neuro-fuzzy inference system
integrated with a real-time learning scheme and time-
frequency features, have been used to identify hand motion
commands suitable for hand prosthesis control [16]. Ordinal
pattern analysis is used to describe corrections of sEMG
recordings during hand open and hand close states. The
results suggest that the mutual information analysis has
potential in identifying different hand movements [17]. Usu-
ally, wavelet transformations and artificial neural network
classifiers are used for hand movement analysis [10]. The
Hilbert-Huang transform is another technique used to
detect, measure, filter, and decompose sEMG signals in
order to identify patterns in time, frequency, or space or
the combination of flexion/extension arm movements. How-
ever, the sEMG patterns can present abnormal muscle syn-
ergies and be indistinguishable [18]. This fact could make
the classification in some stroke patients more difficult; for
example, a solution proposed in [3] is to use voice recogni-
tion as an auxiliary in a sEMG-driven actuated glove for
clinical therapy purposes.

Recognizing sEMG signals with the aim of controlling
assisting devices is not only concerned about feature extrac-
tion and classification of signals but the acquisition site is also
of major importance.

M-wave is an electrophysiological response evoked by
electrostimulation detected in standard sEMG. It has been
studied widely in order to verify the functionality of the
stimulation site measurement over the target muscle,
which closely relates to muscle fiber recruitment. This
electrophysiologically driven approach is expected to lead
to the identification of selective electrode configurations
of an array for functional movements [19]. However, find-
ing the best electrode configuration for sEMG recording to
get the right sequence for movement activation still repre-
sents a challenge.

This paper is related to the acquisition and analysis of
sEMG signals for active movements and to obtaining usable
hand patterns with simultaneous placing of recording and
stimulation electrodes on the forearm, for the eventual

control of a neuroprosthesis to aid in motor neurorehabilita-
tion of patients suffering from a stroke aftermath.

The presented technique is based on an array of
recording and stimulation electrodes on the forearm, used
to acquire sEMG signals from five hand motion patterns
from six able-bodied subjects, and the effects of this tech-
nique over functional electrical stimulation (FES) and voli-
tional sEMG combinations.

2. Methodology

2.1. Identification of sEMG Locations. The first step was to
find the best electrode positioning for sEMG recording.
This position was found at the belly of the muscle, on the
upper part of the forearm, which is formed by the following
muscles: brachioradialis, palmaris longus, flexor carpi radia-
lis, flexor carpi ulnaris, extensor carpi radialis longus, and
extensor carpi ulnaris. Stimulation is performed at the ends
of the same muscles.

In order to make sure that the electrodes were placed on
the same positions for the different trials for each subject, a
personalized template was made. This template was created
as follows: for bipolar channel placement, eight spots, where
the electrodes would be placed, were allocated and marked
on a piece of acetate paper. Then, the unique physical charac-
teristics of the individual and the positions of five stimulation
bipolar electrodes were marked on the same paper. Once the
places were allocated and the personalized template was
designed, sEMG acquisition was carried out.

Skin cleaning

Electrodes template
for sEMG location

Recording and stimulation
electrodes placement

Signal acquisition

OpenViBE
Virtual platform

Rest—10 s
Hand open/power grasp/fine pinch/
pronation/supination—10 s

10× repetitions

Raw sEMG signal

Signal processing

Functional
electrical
stimulation

Figure 1: Electrode placement using a personalized template to find
sEMG signal for acquisition task and stimulation location. After
cleaning the skin and placing the electrodes, the isometric
contraction (hand open, power grasp, fine pinch, pronation, and
supination) was performed by the subject during 10 seconds, with
10 seconds for rest. The task was repeated 10 times. A session
included a task for each movement.
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2.2. sEMG Signals Acquisition. Six able-bodied subjects were
included for the acquisition of sEMG signals, their age
ranged from 21 to 33 years old, three males and three
females. The subject was sitting in a comfortable position
with his/her right arm supinated and leaning on the table.
The subject was asked to perform an isometric contraction
for five movements: hand open, power grasp, fine pinch,
pronation, and supination. While contraction was active,
the forearm muscles that participate in the motion were
palpated and located.

The subject’s skin was cleaned using an alcohol swab in
order to reduce impedance and have a better coupling for
the skin-electrode interface. Afterwards, the template was
placed on the subject’s forearm and marked; these were the
spots where the electrodes should be placed. Figure 1 shows
this procedure. The electrodes were kept in contact with the
skin with a tubular mesh; this also reduced artifacts due to
cable movements.

Electrodes were connected to an open-source platform
called OpenViBE. This acquired the sEMG signal through a
compatible open hardware acquisition device (OpenBCI)
which was connected to a designer space, where an algorithm
was designed for trial tasks (Figure 2).

OpenViBE configuration was 24 for gain, 250Hz for
sampling rate, and eight channels for sEMG. The subject
was asked to perform the movement shown in a cue image
while it was on the screen. The task started with a rest
of 10 seconds, and it continued with a ten-second isometric
contraction of hand open, power grasp, fine pinch, prona-
tion, or supination, depending on the trial. Cue images were
shown alternatively until the subject completed ten

Clock stimulator Acquisition client

Stream synchronization

Generic stream writer
In|Out|Set

Signal display
In|Out|Set

CSV file writer
In|Out|Set

(a)

Clock stimulator Clock stimulator

Stimulation multiplexer
In|Out|Set

Display cue image
In|Out|Set

Display cue image
In|Out|Set

Generic stream writer
In|Out|Set

(b)

Figure 2: OpenViBE flow diagram used to acquire raw sEMG signal (a); image cue synchronization control (b). This algorithm completes a
movement task.

Raw sEMG signal

Butterworth filter
order 2.59-61 Hz

Application of
Daubechies
wavelet level-8

Application of
Haar wavelet 
level-8

BaselinesEMG signal–baseline

sEMG envelope

Figure 3: sEMG signal processing algorithm. The signal was filtered
for 60Hz, baseline was subtracted through DWT, and the envelope
signal that selected the active pattern was obtained.

Table 1: Stimulation electrode positions for each of the five target
movements.

Target movement Electrode position

Power grasp
Finger and wrist flexors. Flexor carpi
radialis, flexor carpi ulnaris, flexor

digitorum superficialis.

Lumbrical grip
Ulnar nerve. Flexor pollicis longus, flexor

digitorum superficialis.

Hand open
Finger and wrist extensors.

Extensor carpi radialis. Extensor digitorum.

Pronation Pronator teres.

Supination Supinator.
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repetitions of the motion. A session was considered com-
pleted when two movement tasks were finished (Figure 1).
All subjects completed two sessions for each of the men-
tioned motions. The tasks of sEMG recordings were saved
as .csv files that included the information of eight chan-
nels and a time vector.

From all the personalized positions, which were based on
common regions found for each subject, a universal template
that kept the array for recording and stimulation electrodes
was designed. It was called forearm electrode set (FELT).

2.3. Preprocessing, Selection, and Feature Extraction. Each
sEMG record was imported into MATLAB® environment
for processing. From the .csv files, information of eight chan-
nels and a time vector was extracted. As seen in Figure 3, the
signal was cleaned from line interference at 60Hz by using a
Butterworth filter, order 2, with a 59 to 61Hz bandwidth.

After acquisition, data were conditioned using discrete
wavelet transforms (DWT). An eight-level decomposition
using mother wavelet Daubechies-4 was applied, and the
reconstructed signal was subtracted in order to eliminate
baseline drift [20]; this was equivalent to filter a 0.7Hz signal.

Then, the DWT was applied, again, to an eight-level
decomposition, but this time a mother wavelet Haar was used
in order to find the envelope of the signal, which was
obtained from its reconstruction. This envelope was used
to find the parts of the sEMG signal that represented a
movement, in this case open hand or power grasp; then
it was converted to a logic signal (Figure 3).
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Recording and stimulation
electrodes placement using FELT
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OpenViBE
Virtual platform

OpenViBE
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OpenViBE
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Functional
electrical
stimulation
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1 s

1.8 s
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Figure 4: sEMG signal acquisition for tasks (hand open, power grasp, fine pinch, pronation, and supination) with FES stimulation. An
isometric contraction was performed by the subject for each part of the trial. The motion was repeated 5 times per part. A session
included 5 repetitions of volitional contraction, followed by 5 repetitions of sEMG evoked by FES, and finally, 5 repetitions of volitional
contraction plus the evoked sEMG by the FES stimulation.

Table 2: Stimulation parameters for each subject and target
movement.

Subject Movement
Pulse

amplitude
(mAp)

Pulse
width
(μ s)

Pulse
frequency

(Hz)

On/Off
time (s)

1

PG 10 300 30 1/3

LG 10 300 30 1/3

HO 10 500 30 1/3

SU 10 500 50 1.8/2.2

PR 10 500 30 1.8/2.2

2

PG 10 300 30 1/3

LG 12 300 30 1/3

HO 10 300 30 1/3

SU 10 300 50 1.8/2.2

PR 10 300 30 1.8/2.2

3

PG 10 300 30 1/3

LG 8 400 30 1/3

HO 12 300 30 1/3

SU 10 500 50 1.8/2.2

PR 10 500 30 1.8/2.2

PG: power grasp; HO: hand open; SU: forearm supination; PR: forearm
pronation; LG: lumbrical grip, applied through the RehaStim 2 electrical
stimulator.
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In order to find the characteristic features of the five
target movements, the following parameters were calculated:
mean absolute value—MAV (1), wave length—WL (2), zero
crossing—ZC (3), standard deviation—SD (4), integral of
absolute value—IAV (5), variance—V (6), and slope sign
change—SSC (7).

MAV = 1
n
〠
n

i=1
xi , 1

WL = 〠
n

i=1
xi − xi−1 , 2

ZC = 〠
n−1

i=1

1, xi+1 < 0, xi > 0,
1, xi+1 > 0, xi < 0,
0,

3

SD = 1
n − 1〠

n

i=1
xi − x 2, 4

IAV = 〠
n

i=1
xi, 5

V = 1
n − 1〠

n

i=1
xi − x 2, 6

SSC =
1, xi > xi+1, xi > xi−1,
1, xi < xi+1, xi > xi−1,
0, else

7

From these parameters, a subset was selected for clas-
sification based on separability between movements and
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Figure 5: Subject 1, open hand/rest. Comparison of sEMG signal before and after processing using DWT. (a) Raw sEMG signal containing
baseline drift and 60Hz noise. (b) Processed sEMG signal drift-free and visible active and rest patterns.
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Figure 6: For subject 1, (a) open hand and (b) power grasp, sEMG processed and envelope signal obtained for active pattern selection.
Example for channels 1 and 2 of 8.
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Figure 7: Analysis of window length for (a) 20ms and (b) 3 s for all features (MAV,WL, SD, IAV, and V) and 8 channels, using data from the
6 subjects.
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classification accuracy. The new set of parameters were
used for classification.

2.4. Classification. For the classification of sEMG signals,
feature and window length analysis were performed for the
eight channels. The sEMG envelope signal was used for selec-
tion of active patterns at the processing stage. From this ~10 s
of sEMG activity, windows of 20ms, 50ms, 100ms, 300ms,
and 500ms and 1 s and 3 s length, with a 25% overlap, were
used to calculate the seven features described in (1), (2), (3),
(4), (5), (6), and (7).

A linear discriminant analysis (LDA) was executed for
sets of two movements following the process described
ahead, in this case for hand open and power grasp:

(1) For each subject and each analysis window value, the
seven features were extracted for the eight channels;
for hand open task and power grasp task.

(2) The resulting 56 features obtained from each window
were considered as a single trial for each movement.

(3) All available trials from the first session (one task
per movement) of all subjects were concatenated
movement-wise and randomized afterwards.

(4) Label classes for each trial were set as 1 for hand open
and 2 for power grasp.

(5) For each window length value, the analysis was
performed ten times.

(6) All trials were divided in 70% for a training set and
30% for a testing set.

(7) A LDA classifier was trained with the training set.

(8) The trials on the testing set were classified with the
LDA classifier, and its classification accuracy was
calculated as the ratio of correctly classified trials
versus the total number of trials.

All subjects’ data from the first session (combinations of
features, channels and window lengths) that obtained a clas-
sification accuracy higher than 90% were chosen as the subset
of features used to train the final LDA classifier. Data from
the second session, which consisted of hand open and power
grasp for each subject, was processed in the same way and
was used to test the LDA classifier.

2.5. sEMG Recording and FES Application: Acquisition and
Processing. For the trials of sEMG signal acquisition during
FES application, the acquisition was performed using the
OpenViBE platform and OpenBCI device with the same con-
figuration mentioned above. For FES application, a RehaStim
2 electrical stimulator (Hasomed Gmbh, Germany) was used
and programmed in an interface developed in Simulink®/
MATLAB Environment.

Three able-bodied subjects out of the six that performed
the previous trials without FES, age range from 22 to 34
years old, two males and one female, were included for
sEMG acquisition. Their skin was cleaned with alcohol and

the FELT was placed accordingly. For each target motion,
there was a pair of self-adhesive stimulation electrodes
(Axxelgard, USA) placed within the FELT, positioned as
presented in Table 1.

The subject was asked to perform an isometric contrac-
tion for five movements: hand open, power grasp, fine pinch,
pronation, and supination, but this time the trial consisted of
three parts (Figure 4):

(1) Five isometric contractions of the selected move-
ment, each lasting one second with three seconds rest
(except pronation and supination: 1.8 active to 2.2
second rest)

(2) Five FES stimulations of the selected movement, each
lasting one second with three seconds rest

(3) Five isometric contractions during FES stimulations
of the selected movement, each lasting one second
with three seconds rest

The algorithm in Figure 4 was performed once for each
movement and subject. The stimulation parameters changed
for each movement according to Table 2.

The new records were analyzed for processing the sEMG
data because these signals included evoked and/or volitional
sEMG as well as the FES stimulus. In order to extract the
sEMG evoked/volitional sEMG from the stimulus artifact, a
comb-type filter was applied to eliminate the 30 or 50Hz sig-
nal of the stimulus, by means of a Butterworth filter, order
two, with a 29 to 31Hz or 49 to 51Hz bandwidths, accord-
ingly. All data processing is designed and performed in
MATLAB environment. The parameters calculated for these
signals are MAV (1) and root mean square (RMS) (8) to
compare sEMG of evoked and volitional and evoked signals.

RMS = 1
n
〠
n

i=1
xi

2 8

3. Results and Discussion

A personalized template was designed for each subject.
These templates were used to successfully locate muscle
sites and place electrodes for the second trial, with the

Table 3: Analysis of the combinations of selected channels and
features with best performance during training, for each window
length.

Window
length (s)

Channels Features
Classifier

accuracy (%)

0.02 1–3 WL, SD 80.69

0.05 1–3 WL, SD 88.23

0.10 1–3 WL, SD, V 91.56

0.30 1–3, 7-8 MAV, WL, SD, V 93.86

0.50 1–3, 7 MAV, WL, SD 95.83

1.00 1–4, 7-8 MAV, WL, SD, V, IAV 94.68

3.00 1–3, 7-8 MAV, WL, SD, IAV 95.14

The bold rows correspond to classification accuracies above 95%.

7Journal of Healthcare Engineering



advantage of a tenfold reduction in location time, approx-
imately. Then, the FELT was designed as a universal array
from all the individual templates.

The main purpose of the FELT was to simplify recording
and stimulation electrode placing, for a future FES-based
neuroprosthesis clinical application for stroke aftermath
rehabilitation at upper limb and hand. There are not stan-
dardized designs for sEMG recording and FES application.
The sEMG signals acquired for open hand and power grasp
were used to evaluate the right position of the recording elec-
trodes at the FELT.

One of the objectives of this work was to allocate all
electrodes keeping the balance between having available

positions to acquire eight sEMG channels and enough
place for five bipolar stimulation channels. It is important
to mention that since the forearm is a small area, it was
difficult to find the right allocation for all the electrodes
(stimulation electrodes are 5×5 cm and recording electrodes
are 1 cm in diameter) and still have useful signals that could
be processed and classified.

Due to this critical disposition, the electrode locations
from the personalized templates were assessed through the
sEMG signals obtained by means of signal processing and
classification of movements.

A baseline drift-free signal was obtained from the raw
sEMG signal during the preprocessing stage (Figure 5). All
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Figure 8: Subject 1 using FELT: (a) channels 1 and 2 for open hand and (b) channels 1 and 2 for power grasp.
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Figure 9: (a) Power grasp sEMG signal recorded from trial (algorithm Figure 4), channel 1. Baseline has been eliminated using
algorithm of Figure 2. (b) Spectogram of sEMG signal, where activity in the 30Hz band for the 2nd and 3rd sets of motions and their
harmonics can be observed.
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sessions from the six subjects were put through this process-
ing. sEMG signal in Figure 5(a) has a large baseline, while
Figure 5(b) shows a cleaner sEMG signal despite original
baseline drifting; also, the differences between each contrac-
tion repetition are clearer.

The preprocessing analysis and processing method
showed that no matter the 60Hz noise and drifting base-
line, the signal could be isolated for feature extraction and
classification. It is important to mention that if the acquisi-
tion signal was less contaminated, this process could be fas-
ter and closer to real time for control applications, which
emphasizes the need to design and build a specialized
acquisition stage in order to start with the best version of
a raw sEMG signal (which can also consider a configura-
tion that allows the simultaneous application of FES, for
volitional sEMG extraction).

Figure 6 shows an example of two of the eight sEMG
channels processed and the envelope signal obtained, which
shows the active sEMG sections selected. These correspond
to open hand and power grasp movements.

From the analysis of the combinations of features, chan-
nel, and window length for all subjects, it was found that only
5 features (MAV, WL, SD, IAV, and V) yield enough infor-
mation for classification, above 90% accuracy (Figure 7). In
Figure 7(b), it can be observed that when the length of the
window was larger, for features like MAV or SD, it was easier
to find a clear separation of the value of the parameters. Even
the smaller windows, i.e., 20ms, (Figure 7(a)) performed with
an accuracy of 80.69%. Then, it is important to find a com-
promise between window length and classifier performance.

From this analysis, using 9 out of 10 repetitions of each
movement per session and considering session 1 for training
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Figure 10: Power grasp, subject 1, channel 1, sEMG signals of the 3 parts of the trial. (a) Set of 5 isometric contractions of the selected
movement, each lasting 1 second with 3 seconds rest. (b) 5 FES stimulations of the selected movement, each lasting 1 second with 3
seconds rest. (c) 5 isometric contractions during FES stimulations of the selected movement, each lasting 1 second with 3 seconds rest.
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and session 2 for testing, it was found that MAV,WL, and SD
features and a 0.50 seconds’ window length were the best
combinations for the classifier to perform with only 4
channels (CH1, CH2, CH3, and CH7) at a 95.83% classifica-
tion accuracy. The results from all combinations can be seen
in Table 3.

This study and analysis was performed to minimize
inputs for the classifier, with the aim of getting a closer
approach to a real-time application. This analysis is a classi-
fication method for multisubjects, used to generate a
sEMG-driven control for a FES neuroprosthesis application.

An example of the sEMG signals obtained for subject 1
using FELT, for channels 1 and 2, is shown in Figure 8. It
can be observed that even though the signal was noisier for
this session, the processing algorithm was still able to find
the active sEMG sections.

Figure 9 shows the signal resulting from the sEMG
(evoked/volitional) and FES stimulus signal acquisition using
the FELT.

Figure 10 shows each set of repetitions of the 3 parts
of the trial. The frequency spectrum and a 3D spectrogram
are presented.

Figure 11 shows the sets of contractions for sEMG evoked
by FES and those from a volitional sEMG contribution used
in order to compare the effects of both conditions.

The RMS and MAV values for each repetition were
calculated; Table 4 shows an example of these values.

4. Conclusions

The design of a personalized template presented in this
paper replicates the sEMG signal between sessions. Also,
the forearm electrode set (FELT) resulted from the need
to find the correct place for eight sEMG bipolar channels

and five bipolar stimulation channels (larger electrodes,
5×5 cm) in the forearm, which is a small area for so many
electrodes (a total of 27).

Signal processing yielded a very clean signal that pre-
served sEMG components by using DWT and allowed to dif-
ferentiate between movements through feature extraction
and classification.

We found an optimal combination between window
length and number of channels and features, at 0.5 seconds,
with four channels and three features (MAV, WL, and SD),
which allowed a more efficient classification in terms of time
and channels.

The stimulation parameters were selected in order to
generate a complete movement without subject discomfort;
however, range of movement is yet to be evaluated. As for
signal processing, knowing the stimulus frequency before-
hand allows the use of a filtering technique feasible for offline
and online application. From Figure 10, it is evident that a
natural sEMG contraction activates the slow fibers of the
muscle, but in the cases of FES application (Figures 10(b)
and 10(c)), the fast twitch fibers have a larger contribution

Table 4: RMS and MAV values obtained for 3 able-bodied subjects,
comparison between sEMG evoked by FES and the combination of
volitional and evoked by FES signals. Values obtained from motion
of power grasp, channel 1.

Subject Gender
sEMG evoked by FES

Volitional sEMG
+ sEMG evoked by FES

RMS
(mV)

MAV
(mV)

RMS
(mV)

MAV
(mV)

1 Male 147.5061 105.6109 147.4792 104.6412

2 Male 159.2150 109.0613 169.7005 126.7346

3 Female 306.5072 200.5491 215.4075 138.3950
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Figure 11: Comparison of sEMG signals between 2 parts of the trial involving FES application. (a) Raw signal including FES (top) and sEMG
signal evoked by FES free of the stimulus (bottom). (b) Raw signal including volitional sEMG and FES (top) and volitional sEMG signal and
evoked by FES free of the stimulus (bottom).
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to the sEMG record. Additionally, the evoked and voli-
tional sEMG with FES were similar; however, it should
be considered that the sample was small and that all sub-
jects were able-bodied. Therefore, a protocol with a bigger
sample is needed and it still remains to be seen if these
results hold for patients.

Using the FELT, it was possible to perform sEMG
recording and FES simultaneously. Moreover, it was possi-
ble to extract the volitional and evoked sEMG from the
raw signal, which was accomplished without blanking the
signal allowing better control techniques to be implemented.
This is highly important for closed-loop FES control.

In the evoked/volitional sEMG and FES trials, the FES
stimulus was successfully eliminated from the recorded sig-
nal leaving a usable sEMG signal for FES control and other
applications as orthosis, prosthetics, neuroprosthesis, and
other rehabilitation and assistive devices.
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