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Abstract
The nervous system reorganizes memories from an early site to a late site, a commonly observed

feature of learning and memory systems known as systems consolidation. Previous work has suggested
learning rules by which consolidation may occur. Here, we provide conditions under which such
rules are guaranteed to lead to stable convergence of learning and consolidation. We use the theory
of Lyapunov functions, which enforces stability by requiring learning rules to decrease an energy-like
(Lyapunov) function. We present the theory in the context of a simple circuit architecture motivated
by classic models of learning in systems consolidation mediated by the cerebellum. Stability is
only guaranteed if the learning rate in the late stage is not faster than the learning rate in the
early stage. Further, the slower the learning rate at the late stage, the larger the perturbation the
system can tolerate with a guarantee of stability. We provide intuition for this result by mapping
the consolidation model to a damped driven oscillator system, and showing that the ratio of early-
to late-stage learning rates in the consolidation model can be directly identified with the (square of
the) oscillator’s damping ratio. This work suggests the power of the Lyapunov approach to provide
constraints on nervous system function.

I. INTRODUCTION

Systems consolidation is the process of transferring learned memories from an early-stage
site to a late-stage site [1–3] and has been suggested theoretically to enhance the ability of
memory systems to simultaneously learn new associations while protecting previously learned
memories from being overwritten [2, 4]. Various forms of memories undergo consolidation in
different brain areas. For example, declarative memories initially learned in the hippocampus
get transferred to the neocortex [2, 5]. Motor memories initially located in the cerebellar
cortex [6] or the basal ganglia [7] get transferred out of the early learning site into direct motor
pathways. Furthermore, strong evidence suggests that fear-based memories initially learned
in the amygdala later get transferred to a different site [3, 8]. Understanding how neural
signals and learning rules orchestrate a successful memory transfer requires guiding principles
to shed light on the interactions of brain areas and their plasticity rules. Here we develop a
Lyapunov theory that provides a first-principles account for the speed of consolidation and
the robustness of the consolidation process.

Neural circuits underlying learning face a fundamental challenge common to many biolog-
ical and engineered dynamical systems with adaptively tunable parameters: the concurrent
presence of time-varying inputs, states, and parameters may cause the dynamics to become
unstable, for example, by growing unboundedly or falling into undesirable oscillatory patterns.
In addition, the nervous system abounds with various forms of noise and disturbances [9],
which may take the system into undesirable regimes. Thus, not only should the final desired
solution of learning be stable, but also the overall system should remain stable throughout
the process of learning.

The theory of adaptive control systems has been successful in providing essential tools,
such as the Lyapunov function formalism, for guaranteeing the stability of learning systems
[10]. The concept of a Lyapunov function has been used for quantifying the stability of
adaptive recurrent neural networks [11–13] as well as for building discrete attractor neural
∗ alemi@ucdavis.edu
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networks to model long-term memory [14, 15]. Here, we apply the Lyapunov formalism to
the problem of guaranteeing stable systems consolidation. Systems consolidation, like many
learning processes, contains feedback loops between the training signals and neural dynamics
that drive learning, and the weight changes that drive system dynamics. Such feedback can
make learning prone to instability. This may be further exacerbated by the fact that, in
biological systems, many synapses do not have direct access to the ground-truth performance
error and must therefore learn from indirect error signals.

We place our theory in the context of a simple circuit architecture of systems consolidation
in which the late stage, unlike the early stage, lacks direct access to an error-correcting
teaching signal (Fig. 1). In this architecture, the activity at this early site then trains the
weight of the late site such that the memory is eventually transferred from the early to
the late site. This architecture and set of learning rules correspond to classic theories of
learning and systems consolidation in the cerebellum. Learning at the early site corresponds
to the classic Marr-Albus-Ito theory of cerebellar learning [16, 17] in which an error signal
conveyed by climbing fibers trains the cerebellar output conveyed by Purkinje cells. These
Purkinje cell firing rates then serve as a secondary teaching signal for the late site located in
the cerebellar output nuclei. Applying the formalism of Lyapunov stability theory, we find
that, to guarantee stability, plasticity at the late-stage site must not be updated faster than
plasticity at the early-stage site. The slower the tuning in the late stage, the more robust
the learning process is against noise in the primary teaching signal.

II. RESULTS

A. Model for systems consolidation

We consider a simple toy model of systems consolidation motivated by the basic circuitry
thought to be involved in systems consolidation of cerebellum-mediated learning. The task
is to track a given time-varying input command rin(t) and to generate a desired output
r∗o(t) = w∗rin(t) where the desired input-to-output gain is denoted as w∗. The model, shown
in Fig. 1, has an architecture with two pathways: a direct pathway with gain w2 and an
indirect pathway with gain w1 that provides a learned, online correction to the output of the
direct pathway. The output of the model can be written as

ro(t) = (w1 + w2)rin(t) (1)

where ro(t) is the output. The goal of learning is two-fold: (1) to reduce the gain error
W̃ = w1 + w2 − w∗ to zero, and (2) to consolidate the weight changes into the late-stage
weight such that asymptotically w1 = 0 and w2 = w∗. The indirect pathway receives the
information about the error signal and constitutes the early site of plasticity. The direct
pathway constitutes the late site of plasticity and needs to be tuned based on the information
received from the early stage, i.e., r1 = w1rin.

The learning rule in the early stage is a supervised delta-like correlational rule proportional
to the product of the input and the teaching signal [18, 19].

ẇ1 = −η1rin(t)(e(t) + ξ(t)) (2)

where the teaching error signal e(t) is the tracking error e(t) = ro(t)− r∗o(t) = (w1 + w2 −
w∗)rin(t), η1 is the learning rate of the early-stage tuner, and ξ(t) is a perturbation to the
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error signal. We assume the perturbation is signal-dependent [20, 21], i.e., the strength of
the perturbation depends on the amount of error signal e(t). We formalize the regime of
the perturbation in the teaching signal during learning by a parameter µ = max |ξ(t)|

|e(t)| (where
e(t) ̸= 0) that defines the maximal amount of perturbation during learning.

The learning rule in the late stage is a heterosynaptic correlational rule between the online
corrective signal r1(t) provided by the early stage, and the direct input to the late stage,
rin(t) [22]:

ẇ2 = η2rin(t)r1(t) (3)

where η2 is the learning rate.
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FIG. 1. A toy tracking model demonstrating instability in systems consolidation. (A) Top: Single-
stage model. The early-stage parameter, w1, is directly tuned by the error signal e(t), whereas
the late-stage parameter, w2, is fixed. Bottom: Simulation showing that the model successfully
converges to the desired output r∗ and the desired, tuned weight w1 (dashed line). (B) Two-stage
tuning model. Top: The early stage is as in the single-stage model. The late-stage weight w2

is tuned using the output of the early stage as a secondary teaching signal. Bottom: When the
consolidation process is slow enough (left panels), the model dynamics successfully converges and
tunes the weight w2 to its desired value (dashed line). However, if the consolidation process becomes
too fast (right panels), the system can show instability. See Appendix A for simulation details.

We seek a general framework to characterize the conditions for stability and convergence
of this two-stage learning system. More specifically, we seek criteria for tuning the system
to avoid undesired behaviors of the system, such as oscillation or unbounded growth. By
stability, we intuitively mean that, as time goes to infinity, the system is well-behaved;

4



for example, it should reach its goal and stay close to it. The mathematical definition of
Lyapunov stability and its various refined notions are provided in Appendix B.

B. Stability of the single-stage model

To illustrate the Lyapunov stability approach and motivate the problem of instability in
systems consolidation, we first consider a one-stage model (Fig. 1A, top) in which learning
occurs only at the early stage of the circuit (i.e., we set dw2

dt
= 0). In this case, so long as

the magnitude of the perturbation ξ(t) does not exceed the magnitude of the error signal
e(t), the learning is guaranteed to stably converge. This is illustrated for the task of learning
to track a step-like input in Fig. 1A (bottom) and proven for the more general case in the
following paragraphs.

The basic idea behind Lyapunov’s direct approach to stability is based on constructing
a scalar function and showing that all trajectories of the dynamics of the system decrease
this scalar function, guaranteeing that the system safely and stably reaches the fixed point
of the dynamics. This scalar function, known as a Lyapunov function, can be considered a
generalization of the concept of energy in classical mechanics. Finding one such function
is enough to prove the stability of the system. To provide intuition about the Lyapunov
function formalism, we first apply it to the simple single-stage tuning model given by Eq. 2.

To prove the uniform global stability of the model, we use the Lyapunov theorem 1
for non-autonomous systems, and to prove asymptotic stability, we use the Lyapunov-like
lemma 1 (Appendix B). To prove the uniform global stability, we need to find an appropriate
Lyapunov function candidate L such that 1) L is positive definite, 2) the time derivative
of L is L̇ ≤ 0, 3) L is decrescent, and 4) L at t = 0 is radially unbounded. We propose the
following scalar function of the error in the gain W̃ :

L1 =
1

2
W̃ 2, (4)

where W̃ = w1 + w2 − w∗. L1 is positive definite and radially unbounded by inspection.
To show that L̇1 ≤ 0, we write the learning dynamics as ẇ1 = −η1W̃ r2in − η1rinξ. Using
the learning rule to compute the time derivative yields L̇1 = −η1W̃

2r2in − η1W̃ rinξ. With
|ξ| ≤ µ|e|, one obtains:

L̇ ≤ −η1W̃
2r2in + η1|W̃ rin||ξ|

≤ −η1W̃
2r2in + η1|W̃ rin|µ|W̃ rin|

= −η1r
2
in(1− µ)W̃ 2.

(5)

η1 > 0 by definition, and as long as µ ≤ 1, we have L̇1 ≤ 0. If rin = 0, we are in a trivial
case where L̇1 = 0 and ẇ1 = 0 and the system is not changing at all. We assume rin ̸= 0
throughout most of the learning period. Therefore, the equilibrium is globally stable. This
stability guarantees that w1 and W̃ are bounded. Since L1 does not explicitly depend on
time and is positive definite, it is decrescent; therefore, the equilibrium is uniformly globally
stable. To find conditions for guaranteeing asymptotic stability, i.e., as t → ∞, w1 → w∗,
from Lemma 1 what is left to show is that L̇1 is uniformly continuous in time. A practical
way of showing uniformity is to show that L̈1 is bounded. Given that the hyperparameters
η1, η2 and the gain error W̃ are bounded, and rin and ξ are assumed to be smooth functions
of time with bounded derivatives, L̈1 is bounded.■
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C. Lyapunov function theory for the two-stage consolidation model

We next consider systems consolidation in the two-stage model. As proven below, when the
consolidation process is sufficiently slow, the two-stage learning model successfully converges
to solving the tracking task (Fig. 1B, bottom left). However, when the consolidation
process is too fast, the system can exhibit instability in which a small perturbation can
cause large perturbations in the output (Fig. 1B, bottom right). Below, we analytically find
the conditions for guaranteeing stability (Section IIC 1), provide intuition for the source of
possible instability in regions without stability guarantee by solving a special case of the
system (Section IIC 2), and demonstrate with simulations a case in which loss of stability
leads to unbounded growth of activity (Section IIC 3).

1. Theory

To investigate the stability and convergence of the two-stage model, we need to find
an appropriate Lyapunov function candidate. The two learning rules can be rewritten as
ẇ1 = −η1W̃ r2in − η1rinξ and ẇ2 = η2w1r

2
in. We choose the following Lyapunov function

candidate for the two-stage model:

L =
1

2
(W̃ 2 + w̃2

2), (6)

where w̃2 = w2 − w∗. We refer to the first term in the above as the (squared) gain error and
the second term as the (squared) consolidation error. The nullclines and the fixed points of
the learning dynamics are shown in the weight space in Fig. 2A for w∗ = 1 in the limit that
the amplitude of the perturbation goes to zero, i.e., µ → 0. The first term encourages the
gain error to go towards zero in a stable manner and stay close to zero, which is the goal of
the learning rule for w1. The second term aligns with the goal of consolidating the learned
memories into w2 and is achieved when the desired gain w∗ is only due to w2 (Fig. 2B).

We now turn to proving uniform global stability and asymptotic stability of the two-stage
model. Using w1 = W̃ − w̃2, the time derivative of L can be written as L̇ =

˙̃
WW̃ + ˙̃w2w̃2 =

−η1r
2
in((1− α)W̃ 2 + αw̃2

2)− η1W̃ rinξ, where α = η2/η1. With |ξ| ≤ µ|e| one obtains:

L̇ = −η1r
2
in((1− α)W̃ 2 + αw̃2

2)− η1W̃ rinξ

≤ −η1r
2
in((1− α)W̃ 2 + αw̃2

2) + η1|W̃ rin||ξ|
≤ −η1r

2
in((1− α)W̃ 2 + αw̃2

2) + η1|W̃ rin|µ|W̃ rin|
= −η1r

2
in((1− α− µ)W̃ 2 + αw̃2

2).

(7)

The main requirement for Lyapunov stability is to show L̇ ≤ 0, which is achieved when
α ≤ 1− µ. As in the single-stage model, we assume rin ̸= 0 throughout most of the learning
period. For the rest of the proof, we need to verify the other conditions of Theorem 1. L is
bounded from below, min(L) = 0, and L does not explicitly depend on time. Hence, L is
positive definite and decrescent. We therefore conclude that the equilibrium is uniformly
stable. Since L is the sum of two quadratic terms, it is radially unbounded by inspection,
which guarantees that W̃ , w̃2, w2, w1 are globally bounded. To guarantee asymptotic stability,
what is left to show is that L̇ is uniformly continuous in time by showing L̈ is bounded.
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FIG. 2. Lyapunov function theory for stability of the two-stage model. (A) In the limit that the
perturbation goes to zero, µ → 0, the closed-loop learning dynamics has a single fixed point and two
nullclines (shown for w∗ = 1). (B) The Lyapunov function candidate L has two terms: the squared
gain error and the squared consolidation error. The most important property in order to have stable
convergence in the Lyapunov sense is that the dynamics of the learning rules should avoid going
uphill on the Lyapunov function surface. (C) When the ratio of learning rates α = η2/η1 is less than
a critical value αc = 1− µ, the learning is guaranteed to be stable. As the maximum perturbation
amplitude reaches |e|, i.e., µ = 1, the region of guaranteed stability vanishes.

Given that the hyperparameters η1, η2, α, and the variables W̃ , w̃2, w1 are bounded, and rin
and ξ are assumed to be smooth bounded functions of time with bounded derivatives, L̈ is
bounded.■

The key result of the above is that, when the late stage is tuned at a rate not faster than
the early stage rate, i.e., α = η2/η1 ≤ αc = 1 − µ, the system provably remains globally
stable and is guaranteed to successfully converge (Fig. 2C). Intuitively, in the extreme case
where the learning rate of w1 is much lower than that of w2, it is easy to see why the system
may become unstable: w1 moves infinitesimally slowly towards the goal, but w2 gets rapidly
updated with a secondary teaching signal that is not in the direction of the gradient of the
error. This leads to an alteration of the error signal feeding back onto the early (w1) site
of learning, potentially causing the learning process to become unstable. To combat this
potential source of stability, the learning rate at w2 should be slower than that of w1 to filter
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FIG. 3. Amplification of perturbation in the region without stability guarantee. (A) The state-
state of w2 exhibits an amplification of an infinitesimal sinusoidal perturbation probe ξp = ϵ sin(ωnt),
shown in the limit that µ → 0. Top, α = 3 (red box); bottom, α = 5.33 (green box). (B) The
steady-state percent amplification of the sinusoidal probe perturbation as a function of the ratio of
the normalized frequency (normalized by the undamped natural frequency ωn) of the probe ξp in
the limit that µ → 0.

out noise and prevent run-away amplification.
When α > αc, the analysis only indicates that the system may become prone to instability,

but does not itself say whether the system will become unstable. Such instability can
potentially arise if a perturbation brings the system into regions where the derivative of L
becomes positive, which for this system occurs when |w̃2| <

√
α−1
α

|W̃ |, showing that the size
of this region increases with α.

To check whether we can improve the stability conditions (i.e., find a higher value
of αc) by considering a different relative weighting of the gain and consolidation error
terms of L, we consider the Lyapunov function Lb = 1

2
(W̃ 2 + bw̃2

2), where b > 0. For
simplicity, we work in the regime µ → 0, for which αc = 1. Calculating the time derivative
L̇b = −η1r

2
in((1− α)W̃ 2 + α(1− b)W̃ w̃2 + αbw̃2

2), we note that L̇b is again guaranteed to be
less than or equal to zero in the whole weight space as long as α ≤ 1, but not for α > 1
(in particular, this is easily seen when w̃2 = 0). Thus, the same fundamental criterion for
guaranteeing stability emerges even for different weightings of the two error terms of the
Lyapunov function L.

2. Intuition for instability

In the α > αc regime, our Lyapunov stability analysis only shows that stability is not
guaranteed and thus only indicates the potential for instability. Therefore, it is instructive to
investigate this regime more closely. Consider the case where a sinusoidal probe perturbation
ξp = ϵ sin(ωt) with an infinitesimal amplitude ϵ is present in Eq. 2. We examine its effect on
the system in the regime that µ → 0 while, for simplicity, we set rin = 1. To gain intuition
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about this amplification, we solve the system in the presence of the probe. By eliminating
w1 in the two learning rules, we obtain

¨̃w2 + η1 ˙̃w2 + η1η2w̃2 = −η1η2ϵ sin(ωt). (8)

This second-order differential equation is equivalent to forced mass-spring-damper dynamics
mẍ + cẋ + kx = F , where x is the object displacement, m = 1 is the mass, c = η1 is the
damping coefficient, k = η1η2 is the spring constant, and F = −η1η2ϵ sin(ωt) is the external
force. When the damping ratio ζ = c

2
√
km

= 1
2
√
α
< 1, we are in the underdamped regime.

The steady-state response, which is dominated by w̃2,ss(t) since w1 approaches zero in the
steady state, then has the following form:

w̃2,ss(t) = − ϵ sin(ωt+ ϕ)√
(1− ω2

ω2
n
)2 + (2 ω

ωn
ζ)2

, (9)

where ϕ = arctan
2ζ( ω

ωn
)

1−( ω
ωn

)2
and ωn =

√
η1η2 is the undamped natural frequency. As α increases,

the damping ratio ζ decreases, and the amplitude of the w̃2,ss(t) resonance increases. This
clearly shows that a small error perturbation ξp leads to an amplified output whose amplitude
at the natural frequency equals

√
αϵ. The simulations for two values of α, i.e., α = 0.33 and

α = 3, show an amplification of the probe in w2 in the potentially unstable region (Fig. 3A)
at the natural frequency. The mathematical correspondence between the ratio of learning
rates α in systems consolidation and the (inverse square of the) damping ratio in a physical
oscillator, and the resultant resonant amplification, is the intuition behind the potential
instability in the presence of perturbations. This resonant behavior is shown for a sweep of
relative frequencies for a larger range of α values in Fig. 3B.

3. Simulation of an unbounded growth instability

To further investigate the instability, we simulate the effect of a sinusoidal signal-dependent
perturbation, which can alternatively be interpreted as a time-varying learning rate of the
early stage. Solving the equations directly in this case is cumbersome, but analyzing their
stability is trivial with the Lyapunov theory. The theory we have developed can be used
directly: when the maximum α(t) is less than one, the system is guaranteed to be stable;
otherwise, stability is not guaranteed. Consider the case η1(t) = 0.1(1 + 0.7 sin(0.2πt)).
For a slow learning rate of the late site, η2 = 0.02, max(α(t)) < 1 so that stability is
guaranteed (Fig. 4A). By contrast, for η2 = 1, yielding values of α(t) > 1 so that stability
is not guaranteed, we find that the system not only exhibits amplification of the sinusoidal
perturbation but grows unboundedly (Fig. 4B).

We can interpret the instability using the resonance intuition we developed in the previous
subsection. For the simple case of Section II C 2, the resonance caused amplification but this
amplification was kept finite by the damping. In the presence of signal-dependent perturbation,
the natural frequency of the unperturbed system can interact with the frequency of vibration
of the perturbation. When this interaction gives rise to a frequency close to the natural
frequency of the unperturbed system, especially when the amplitude of the perturbation is
sufficiently large, there can be increasing amplification of the system in each period, leading
to unbounded growth. This resonance phenomenon, often referred to as parametric resonance

9
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η1(t) = 0.1(1 + 0.7 sin(0.2πt)). (A) A stable case with η2 = 0.02 so that max (α) < 1. The first
three subplots are in the same format as Figure 1, with the last subplot showing the Lyapunov
function L. (B) An unstable case with η2 = 1 so that α > 1.

[23], can happen when two oscillators get coupled in such a way that one causes oscillations
in the parameters of the other oscillator, and does not necessarily need an external force to
exhibit instability.

III. DISCUSSION

We have provided a framework for studying the stability of systems consolidation and
applied it to a simple circuit architecture characterized by an early learning area that is
directly trained by performance errors, which trains a late learning area that provides the
final site of memory storage. Using a Lyapunov function theory that enforces the stability
of the learning and consolidation process, we have obtained a fundamental result on the
speed of learning: the late stage must not be tuned faster than the early stage, and when
the teaching signal is corrupted by perturbation, the late stage should be tuned much more
slowly. We mapped the consolidation process to the dynamics of a driven damped oscillator,
providing the intuition that increasing the ratio of late- to early-stage learning rates α is like
decreasing the oscillator damping, leading to potential resonant instability.

Previous work on memory consolidation has focused primarily on a fundamental robustness-
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speed tradeoff in learning with single-stage models, known as the stability-plasticity dilemma.
This dilemma states that, in single-stage models, having fast plasticity leads to ‘instability’
in the sense that new memories overwrite old ones, whereas this tradeoff can be lessened in
multi-stage models [24, 25]. Here, by contrast, we show a complementary, dynamical form of
instability that occurs for the systems consolidation of graded memories, in which having too
fast a speed of consolidation can lead to amplification of a perturbation or even exponential
unbounded growth of activity. Despite these differences, both our theory and previous ones
obey a similar principle: multi-stage learning offers robustness by having slower learning in
the later stages.

Our toy two-stage model maps onto the architecture of classic models of motor learning
mediated by the cerebellar brain region [16, 17]. In such models, early learning is thought
to occur through plasticity of the weight w1 between presynaptic parallel fiber inputs and
postsynaptic Purkinje cells. This plasticity is thought to be driven by correlations between
the activity of the parallel fiber inputs with behavioral error signals that are conveyed by
separate, climbing fiber inputs to the Purkinje cells. The learning process is particularly
well-characterized in the cerebellum-mediated adaptation of eye movement reflexes. For
example, in the vestibulo-ocular reflex (VOR), rapid corrective eye movements are generated
to offset movements of the head, functioning like a motion-correcting camera. This reflex
requires tuning because, for example, the introduction of eyeglasses can alter the relation
between eye movement and resulting image motion across the retina. Connecting to the
present work, one can map the input rin to the head velocity, the output ro to the eye velocity,
w∗ to the desired VOR gain (i.e., the ratio of eye to head velocity), and the teaching error to
the "retinal slip" motion of the visual image on the retina. Learning is then transferred from
an initial site in the cerebellum (weight w1) to a late site of final storage in the vestibular
nucleus (weight w2). Interestingly, to properly model the biological circuit, one should make
the climbing-fiber-driven error signals come through discrete spikes rather than the smooth
firing rate assumed here. This provides an effective form of perturbation ξ(t) that can
decrease the stability of the system if not compensated for by decreasing the learning rate
at the late site. Finally, we note that a similar consolidation of learning has been shown to
occur in the striato-neocortical reinforcement learning system of the brain [26], suggesting
similar fundamental constraints on the speed of learning may be applicable more broadly.

Although systems consolidation in the late stage tends to be considered a slow process
in several reported neural systems, this is not always the case. For declarative memories,
the late stage can consolidate quickly if the new memories have features that are consistent
with the existing structure of knowledge in the late stage [27, 28]. Recent evidence from
songbird motor consolidation suggests that the consolidation process may happen faster
than originally thought, occurring online in the daytime, and not necessarily requiring offline
nighttime processes [26]. Enforcing the stability and convergence of consolidations in these
scenarios may reveal constraints on the speed of learning and consolidation, similar to what
we have found in the current work.

Besides the important implications for neuroscience experiments, the framework we have
provided here may have engineering applications. Classically in adaptive control theory,
the tracking error or prediction error is directly used to tune the parameters of single-stage
adaptive controllers [10]. Our work gives the insight that using a two-stage adaptive controller
can give flexibility in terms of having a robust storage memory at the final site, as well as
an extra knob to tune the speed of learning in a stable manner. In systems with delayed
negative feedback that are subject to inappropriate oscillations, such two-stage learning
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could be used to avoid deleterious resonance effects. Recent machine learning approaches
have focused on using machine learning to generate and control complex dynamical systems
[29, 30]. Given that artificial neural networks with online, adaptive learning are increasingly
in demand throughout society, including in safety-critical tasks, this suggests a compelling
need to develop frameworks that guarantee the stability of such algorithms. We hope that
the principles of systems consolidation and Lyapunov theory introduced here could help
current progress in this area by highlighting the need for real-time, continuously adaptive
systems that are safe and stable.

Appendix A: METHODS

1. Toy model simulation

For the simulation of the toy model, we simulated Eqs. (1-3) using the MATLAB solver
ode45, which is a fifth-order Runge-Kutta method. The learning rate of the first stage was set
to a fixed value η1 = 0.01 in all simulations shown in Fig. 1. η2 was zero in the single-stage
model, 0.0003 in the two-stage model with slow consolidation (Fig. 1B, left), and 1 in the
two-stage model with fast consolidation (Fig. 1B, right). rin(t) was generated by a step
function with amplitude 0.1 which was smoothed by the filter 100/(100s+ 1) (with s being
the Laplace variable). In Fig. 1, a sinusoidal perturbation with time-varying amplitude
ξ = a(t) sin(ωnt) where ωn = 0.1 (rad/s) was considered. In addition, a(t) was sampled at
random from a uniform distribution in the range [0,0.002] with a 10 s sampling period – this
was not necessary for our core results, but was included to illustrate the effect of a slow
non-stationary amplitude a(t).

Appendix B: STABILITY DEFINITIONS AND THEOREMS

For ease of notation, we present the following definitions, lemmas, and theorems in the
context of a general non-autonomous dynamical system ẋ = dx

dt
= f(x, t) for the state vector

x ∈ RN with equilibrium point xeq = 0.

1. Definitions

The formal definition of the most basic notion of stability in the Lyapunov sense for a
non-autonomous system is

Definition 1
The equilibrium point 0 is stable at t0 if for any R ≥ 0, there exists a positive scalar r(R, t0)
such that

∥x(t0)∥ < r ⇒ ∥x(t)∥ < R ∀t ≥ t0.

Otherwise, the equilibrium point 0 is unstable. If the scalar r in the above can be chosen
independently of t0, i.e., if r = r(R), then the equilibrium point 0 is uniformly unstable.

If the above conditions are true for the whole state space, then the stability is global ; otherwise,
the stability is local.
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A more refined and desirable concept is asymptotic stability, which not only ensures that
the state stays in a ball of arbitrarily small radius around the equilibrium but also provides
a statement about convergence to the equilibrium:

Definition 2
The equilibrium point 0 is asymptotically stable at t0 if

• it is stable

• ∃r(t0) > 0 such that ∥x(t0)∥ < r(t0) ⇒ ∥x(t0)∥ → 0 as t → ∞.

In addition, if there exists a ball of attraction BR0, whose radius is independent of t0, such
that any system trajectory with initial states in BR0 converges to 0 uniformly in t0, then the
equilibrium point 0 is uniformly asymptotically stable.

Definition 3
A scalar continuous function L(x) is said to be locally positive definite if L(0) = 0 and, in a
ball around the origin

x ̸= 0 ⇒ L(x) > 0.

If the inequality in the above is replaced with L(x) ≥ 0, then L(x) is (locally) positive semi-definite.
If L(0) = 0 and the above property holds over the whole state space, then L(x) is
said to be globally positive definite. If L(x) is positive (semi-)definite, then −L(x) is
negative (semi-)definite.

The time-varying function L(x, t) is said to be positive definite if L(0, t) = 0 and there is
a time-invariant positive definite function L0(x) such that

∀t ≥ t0, L(x, t) ≥ L0(x).

Definition 4
A scalar function L(x, t) is said to be decrescent if L(0, t) = 0, and if there exists a time-
invariant positive definite function Ll(x) such that

∀t ≥ 0, L(x, t) ≤ Ll(x).

Definition 5
A function g is said to be uniformly continuous on [0,∞) if

∀R > 0,∃η(R),∀t1 ≥ 0,∀t ≥ 0, such that |t− t1| < η ⇒ |g(t)− g(t1)| < R.

This uniformity in time means that one can always find an η which does not depend on the
point t1.
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2. Lemmas and theorems

Below, we provide the theorems and lemmas needed to prove the stability of the systems
in the main text. For their proofs, consult [10].

Theorem 1 (Lyapunov theorem for non-autonomous systems)
Stability : If, in a ball BR0 around the equilibrium point 0, there exists a scalar function

L(x, t) with continuous partial derivatives such that

1. L is positive definite

2. L̇ = dL
dt

is negative semi-definite

then the equilibrium point 0 is stable in the sense of Lyapunov.

Uniform stability and uniform asymptotic stability : If, furthermore,

3. L is decrescent,

then the origin is uniformly stable. If condition 2 is strengthened by requiring that L be
negative definite, then the equilibrium point is uniformly asymptotically stable.

Global uniform asymptotic stability : If the ball BR0 is replaced by the whole state
space, and condition 1, the strengthened condition 2, condition 3, and the condition

4. L(x, 0) is radially unbounded, i.e., L(x, 0) → ∞ as ∥x∥ → ∞

are all satisfied, then the equilibrium point at 0 is globally uniformly asymptotically stable.

To prove asymptotic stability in cases where it is not easy to prove negative definiteness
of L̇, we use the following Lyapunov-like lemma, which is a variant of Barbalat’s lemma [10],
that requires the derivative of L to have some additional smoothness property to ensure L̇
converges to zero:

Lemma 1
If a scalar function L(x, t) satisfies the following conditions

• L(x, t) is lower bounded

• L̇(x, t) is negative semi-definite

• L̇(x, t) is uniformly continuous in time

then L̇(x, t) → 0 as t → ∞.

The first two conditions in the above lemma imply that L has a finite limiting value L∞, but
they do not guarantee that L will remain stationary at L∞ [10]. The addition of the third
condition gives us the ability to conclude that, in the limit t → ∞, L remains stationary at
L∞ and the convergence will be achieved.
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