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Abstract: Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular
production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and
pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in
pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in
immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum
levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding
increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of
the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19.
Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels,
as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the
suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets
revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in
the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19.
Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its
pharmacological targeting might represent an additional therapeutic option, both during and after
hospitalization.

Keywords: COVID-19; ARDS; cytokine storm; vascular dysfunction; pulmonary fibrosis; autotaxin
(ATX; ENPP2); lysophosphatidic acid (LPA); dendritic cells (DCs)
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1. Introduction

The leading symptom of COVID-19, beyond cough and fever, is hypoxemia, leading
to dyspnea in severe cases, attributed to impaired lung mechanics and/or vasoconstric-
tion [1,2]. Endothelial dysfunction is a major characteristic of COVID-19 [3], shared with
hypertension, diabetes, and obesity, the most common comorbidities that are associated
with poor prognosis [1,2]. The respiratory epithelial cell damage that follows viral infection
and replication stimulate, depending on the underlying genetic and metabolic context, a
hyperinflammatory state denominated “cytokine storm” [4]. The excessive production of
pro-inflammatory cytokines, such as TNF and IL-6, further induces endothelial damage
and lung injury, and its more severe form, Acute Respiratory Distress Syndrome (ARDS),
that can result in respiratory and/or multi-organ failure and death [5].

A subset of surviving COVID-19 ARDS-like patients will develop a fibroproliferative
response characterized by fibroblast accumulation and ECM deposition [6], also evident in
postmortem histopathological analysis of the lungs of COVID-19 patients [7]. Moreover,
many discharged COVID-19 patients present with abnormally pulmonary architecture and
functions [8–12], suggesting persisting fibrotic abnormalities, pending long-term follow
up studies. Single-cell RNA sequencing (scRNAseq) analysis and transcriptional profiling
indicated similarities in expression profiles between idiopathic pulmonary fibrosis (IPF) and
COVID-19 [13,14], while CoV-2 infection has been suggested to stimulate the expression
of major pro-fibrotic factors including TGFβ [15]. Vice versa, patients with interstitial
lung diseases (ILD) had an increased risk for severe COVID-19 and poor outcomes (ICU
admittance, death) following CoV-2 infection [16–18].

Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D that can be found in
most biological fluids, including blood and bronchoalveolar lavage fluid (BALF), largely
responsible for the extracellular production of lysophosphatidic acid (LPA), a growth
factor-like signaling phospholipid. Increased ATX expression and LPA signaling has been
reported in cancer as well as in chronic inflammatory diseases [19], including IPF [20,21].
Genetic and pharmacologic studies have further uncovered a therapeutic potential for
ATX in IPF [20,22–24], leading to phase III clinical trials [25]. Given the associations of
COVID-19 with pulmonary fibrosis, the pro-fibrotic properties of ATX, as well the many
reported LPA effects on pulmonary cells and especially the vasculature [26], in this study
we explored a possible association of ATX with COVID-19. In this context, we quantified
ENPP2 mRNA levels in nasopharyngeal swabs and ATX protein levels in the sera of
two cohorts of COVID-19 patients, while we performed a large-scale analysis of recently
published scRNAseq COVID-19 datasets.

2. Results
2.1. Increased ENPP2 mRNA Levels in Nasopharyngeal Swab Samples from COVID-19 Patients

As viral infections have been reported to stimulate ENPP2 mRNA expression [27,28],
and to examine if CoV-2 infection has similar effects, we first quantified ENPP2 mRNA
levels with Q-RT-PCR in nasopharyngeal swab samples (Table 1). A significant increase was
found in ENPP2 mRNA expression in mild and severe COVID-19 patients, as compared
to non-infected subjects (Figure 1). Therefore, CoV-2 infection stimulates ENPP2 mRNA
expression in the respiratory epithelial or immune cells that compose the nasopharyngeal
swab samples.
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Table 1. Increased ENPP2 mRNA expression in nasopharyngeal swabs from COVID-19 patients compared to healthy,
non-infected controls.

Negative Healthy Positive Mild Positive Severe/Critical
Number of patients (n) 21 21 21

ATX (2-∆∆Ct, mean ± SD) 2.15 ± 1.37 5.38 ± 2.34 **** 5.76 ± 2.18 ****
Sex

Male
Female

Not recorded

8 (38.09%)
13 (61.9%)

0

10 (47.6%)
9 (42.8%)
2 (9.52%)

17 (80.95%)
4 (19.04%)

0
Age (years, mean ± SD) 50.15 ± 20.86 37.78 ± 11.89 63.38 ± 17.23
Statistical significance was assessed with one-way ANOVA followed by Bonferroni post hoc correction; **** denotes p < 0.0001. ATX values
are presented at Figure 1.
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patients (n = 21) and the control group (n = 21). The horizontal dotted line indicates the optimal 
threshold value (cut-off). Data are represented as box plots; line in the middle, median; box edges, 
25th to 75th centiles; whiskers, range of values. p values were calculated with the non-parametric 
Mann–Whitney U test. (Β) ROC curves were generated after merging the results for the two positive 
groups (mild and severe/critical), and AUC, 95% CI, p values, and cut-off points with their specific-
ity and sensitivity were calculated. The dotted line (in red) represents perfect chance (positive like-
lihood ratio=sensitivity/(1-specificity) =1). Positive mild versus negative samples: * p = 4 × 10−6, pos-
itive critical/severe versus negative samples: ** p = 2.92 × 10−7. 

2.2. Increased Serum ATX Protein Levels in Severe COVID-19 Patients 
To examine if systemic levels of ATX are possibly increased upon COVID-19, ATX 

was quantified with an ELISA kit in the serum of COVID-19 patients hospitalized at the 
Evangelismos University Hospital (Table 2; completely independent from cohort/Table 
1). The cohort consisted of both WARD (n = 47; no Dex treatment), as well as of Intensive 
Care Unit (ICU) patients, which were further separated in patients receiving dexame-
thasone (Dex) treatment (n = 37) or not (NO Dex; n = 32). A large proportion of patients 
suffered from comorbidities and were receiving a variety of medications prior to admis-
sion, while COVID-19-targeted treatment included azithromycin, chloroquine, and lop-
inavir/ritonavir in different combinations per WHO recommendations at that time (Table 
2). In comparison with WARD patients, ICU patients were hypoxemic (low ratio of arterial 

Figure 1. Increased ENPP2 mRNA expression in nasopharyngeal swab samples from patients with
mild or severe/critical COVID-19. (A) ENPP2 mRNA values (mean 2−∆∆Ct) from the two groups
of patients (n = 21) and the control group (n = 21). The horizontal dotted line indicates the optimal
threshold value (cut-off). Data are represented as box plots; line in the middle, median; box edges,
25th to 75th centiles; whiskers, range of values. p values were calculated with the non-parametric
Mann–Whitney U test. (B) ROC curves were generated after merging the results for the two positive
groups (mild and severe/critical), and AUC, 95% CI, p values, and cut-off points with their specificity
and sensitivity were calculated. The dotted line (in red) represents perfect chance (positive likelihood
ratio=sensitivity/(1-specificity) =1). Positive mild versus negative samples: * p = 4 × 10−6, positive
critical/severe versus negative samples: ** p = 2.92 × 10−7.

2.2. Increased Serum ATX Protein Levels in Severe COVID-19 Patients

To examine if systemic levels of ATX are possibly increased upon COVID-19, ATX
was quantified with an ELISA kit in the serum of COVID-19 patients hospitalized at the
Evangelismos University Hospital (Table 2; completely independent from cohort/Table 1).
The cohort consisted of both WARD (n = 47; no Dex treatment), as well as of Intensive Care
Unit (ICU) patients, which were further separated in patients receiving dexamethasone
(Dex) treatment (n = 37) or not (NO Dex; n = 32). A large proportion of patients suffered
from comorbidities and were receiving a variety of medications prior to admission, while
COVID-19-targeted treatment included azithromycin, chloroquine, and lopinavir/ritonavir
in different combinations per WHO recommendations at that time (Table 2). In compar-
ison with WARD patients, ICU patients were hypoxemic (low ratio of arterial oxygen
partial pressure to fractional inspired oxygen; PaO2/FiO2), lymphopenic (low lymphocyte
numbers), and had increased LDH levels (Table 2), all three suggested as disease severity
markers.
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Table 2. Clinical characteristics and laboratory data of COVID-19 patients hospitalized at the Evangelismos general hospital.

WARD No Dex ICU No Dex ICU + Dex
Number of patients (n) 47 37 32

ATX (ng/mL, mean ± SD) 310.32 ± 98.85 * 443 ± 172.90 246.15 ± 73.74 *
Sex

Male
Female

33 (70.21%)
14 (29.78%)

31 (83.78%)
6 (16.21%)

22 (62.5%)
10 (31.25%)

Age (years, mean ± SD) 54.63 ± 15.46 63.54 ± 10.89 65.5 ± 10.7
Comorbidities n (%)

Hypertension
Diabetes

Coronary artery disease
COPD

Asthma
Hyperlipidemia

Hepatitis

13 (27.65%)
4 (8.51%)
8 (17.02%)
1 (2.12%)
2 (4.25%)
9 (19.14%)

0 (0%)

17 (45.94%)
5 (13.51%)
4 (10.81%)
1 (2.7%)
1 (2.7%)

9 (24.32%)
1 (2.7%)

12 (37.5%)
5 (15.62%)
4 (12.5%)
2 (6.25%)
1 (3.12%)
8 (25%)
0 (0%)

COVID-19 treatment
Azithromycin/chloroquine/lopinavir/ritonavir

Azithromycin/chloroquine
Lopinavir/ritonavir/chloroquine

Chloroquine Plasma

0
6
0
0
0

11
7
2
3
1

Clinical measurements
Mean arterial pressure (mmHg) 83.19 ± 8.86 82.83 ± 16.52 77.55 ± 8.54

PaO2/FiO2 (mmHg) 301.5 ± 79.81 * 194.86 ± 86.64 85.94 ± 15.97 *
Glucose (mg/dL) 133.5 ± 113.3 164.53 ± 77.73 164.06 ± 75.40

Creatinine (mg/dL) 0.9 ± 0.33 1.02 ± 0.32 0.95 ± 0.72
CRP (mg/dL) 6.8 ± 8.96 14 ± 10.17 13.83 ± 9.6

Total bilirubin (mg/dL) 0.5 ± 0.33 0.73 ± 0.5 0.61 ± 0.29
White blood cell count (per µL) 6995 ± 3468 10,125 ± 4633 11,705 ± 10,372

Neutrophils (%) 69.34 ± 13.51 81.34 ± 6.64 83.12 ± 12.2
Lymphocytes (%) 24.03 ± 10.89 * 12.63 ± 5.63 11.12 ± 11.23
Platelets (per µL) 240,297 ± 110,028 237,783 ± 101,338 257,000 ± 79,581

INR (median IQR) 1.06 ± 0.09 2.07 ± 5.73 1.26 ± 0.65
D-dimer (pg/mL) 1.19 ± 1.72 0.47 ± 0.26 1.39 ± 0.93

AST (IU/L) 36.65 ± 30.65 54.18 ± 39.95 121.4 ± 329.9
ALT (IU/L) 33.15 ± 23.58 45.9 ± 28.08 60.8 ± 72.4
LDH (U/L) 286.36 ± 122.08 * 498.48 ± 242.34 591.23 ± 490.84

Fibrinogen (mg/dL) 514.06 ± 176.18 638.18 ± 158.76 630.3 ± 172.2
Ferritin (pg/mL) 513.48 ± 815.55 2786 ± 694.48 912.47 ± 826.91
APACHE II score 5.25 ± 2.94 14.27 ± 5.08 15.4 ± 3.89

SOFA score 2 ± 1 6.83 ± 3.08 5.4 ± 1.81
Statistical significance with ICU NO Dex group values was assessed with one-way ANOVA followed by Bonferroni post hoc correction; *
denotes p < 0.0001. ATX values appear at Figures 2, 3, S1 and S2.

Increased ATX serum concentrations were discovered in ICU patients (not receiving
Dex) as compared with WARD patients (Figure 2A), suggesting a possible association of
ATX with disease severity. However, no substantial, statistically significant correlation was
observed independently with the applicable severity markers (data not shown and Table 2);
no statistically significant differences of ATX levels between the sex or the comorbidities of
COVID-19 patients was detected (Figure S1).
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Figure 2. Increased serum ATX protein levels in COVID-19 patients hospitalized in the intensive
care unit (ICU), correlating with increased IL-6 levels. (A) ATX protein levels were measured with
a commercial ELISA kit in the sera of COVID-19 patients hospitalized (without Dex treatment) in
the COVID-19 Ward (n = 47) or the ICU (n = 37) of the Evangelismos hospital. Statistical signifi-
cance, given the normal distribution of values, was assessed with an unpaired t-test. **** denotes
p < 0.0001. (B) ATX serum levels correlated with serum IL-6 levels (n = 29), as assessed with Spearman
correlation (r(s)).

Among the different cytokines that have been reported, with great variance, to get
elevated in the COVID-19-induced cytokine storm, IL-6 was found to be the most predictive
one [29,30], while in this cohort only IL-6 could be detected in high amounts; the IL-6 levels
in some patients reached the upper detection threshold (Figure 2B). Moreover, IL-6 has
been reported to stimulate ATX expression in different contexts [31,32]. Therefore, we next
examined if ATX and IL-6 serum levels correlate, to discover if, most importantly, ATX
levels correlated significantly with IL-6 levels in the serum of ICU patients (not receiving
Dex) (Figure 2B), suggesting a possible interplay of ATX/LPA with the cytokine storm in
COVID-19.

ICU non-survivors in this cohort had higher levels of the endothelial dysfunction
markers soluble E-selectin (sE-sel), soluble P-selectin (sP-sel), soluble intercellular adhesion
molecule 1 (sICAM-1), and angiopoietin 2 (ANG-2) when compared to survivors, as recently
reported using a subset of the current Evangelismos cohort samples [33]. Interestingly,
the increased ATX protein levels correlated with the increased protein levels of sE-sel and
sICAM (Figure S2) in ICU patients, suggesting a role for ATX/LPA in COVID-19-induced
endothelial dysfunction.

2.3. Dex Therapeutic Effects in COVID-19 Include the Suppression of ATX Serum Levels

The first line of therapy for many inflammatory diseases as well as respiratory in-
fections is Dex, which lowers the expression of pro-inflammatory cytokines including
IL-6, and which has been proven effective in COVID-19 patients requiring, invasive or
not, oxygenation [34,35]. Therefore, we next examined ATX serum levels in intubated,
or not, ICU patients receiving, or not, Dex treatment. Remarkably, Dex treatment was
discovered to potently suppress ATX serum levels in ventilated patients (Figure 3A), while
intubated ICU patients receiving no Dex presented with the highest overall ATX serum
levels. Identical results were obtained in another cohort of ICU patients from the University
hospital of Patras (Table 3) (Figure 3B), indicating that the therapeutic benefits of Dex
include the suppression of ATX serum levels.
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Figure 3. Dexamethasone therapeutic effects include the suppression of ATX serum levels. ATX
protein levels were measured, with a commercial ELISA kit in the serum of COVID-19 patients
hospitalized in the ICU of (A,C) the Evangelismos or (B,D) the Patras hospital. The measurements in
the Dex groups in 3A and C, are the same as in Figure 2A. Statistical significance, given the normal
distribution of values, was assessed with 2-way ANOVA followed by Bonferroni post hoc correction.
*, **, ***, **** denote p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively.

Table 3. Clinical characteristics and laboratory data of COVID-19 patients hospitalized at the ICU of the University Hospital
of Patras.

ICU No Dex ICU + Dex

Number of patients (n) 12 23

ATX (ng/mL, mean ±SD) 624.36 ± 203.5 404.16 ± 145.5 **

Sex
Male
Female

9 (75%)
3 (25%)

18 (78.26%)
5 (21.73%)

Age (years, mean ±SD) 66.75 ± 13.31 59.43 ± 15.42

Comorbidities n (%)
Hypertension
Diabetes
Coronary artery disease
COPD
Asthma
Hyperlipidemia
Hepatitis

5 (41.6%)
0 (0%)

2 (16.6%)
0 (0%)
0 (0%)
3 (25%)

(%)

10 (43.47%)
4 (17.39%)
1 (4.34%)
2 (8.69%)

0 (0%)
6 (26.08%)

(%)
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Table 3. Cont.

ICU No Dex ICU + Dex

COVID 19 treatment

Azithromycin/chloroquine/lopinavir/ritonavir
Azithromycin/chloroquine
Lopinavir/ritonavir/chloroquine
Chloroquine
Plasma

4 (33.33%)
6 (50%)

1 (8.33%)
0 (%)
0 (%)

0 (0%)
5 (21.73%)

0 (0%)
0 (%)
0 (%)

Clinical measurements

Glucose (mg/dL) 120.5 ± 24.57 154.04 ± 47.98 *
Creatinine (mg/dL) 0.95 ± 0.42 0.93 ± 0.38
CRP (mg/dL) 8.53 ± 5.51 15.55 ± 12.68
Total bilirubin (mg/dL) 0.67 ± 0.27 0.7 ± 0.36
Lymphocytes (absolute number) 0.62 ± 0.35 0.83 ± 0.5
INR (median IQR) 1.09 ± 0.13 1.07 ± 0.12
D-dimer (pg/mL) 2.21 ± 2.14 1.45 ± 1.72
LDH (U/L) 370 ± 129 455.08 ± 188.56
Fibrinogen (mg/dL) 630.55 ± 168.1 545 ± 182.32
Ferritin (pg/mL) 950 ± 382.64 1131.09 ± 1223.55

Statistical significance was assessed with an unpaired t-test; *, ** denotes p < 0.05, p < 0.01. ATX values appear in Figure 3.

Moreover, ATX levels in ICU patients not receiving Dex treatment negatively affected
survival, and non-surviving ICU patients receiving no Dex presented with the higher
overall ATX serum levels (Figure 3C,D).

2.4. The ENPP2 Expression Landscape in COVID-19

To identify possible ATX expressing cells in the nasopharyngeal swab (NS) samples
(Figure 1), peripheral blood monocytes (PBMCs) in the circulation (Figures 2 and 3), as well
as in BALF and lung tissue cells, we re-analyzed and mined several scRNAseq datasets
of COVID-19 patients and healthy controls, from recent high impact studies (Table 1),
collectively interrogating the gene expression of more than 106 cells; cell clustering and
naming followed that of the original analyses, which both varied between studies/datasets.

In NS cells, ATX was found to be mainly expressed by natural killer cells (NKs) and
monocyte-derived macrophages (MoAM) (Figures 4A and S3A), as detected in two NS
datasets (Table 1). In the circulation, and in both PBMCs datasets (Table 1), ENPP2 expres-
sion was mainly detected, remarkably, in plasmacytoid DCs (pDCs; Figures 4B and S3B).
In BALF cells (Table 1), ENPP2 expression was also mainly detected in pDCs, as well as
MoAMs (Figure 4C and Figure S3C). In lung tissue (Table 1), ENPP2 was found to be pri-
marily expressed in arterial and mesothelial cells, as well as in cells of the monocytic lineage
(Figure 4D and Figure S3D). A similar lung tissue profile was also detected (Figure S3E) in
an IPF scRNAseq dataset (Table 1), extending the similarities of pathogenic mechanisms
between IPF and COVID-19 and supporting a common role for ATX.
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Figure 4. The ENPP2 expression landscape in COVID-19. ENPP2 expression was assessed in four datasets of COVID-
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(D) lung tissue; Table 1). UMAP plots (on the left) depict the cellular composition of these sites, while dot plots (on the right)
the expression pattern of ENPP2 in the detected cell types. Dot plots cell type color coding refers to that of the respective
UMAP. Marker genes, denoted by stars, were detected using a Wilcoxon rank sum test; FC > 1.2, Bonferroni corrected
p < 0.05; *** denotes p < 0.01 (PMIDs: (A) 32591762; (B) 32810438; (C) 32398875; (D) 33257409; Table S1).

2.5. A Role for ATX in the Homeostasis of Dendritic Cells?

Given the ENPP2 expression from monocytic cells and especially pDCs, we next
interrogated ENNP2 mRNA levels specifically in pDCs from COVID-19 patients in compar-
ison with control samples, subsets of the datasets analyzed in Figure 4. Confined by the
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limited numbers of lung pDCs, as well as the detected genes per cell and the relatively low
expression levels of ENPP2, the analysis indicated a statistically significant overexpression
of ENPP2 in COVID-19 circulating pDCs (Figure 5B). Noteworthily, DCs are the highest
ENPP2 expressing immune cells during healthy conditions, as identified upon querying
a large-scale RNAseq dataset interrogating gene expression of 28 immune cell types (79
healthy volunteers and 337 patients from 10 immune-related diseases) [36] (Figure S4A).
Similar analysis indicated that the main LPA receptor expressed by DCs, among the at least
six LPA receptors reported thus far [37], is LPAR2 (Figure S4B), which has been suggested
to convey anti-inflammatory LPA signals to DCs [38]. Furthermore, increased ENPP2
mRNA expression was detected in pDCs from patients with systemic lupus erythemato-
sus (SLE), adult-onset Still’s disease (AOSD), mixed connective tissue disease (MCTD),
and idiopathic inflammatory myopathy (IIM) than in DCs from healthy volunteers (Fig-
ure S4C), suggesting that overexpression of ENPP2 in pDCs may be a common theme in
inflammation.
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Figure 5. ENPP2 mRNA expression is upregulated in peripheral pDCs and lung tissue DCs of COVID-19 patients.
(A–D) Differential expression of ENPP2 in pDCs of COVID-19 patients versus healthy controls: (A) nasopharyngeal swabs;
(B) PBMC; (C) BALF; (D) lung tissue. ENPP2 mRNA expression was found up-regulated in peripheral (B) pDCs of
COVID-19 patients. (E) Differential expression analysis indicates increased ENPP2 mRNA expression in COVID-19 lung
tissue DCs compared to healthy controls. (F) Venn diagrams of deregulated genes in lung DCs. Differential expression was
performed using a Wilcoxon rank sum test; FC > 1.2 and Bonferroni corrected p < 0.05; *** denotes Bonferroni adjusted
p < 0.01. (PMIDs: (A) 32591762; (B) 32810438; (C) 32398875; (D) 33257409; Table S1).

Finally, and to gain mechanistic insights into the possible role of ATX in DC home-
ostasis upon COVID-19, we first analyzed differential gene expression in COVID-19 DCs
(as pDCs were too few), from the only COVID-19 lung dataset [13] allowing such analysis,
as well as in ENPP2-expressing (ENPP2+) DCs (Table S5). Increased ENPP2 expression
was also detected in all lung DCs (Figure 5E), while comparative analysis (Venn diagrams
Figure 5F) highlighted two genes upregulated in ENPP2+ COVID-19 DCs, transmembrane
protein 176B (TMEM176B) and CD1a, that have been both proposed as DC differentiation
and/or maturation markers [39–43], suggesting that ENPP2 expression may modulate DC
homeostasis.



Int. J. Mol. Sci. 2021, 22, 10006 10 of 18

3. Discussion

Previous studies have shown that HCV, HIV, and HBV viruses increase Enpp2 mRNA
expression in infected cells and/or raise systemic ATX levels [27,44,45]. As shown here,
increased ENPP2 mRNA expression was detected in nasopharyngeal swab samples from
COVID-19 patients in comparison to non-infected healthy controls (Figure 1), while scR-
NAseq re-analysis revealed that the highest ENPP2 expressing cells in swabs are immune
cells (Figures 5A and S5A), suggesting that CoV-2 infection stimulates ENPP2 expression
from immune cells in the nasopharynx. LPA, the enzymatic product of ATX and its effector
molecule, has been shown to directly affect HCV viral infection and replication [27,28],
suggesting that a similar autocrine mode of action may be in play in COVID-19, where
ATX produced by the infected host cell would stimulate local LPA production, in turn
facilitating viral entry and replication.

Increased serum ATX protein have been reported in cancer, liver diseases, as well
as respiratory diseases including asthma and pulmonary fibrosis [19,46], while increased
levels of serum ATX were recently reported in ARDS [47]. Here, increased ATX sera levels
were detected in ICU-hospitalized COVID-19 patients (receiving no Dex treatment) com-
pared to patients with less severe disease (Figure 2), suggesting increased ATX expression
as an additional commonality of ARDS and COVID-19.

Several studies have indicated a deregulated serum lipid profile of COVID-19 patients,
mainly focusing on fatty acids and triglycerides (reviewed in [48]); however, little is known
on phospholipid homeostasis upon CoV-2 infection. As ATX is largely responsible for
extracellular LPA synthesis, it would be complementary to quantify LPA levels in the same
samples of this study. However, the analyzed serum samples cannot be used because blot
clotting and platelet activation stimulate massive LPA release [49]. Moreover, all samples
should have been collected in siliconized tubes, to avoid the known attachment of lipids to
tubing, and kept at –80 ◦C or lower without repeated freeze thawing [48]. Therefore, a new,
multi-controlled, perspective study will be necessary to assess the levels of the different
LPA species, as well as related phospholipids, such as LPC, LPE, LPS, and S1P, with whom
LPA shares common interconnected biosynthetic pathways.

The origin of serum ATX is not completely deciphered; however, >40% of mouse serum
constitutively active ATX has been suggested to originate from the adipose tissue [50],
which was shown to be able to modulate the pathophysiology of distant metabolically
active organs [51,52]. Moreover, serum ATX has been reported to correlate with insulin
resistance in older humans with obesity [53], while mice with heterozygous Enpp2 de-
ficiency were protected from HFD-induced obesity and systemic insulin resistance [52].
Several additional reports have incriminated the ATX/LPA axis in the regulation of glucose
homeostasis and insulin resistance (reviewed in [54]), among the main comorbidities of
COVID-19, suggesting adipose tissue-derived ATX as a possible pathologic link between
obesity and COVID-19. No correlation of ATX serum levels with the related underlying
comorbidities of COVID-19 patients, cardiovascular diseases, diabetes, and dyslipidemia
(Figure S1B) or the body mass index (BMI; data not shown) of patients was observed.
However, the lack of correlation could be due to the heterogeneity and size of the examined
cohorts, as well as due to the corresponding treatments the patients were receiving for their
underlying pathologic conditions prior to CoV-2 infection and hospitalization. In partic-
ular, several reports have associated dyslipidemia with increased severity and mortality
of COVID-19 (reviewed in [55]), which led to suggestions for lipid-lowering therapies of
COVID-19 patients [56], including the administration of statins [57], that inhibit HMG-
CoA reductase—a rate-limiting enzyme for cholesterol synthesis, to COVID-19 patients.
However, results from clinical trials have been controversial [58–60], and larger studies
are needed to reach safe conclusions. Interestingly, statins have been reported to inhibit
LPA effects on RhoA activation [61], as well as the proliferation of smooth muscle cells and
MCP-1 expression via Rac1 [62].

An additional possible source of serum ATX in disease states, beyond the adipose
tissue, is the liver. Increased ATX expression has been reported in chronic liver diseases of
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different etiologies, associated with shorter overall survival [27], while the genetic deletion
of ATX from hepatocytes [27], or as discussed above adipocytes [51], attenuated liver
steatosis and fibrosis. Therefore, increased levels of serum ATX are expected upon liver
damage, whereas aberrant liver functions have been reported in COVID-19, irrespectively
of pre-existing liver disease [63]. On the other hand, cirrhotic patients have high rates
of liver failure and death from respiratory failure upon CoV-2 infection, attributed to
increased systemic inflammation, immune dysfunction, and vasculopathy [63]. Therefore,
ATX could be also a pathologic link between liver damage and COVID-19.

Plasma ATX levels have been recently reported to correlate with IL-6 levels in severe
ARDS patients [47], as well as acute-on-chronic liver failure (ACLF) patients [64], as shown
here in the serum of ICU COVID-19 patients (Figure 2). Increased serum IL-6 levels have
been reported in COVID-19 patients, correlating with the severity of COVID-19 pneumonia
and mortality risk [65], or respiratory failure and the need for mechanical ventilation [66].
Meta-analyses of published studies on COVID-19 laboratory findings indicated that serum
levels of IL-6 were among the most predictive biomarkers [29,30]. Interestingly, components
of the COVID-19 cytokine storm (IL-6, TNF, and IL-1β) have been suggested to stimulate
ATX expression and/or activity in different cell types, while, vice versa, LPA has been
reported to stimulate TNF and IL-6 expression in different contexts [22], suggesting a
possible interplay of the COVID-19 cytokine storm and the ATX/LPA axis.

Dex treatment, a potent suppressor of systemic inflammation including IL-6, has
been shown to reduce mortality in hospitalized COVID-19 patients under oxygen sup-
plementation treatment or mechanical ventilation [34,35]. Dex treatment has been shown
to decrease ATX (as well as IL-6) levels in the mouse adipose tissue and plasma [67], as
well as in irradiated mammary fat pad [68]. As shown here (Figure 3), Dex treatment of
mechanically ventilated patients drastically reduced their ATX serum levels, indicating that
the therapeutic effects of Dex in COVID-19 include the suppression of ATX serum levels.

An essential role for ATX/LPA in embryonic vasculature has been well established
through genetic studies in both mice [69–71] and zebrafish [72]. In adult mice, ENPP2
has been discovered as a high priority candidate gene for pulmonary hemorrhage upon
SARS/MERS-CoV infection [73,74], while vascular leak has been suggested to be among
the main pathological effects of ATX/LPA in pulmonary pathophysiology and fibrosis in
mice [21,22]. As shown here, ENPP2 mRNA expression in the COVID-19 lung tissue was
detected mainly in artery cells D and Figure S3D), while high ATX expression from ECs
in HEVs in lymph nodes has been previously reported [75]. Moreover, and in the same
context, a plethora of LPA in vitro effects on endothelial cells has been suggested, with
some controversy, including endothelial permeability, leukocyte adhesion, and cytokine
expression, as previously reported in detail [26]. Among them, LPA has been suggested
to stimulate the expression of E-sel from human aortic endothelial cells [76–78], a cell
surface adhesion molecule regulating interaction with leukocytes. As shown here, ATX
serum levels correlated with the corresponding sE-sel and sICAM serum levels (Figure
S2), which has been independently associated, in the same samples, with mortality of
COVID-19 ICU patients [33], suggesting that ATX/LPA effects in COVID-19 may also
include vasculopathy.

IPF macrophages have been previously shown to stain for ATX, and conditional
genetic deletion of ATX from macrophages (LysM+ cells) in mice, reduced BALF ATX
levels and disease severity in modeled pulmonary fibrosis [20]. scRNAseq analysis of
BALF cells from COVID-19 patients, where macrophages predominate, indicated that
ENPP2 mRNA expression was detected in different macrophage subpopulations (Figure
4C/UMAP, S3C/UMAP), pending FACS validation, where it could modulate their matu-
ration in an autocrine mode via LPA [79–81]. LPA has also been suggested to stimulate,
in vitro, the conversion of monocytes to DCs [38,82,83]. Interestingly, ENPP2 mRNA ex-
pression was mainly detected in pDCs among all PBMCs and BALF cells in COVID-19
(Figure 4B,C and Figure S3B,C). pDCs are the principal interferon (IFN) type I producing
cells in the human blood and can be rapidly recruited to inflamed sites [84]. Circulating
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and lung pDCs have been shown to be diminished in COVID-19 [85,86], while IFN type
I responses were highly impaired [87,88]. ENPP2 mRNA expression was found upregu-
lated in circulating pDCs (Figure 5B), and lung DCs (Figure 5E) from COVID-19 patients
in comparison to cells from healthy controls. pDC development and homeostasis are
regulated by the transcription TCF4 [89], which has been reported to be modulated by
LPA in colon cancer cells [90], suggesting that ENPP2 expression from pDCs and the local
production of LPA modulates, in an autocrine manner, pDC development and homeostasis.
The hypothesis is further supported from the genes that have been discovered, pending val-
idation, to be increased in COVID-19 DCs, possibly regulated by ENPP2 (Figure 5E). CD1a
binds and presents to T-cell lipid metabolites and PLA2-synthesised fatty acid neoantigens
and has been found to be expressed in immature DCs in mucosal surfaces, including the
bronchus [39–41]. Tmem176B has also been associated with an immature state of dendritic
cells [42,43], suggesting that ENPP2 expression from COVID-19 pDCs, via LPA, delays their
maturation. Although LPA signals in most cell types are considered pro-inflammatory and
pro-surviving, an anti-inflammatory role of LPA, via LPAR2—the main subtype expressed
in DCs (Figure S4B), has been proposed previously for DCs [38], further supporting a
possible role for ATX/LPA in suppressing DC responses.

Taken together, a role for ATX/LPA in COVID-19 pathogenesis seems likely, possibly
as a component of the cytokine storm perpetuating hyperinflammation and stimulating
endothelial damage, as well as a regulator of the mononuclear phagocyte system and a
suppressor of (p)DCs responses, non-withstanding its established role in fibrosis. Dex
treatment in mechanically ventilated patients decreased ATX levels, indicating that the
therapeutic effects of Dex in COVID-19 include the suppression of the ATX/LPA axis
and that ATX levels can be druggable. More importantly, and given that COVID-19 and
IPF share risk factors for disease severity, such as age/sex and comorbidities, existing
and developing anti-fibrotic therapies have been suggested as additional therapeutic
opportunities in COVID-19 [91–93]. One of the novel candidates target ATX is currently in
clinical trials phase III in IPF [25]. Given the multiple possible roles of ATX in COVID-19,
ATX inhibition could offer additional therapeutic options in COVID-19 management, both
during and after hospitalization.

4. Materials and Methods
4.1. Human Patients and Samples

All studies were performed in accordance with the Helsinki Declaration principles. All
collected data were anonymized in standardized forms, and informed consent was obtained
from all individuals or patients’ next-of-kin for severe cases. All available patient personal,
epidemiological, clinical, and experimental data are summarized in the corresponding
cohorts (Tables 1–3). All three cohorts were completely independent, and there was no
overlap between swab and blood samples.

Cohort 1: Nasopharyngeal swab (NS) samples were collected upon routine diagnosis
from adult patients tested positive in SARS-CoV2 RNA PCR and showing no or mild
COVID-19 clinical symptoms, including cough, sore throat, mild fever below 38 ◦C, and
loss of smell (positive mild group) or being hospitalized in the intensive care unit (ICU)
with severe/critical symptoms, such as respiratory failure, septic shock, acute thrombosis,
and multiorgan dysfunction (positive severe/critical group). The control group consisted
of individuals with a negative SARS-CoV2 RNA PCR.

Cohort 2: Serum samples were collected with standardized procedures from COVID-
19 patients admitted to the specialized COVID-19 WARD or to the intensive care unit
(ICU) of the Evangelismos General Hospital from 24 March to 2 November 2020. SARS-
CoV-2 infection was diagnosed by real-time reverse transcription PCR in nasopharyngeal
swabs. The study was approved by the Evangelismos Hospital Research Ethics Committee
(#170/24-4-2020).

Cohort 3: Serum samples were collected with standardized procedures from COVID-
19 patients admitted to intensive care unit (ICU) of the University Hospital of Patras from
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24 April to 6 December 2020. The study was approved by the University Hospital of Patras
Research Ethics Committee (#216/08-05-2020).

4.2. Enzyme-Linked Immunosorbent Assay (ELISA)

ATX and IL-6 protein levels were quantified with dedicated ELISA kits according to
the manufacturer’s instructions (R&D Systems Inc., Minneapolis, MN, USA, and Invitrogen,
ThermoFisher Scientific, Waltham, MA, USA, respectively). Measurements were performed
in a blinded fashion in triplicate using a Triturus automated analyzer (Grifols, Barcelona,
Spain). The presented results on ELISA quantification of soluble E-selectin (sE-sel) and P-
selectin (sP-sel), ICAM, and ANG2 in the same samples, has been reported previously [33].

4.3. RNA Extraction and Q-RT-PCR

Total RNA extraction from nasopharyngeal swab samples was performed using a
MagNA Pure LC Total Nucleic Acid Isolation Kit using a MagNa Pure LC 2.0 automated
nucleic acid purifier (Roche, Basel, Switzerland), and viral RNA was quantified with a
LightMix Modular SARS-CoV-2 RdRP Kit and a LightCycler Multiplex RNA Virus Master
kit (Roche, Basel, Switzerland). ENPP2 mRNA levels were quantified with Q-RT-PCR
using a SYBR Green-based Luna® Universal qPCR Master Mix (New England Biolabs,
Ipswich, MA, USA) (ENPP2: forward: 5′- ACT CAT GAA GAT GCA CAC AGC -3′;
reverse 5′- CGC TCT CAT ATG TAT GCA GG -3′; product length 131 bp). Normalization
was performed with the house-keeping gene 14-3-3-zeta polypeptide (YWHAZ), and the
relative quantification method 2−∆∆Ct was utilized.

4.4. Bulk/Single Cell RNA-seq Data Analysis and Mining

The available single cell RNA-seq object was mined for each one of the datasets
(Table 1) using Seurat package v3 [94]. Marker selection and DEA were performed using
Wilcoxon Rank Sum test (FC > 1.2; Bonferroni adj. p < 0.05). For identifying pDCs in the
lung dataset of [13], DCs—as initially marked—were isolated, and principal components
were calculated post to variable genes identification and data scaling using default pa-
rameters. The 30 first principal components were used to construct an SNN graph, while
clusters were defined with a resolution of 0.8. pDCs were identified using marker genes
reported in the cell atlas of [95].

Preprocessed read count matrices of [36] found here were analyzed using the metaseq-
R2 package [96]. More specifically, reads were EDASeq normalized, filtered using default
parameters, and then the PANDORA algorithm was used to combine the results of DE-
Seq [97], DESeq2 [98], limma-voom [99], edgeR [100], and ABSSeq [101] methods. DEGs
were defined using a FC > 1.2 and FDR adj. meta p-value < 0.05.

4.5. Statistical Analysis

Statistical significance was assessed with Prism (GraphPad, San Diego, CA, USA)
software with the appropriate test according to the distribution of values and their com-
plexity, as detailed in each figure legend. Statistical tests used include the non-parametric
Mann–Whitney U test, unpaired t-test, Spearman correlation, 2-way ANOVA followed
by Bonferroni post hoc correction, Wilcoxon rank sum test-Bonferroni correction, and
Kruskal–Wallis and Dunn post hoc test.
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