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Abstract. Retrieval on Cross-modal data has attracted extensive atten-
tion as it enables fast searching across various data sources, such as texts,
images and videos. As one of the typical techniques for cross-model
searching, hashing methods project features with high dimension into
short-length hash codes, thus effectively improving storage and retrieval
efficiency. Recently, many efforts have been made to widely study super-
vised methods with promising performance. However, there still remain
some problems. Conventionally, hash codes and projection functions are
learnt by preserving the pairwise similarities between data items, which
neglects the discriminative property of class associated with each data
item. Most of the existing methods that utilise class labels also under-
take the binary codes learning under a classification frame. The relations
between binary codes and labels have not been well considered. To tackle
these problems, we propose a shallow supervised hash learning method
— Semantics-reconstructing Cross-modal Hashing (SCH), which recon-
structs semantic representation and learns the hash codes for the entire
dataset jointly. For the semantic reconstruction, the learned semantic
representation is projected back into label space, extracting more seman-
tic information. By leveraging reconstructed semantic representations,
the hash codes are learnt by considering the underlying correlations
between labels, hash codes and original features, resulting in a further
performance improvement. Moreover, SCH learns the hash codes and
functions without relaxing the binary constraints simultaneously, there-
fore, it further reduces the quantization errors. In addition, the linear
computational complexity of its training makes it practicable to big data.
Extensive experiments show that the proposed SCH can perform better
than the state-of-the-art baselines.
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1 Introduction

Recently, the tremendous growing of multimedia data has greatly increased the
demand of effective and efficient store and retrieval techniques. Therefore, many
hashing-based methods have appealed much attention, mapping instances into
binary codes with the short bit-length in a Hamming space and performing the
search with the bit-wise XOR operation [1,5,6,10]. Thus, the search becomes
much efficient and the storage can be dramatically reduced [4,8,15]. Most pioneer
hashing methods are exploited to deal with unimodal searching tasks. However,
in real world, multimedia data more often comes with multi-modalities, e.g., a
piece of article on many websites often contains some textual contents and a few
pictures to attract readers. In many scenarios, people need to retrieve data in
different modalities, e.g., searching target images with a certain sentence, or vice
versa [16]. Therefore, cross-modal hashing recently has seen a tremendous surge
in interest within multimedia community, and many unsupervised and super-
vised methods have been explored to deal with corresponding tasks. Specifically,
without semantic supervised information, unsupervised methods exploit the sim-
ilarity relationship between original features as the guidance of the binary codes
and functions learning. By contrary, supervised ones are able to explore the
associated semantic information, e.g., labels/tags, thus performing better than
unsupervised ones.

However, there still remain several problem needed to be addressed in exist-
ing supervised cross-modal hashing methods. First, some conventional methods
learn hash codes and projection functions by preserving the pairwise similarities
between data items, neglecting the discriminative property of class associated
with each data item and encountering the computationally prohibitive limita-
tion to handle large-scale datasets. Secondly, most of methods that undertake
the binary codes learning under a classification frame have not well exploited
the relations between the hash codes and the labels. And thirdly, some meth-
ods directly discard the discrete constraints during the optimization procedure,
which inevitably leads to the large errors of quantization.

To deal with these, in our work, we propose a novel supervised hashing method,
namely Semantics-reconstructing Cross-modal Hashing (SCH). It leverages a
semantic representation of labels by reconstruction to learn binary codes, In light of
this, the sufficient and discriminative semantics are preserved. Moreover, our SCH
can effectively obtain the unified binary codes and learn the modality-specific hash
functions for the whole dataset simultaneously, such that, the quantization errors
can be significantly reduced. In addition, the resulting discrete optimization prob-
lem is tackled in a linear computational complexity, such that our hash learning
method can be effectively applied to deal with searching tasks for big data. Exten-
sive experiments conducted on three benchmark datasets, i.e., Wiki, MIRFlickr-
25K, and NUS-WIDE, demonstrate that SCH obtains promising results and out-
performs state-of-the-art cross-modal hashing baselines. To summarize, the main
contributions of our work are listed as follows:

— We propose a scalable supervised hashing algorithm, which simultaneously
learns the hash codes and functions in one-step learning framework.
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— An efficient semantics reconstructing strategy is proposed to preserve super-
vised semantic information as much as possible, as the result, the performance
would be improved.

— An efficient learning scheme is designed to cope with the discrete optimization
problem in SCH. The linear time complexity of training making it scalable
to large-scale data set.

— Extensive experiments conducted on three widely used datasets demonstrate
the superiority of our SCH.

2 Related Work

To better introduce our work, we give a brief overview of some representative
hash methods for cross-modal searching which can be coarsely categorised into
unsupervised and supervised learning methods.

Without supervised information like tags available, unsupervised hasing
methods learn hash codes for the original samples. One typical method is IMH
[14], which learn to find a common Hamming space so that they can consistently
connect and represent different types of media data. To avoid time-consuming
graph construction for large-scale datasets, in LCMH [21], authors proposed to
find a small number of cluster centers to represent the original data points for
hash codes and functions learning. Besides, CMFH [2] generates hash codes uni-
fied for media data from heterogeneous data sources by collective matrix factor-
ization strategy, which can enable cross-modal retrieval and improve searching
performance.

In contrast, supervised ones are able to explore the associated semantic infor-
mation, e.g., labels/tags, to obtain the hash codes or the hash functions. For
instance, in order to learn each bit of the binary codes well, in CRH [19], authors
design a learning algorithm called boosted co-regularization and also defines the
modality-specific large-margin with labels to further improve performance. SePH
[9] learns a probability distribution for original data points, and then approxi-
mates it with the binary codes. The final hash codes can be obtained by min-
imizing the KL-divergence on probability distribution and binary codes. DCH
[17] propose a novel algorithm to directly learn the hash projection functions
specific for each modality and the discriminative hash codes without discarding
the discrete binary constraints. SDMCH [12] combines the nonlinear manifold
learning with hashing learning, and constructs the correlation across data of
multiple modalities to improve the performance.

3 Semantics-Reconstructing Hashing

3.1 Notations

For simplicity, we suppose each instance contains two modalities. However, it
can be easily extended to deal with the conditions of more modalities, as shown
later in this paper. The training dataset is X ={x;}}'_;, where x" € R4 and

%
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xl@) € R% denote the d;-dimension image feature vector and the dp-dimension
text feature vector of the i-th instance, respectively. Their matrix representations
are X1 and X, respectively. Y = {0,1}7*! is the ground-truth label matrix
where Y;; = 1 indicates the i-th sample is in class j and 0 otherwise. Given
the training data, the purpose of our method is to learn the unified hash codes
B = {b;}7, for different modalities, where b; = {0,1}*, k is the bit length.

3.2 Semantics Reconstructing

For purpose of making use of the full label information and make the optimiza-
tion problem easy to be solved, we first introduce an semantic representation F
which can be learned under a classification framework and the semantic labels
are set as the guidance. In light of this, we define the problem as follows:

. 2 7
%{%“Y—FU||F, st. FeRY™F (1)

where U is a projection matrix.

To further reduce the errors, we assume the learned semantic representation
can be reconstructed from the label matrix Y. Then, the problem is reformulated
as follows:

i Y - FU|? F-YV|%, st FcR¥F
Juin_o| Ul + 2 |z, st. Fe ; (2)

where U and V represent the projection matrices, « > 0 and 3 > 0 are balance
parameters. In light of this, we can reconstruct the semantic representation F
from labels so as to adequately extract discriminative semantic information from
the labels.

Thereafter, we suppose the hash codes can be learned from the semantic
representation F with a rotation matrix. For this purpose, we define the following
optimization problem:

min |B — FR|?, st. FeR™* Be {-1,1}"** RRT =1. (3)

It is worth noting that Eq. (2) and Eq. (3) can be merged into one equation if
we replace the semantic representation F with the hash code matrix B, which is
also able to directly learn the hash codes. However, we have to encounter some
problems. First, the optimization problem becomes troublesome to deal with.
Although some strategies like discrete cyclic coordinate descent (DCC) in the
work SDH [13] have been use to solve similar discrete optimization iteratively,
such bit-wise optimization is time-consuming. Secondly, it is not robust to noise
when directly using the hash codes for the projection matrix learning which
maps the samples from the original feature space into the hash space.

3.3 Hash Functions Learning

To gain efficient binary projection functions for multi-modal data, we need to
consider how to preserve the similarity relationships across various modalities.
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To address this, we project data from different feature spaces into a common
subspace and define the objective function as follows:

2 2 2
. _ () 2 , W, |12
Fr‘%‘rflt E A |F = fir(X )HF+ ol tHF7
t=1 t=1 (4)

2
st. Fe R £(XY) = p(X)W,, Y N =1,

t=1

where F is the semantic representation, matrix xX® represent the features of
the ¢-th modality, and Ay > 0 and v > 0 are balance parameters. ft(X(t)) =
gi)(X(t))Wt is the mapping function, W; indicates the projecting matrix for the ¢-
th modality, and ¢(X)(t) is a nonlinear embedding of X(t), In our work, we choose

~ 2 -, 2
the RBF kernel, In particular, ¢(z) = [emp(%), s exp(%)], where
{#;}5-, are c anchor samples randomly selected from the training instances

{z;}_; and o is the kernel number.

3.4 Final Objective Function

Integrating the above Eq. (2), (3) and (4) together, we obtain the final objective
function:

. 2 2 2
pon oY —FU|p +B|IF = YVi[p + 4B - FR|F

2
+Y N
t=1
2

st. FERVF Be{-1,1}"* Y N\ =1, f,(X") = ¢(X*)W;,RR" =1,
t=1
(5)

where o > 0, > 0, p > 0 and p > 0 are balance parameters. By reconstruct-
ing the semantic representation from labels, the first two terms can make the
semantic representation contain the substantial semantic information of labels.
By building the projection from semantic representation to the hash codes with
the third term, we can directly obtain the hash codes without relaxation so that
the quantization errors may be reduced. The fourth one is utilized to generate
the modality-specific hash functions; more specifically, it maps the samples from
multiple data sources into a common space, and preserves the similarity between
them. The last is a regularizer which is defined as follows:

2
F— X+ o0, v, S W),

t=1

2 2
(U VY W) = Ul + VG + D Wil (6)

t=1 t=1
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3.5 Optimization Algorithm

We design an iterative scheme to solve the discrete optimization problem of Eq.
(5), which is composed of six steps as shown below.
Step 1: Updating F with other variables fixed.

After fixing other variables, we rewrite Eq. (5) as the following one,

mina [[Y — FU|% +B8|F - YV|L +u|B - FR|

2
+ Z At
t=1

To solve it, we further simplify Eq. (7) as follows by expanding each item and
then removing irrelevant items:

2 (7)
F—¢>(X<t>)thF, st. F e R,

2
min —2T7r(F(aUY" + uRBT)) — 2Tr(FT(BYV + > Mop(X)W)))

t=1
+allFU[% + (8+ 1) |Fl7 + pl[FR|%. st FeR™

(®)

By setting the derivation of Eq. (8) w.r.t. F equal to zero, we can get the solution:
vspace*vspace™-2mm

2
F=(aYU" + YV +uBR" + ) Mo(XY)W,)(aUUT + uRR" + (3+ 1)I) .
t=1
(9)

Step 2: Updating U with other variables fixed.
With other variables fixed, Eq. (5) is reformulated as follows:

mino||Y — FU|% + o |U]. (10)

After expanding each item and then removing irrelevant items, we further sim-
plify Eq. (10) to the following one:

min o (-27r(FUYT) + IFU|I%) + U7 - (11)

By setting the derivation of Eq. (11) w.r.t. U equal to zero, we can obtain the
following solution:

U=FF+ 207y (12)
(6%

Step 3: Updating V with other variables fixed.
Similarly, with other variables fixed, Eq. (5) becomes:

min B{|F = YV +p [ Vi (13)
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Removing irrelevant items, we can rewrite Eq. (13) as follows:
min 6(—=2Tr(ETYV) + [YV][7Z) + p ||V (14)
Setting the derivation of Eq. (14) w.r.t. V equal to zero, we can get:
V=(YY+ %I)_lYTF. (15)

Step 4: Updating W, with other variables fixed. By fixing other variables,
the objective function can be simplified as follows:

2 2 2
min Y7 B o(X W[+ 30y | W (16)
t=1 t=1

We first simplify Eq. (16) as follows:

2
; _ T (t) (t)
min ;M 2Tr(W.FTo(X")) + [6(X)W,

2
2
DY W E. a7
t=1
By setting the derivation of Eq. (17) w.r.t. W, equal to zero, we can obtain:
Wi = (X )T6(X ) + 241 16X )T (18)

Step 5: Updating R with other variables fixed.
Fixing other variables are fixed, we rewrite Eq. (5) as follows:

min 11| B ~ FR|%, st. RRT =1 (19)

Inspired by the work [3], we first compute the singular-value decomposition

(SVD) of the k x k matrix B'TF = SQ2P" and then we can obtain the solu-
tion of Eq. (19), i.e.,

R =PS". (20)

Step 6: Updating B by fixing other variables.
Fixing other variables, we simplify Eq. (5) as follows:

mBiwnB—FRHfm st. Be{-1,1}"%F (21)

Then, we reformulate Eq. (21) as:

2
mén; uTr((B—FR)T(B —FR)),
= |B|% — p(2Tr(BTFR) — [FR|7), st. Be{-1,1}",
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Algorithm 1. Semantics-reconstructing Hashing.

Input: Training data matrices X ¢t =1,2; label matrix Y; parameters «, 3, 0y Y
and p; bit length of hash code k.
Output: Hash codes B; semantic representation F; mapping matrix Wy, U, V and R.
Procedure:
1. Randomly initialize F, U, V, R, W; and B;
Reapt:
. Fix B, U, V, R and Wy, update F using Eqn. (
. Fix B, F, V, R and W¢, update U using Eqn. (
. Fix B, F, U, R and W¢, update V using Eqn. (
(
(
(

. Fix B, F, U, V and R, update W; using Eqn.
. Fix F, U, V, R and Wy, update B using Eqn.
until convergency.
Return: B, F, U, VR and Wy;

2
3
4
5. Fix B, F, U, V and W, update R using Eqn.
6
7

where Tr(-) is the trace norm. Apparently, |B|% and |[FRJ3 are constants.
Therefore, Eq. (22) is equivalent to the following problem:

mBin—Tr(BT(uFR)), st. Be{-1,1}"%" (23)
The solution to Eq. (23) is :
B = sgn(uFR). (24)

The learning algorithm iteratively optimizes each variable until it converges
or meets the maximum iteration number. We summarize the overall learning
scheme in Algorithm 1.

3.6 Extension

For ease of representation, we restrain the discussion of SCH to bimodal case.
Importantly, it can be conveniently extended to multi-modal data, as shown
below.

i Y — FU|? F-YV|? B - FRJ
F,U%}{}vt,RaH %+ B 2+ wll 7

m 2 M
+ Y M |F-axO) + o vy W,

t=1 t=1

st. FER™F Be {-1,1}F Y "\ =1, (X)) = (X)W, RRT =1,
t=1

(25)

where M > 2 denotes the number of modalities. We can see the extension to
more modalities is simple and easy, and it can also be solved by adapting the
Algorithm 1.
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As for out-of-sample extension, the hash codes can be easily generated for

new samples with the learned parameters. For example, given a query instance
(o)

X, € R?, we can get its binary representation by:

b = sgn(q{)(xgo))WtR). (26)

3.7 Complexity Analysis

In this section, we give the detailed analysis of the computational cost of
the training of SCH. Specifically, the time complexity of Step 1, 2 and 3 in
Algorithm 1, is O(nk? + nkl + Ik* + k3 + k%), O(nk? + nkl + k* + k?) and
O(nl?4+nkl+13+k?), respectively. Similarly, it is O(nc?, nck+c3+c?), O(nk?+k3)
and O(nk? nk) for Step 4, 5 and 6, respectively. Therefore, the overall training
cost of the proposed SCH is O(n(k? + k + kl + 1% + ¢® + ck). c indicate the num-
ber of anchors; k denotes the bit length of binary codes and [ represents num-
ber of classes. Usually, they are much smaller than n for a large-scale dataset.
In addition, SCH is able to converge within several iterations as shown in the
experiments section. Therefore, the overall training cost is O(n), scalable for
large-scale datasets.

4 Experiments

4.1 Datasets

Wiki: It consists of 2,866 training pairs of image and text, each pair belongs
to at least one of 10 semantic classes. 2173 pairs separated from the dataset for
training and the remaining 693 pairs for testing. In addition, the visual modality
and the textual one of each instance is represented by a 128-dimension bag-of-
visual SIFT feature vector and a 10-dimension topic vector, respectively.

MIRFlickr-25K: The data set contain 25,000 images with corresponding tex-
tual tags which are collected from Flickr. There are 24 unique labels totally. They
use 150-dimension edge histogram to represent each image and its textual con-
tent is represented as a 500-dimension feature vector derived from PCA on its
binary tagging vector w.r.t the remaining textual tags.

NUS-WIDE: There are totally 269,648 images associated with textual tags
in the dataset. There are 81 ground-truth labels to annotate data pairs. In our
experiments, we choose top 10 most commonly used categories and the associated
186,577 images as the dataset for train and test. We annotate each image-text
with at least 1 of 10 concepts, and represent each image and text by a 500-
dimension bag-of-visual SIFT and a 1,000-dimension vector, respectively.

Considering the computational efficiency, we randomly select 5,000 samples
from the original MIRFlickr-25K and 10,000 samples from NUS-WIDE dataset
for training, while for testing, 1% samples of the each dataset are selected as the
testing samples.
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Table 1. The MAP results of all methods on three datasets. The best results are shown
in boldface.

Task |Method |Wiki MIRFlickr-25K NUS-WIDE
16 bits |32 bits |64 bits|128 bits|16 bits|32 bits|64 bits 128 bits16 bits|32 bits |64 bits|128 bits
Image- IMH 0.1644 |0.1684 0.1736 |0.1744 |0.5649 |0.5685 |0.5691 |0.5698 |0.3553 |0.3539 |0.3670 0.3583

to-Text|SCM-seq (0.2577 |0.2785 |0.2157 [0.2935 (0.6512 |0.6617 |0.6688 |0.6718 (0.5129 |0.5200 |0.5263 |0.5287
LSSH 0.1958 |0.2108 |0.2061 |0.2063 |0.5582 |0.5644 |0.5699 |0.5693 |0.3399 |0.3594 |0.3640 0.3772
CMFH |0.1203 |0.1222 |0.1252 |0.1232 |0.5708 |0.5703 |0.5712 |0.5713 |0.3549 |0.3540 |0.3547 (0.3544
CCQ 0.2048 |0.2118 |0.2127 |0.2130 |0.5680 |0.5681 |0.5681 |0.5679 |0.3421 |0.3421 |0.3431 |0.3429
SePH-km|0.2796 |0.2820 |0.3076 |0.3137 |0.6843 |0.6873 |0.6882 |0.6874 |0.5369 |0.5440 0.5449 (0.5510
DCH 0.3349 0.3620 0.3762 |0.3799 |0.6849 |0.6976 |0.6937 |0.7121 |0.5970 |0.5826 |0.5909 [0.6100
SDMCH |0.3183 |0.3402 |0.3621 |0.3669 |0.6530 0.6476 |0.7249 |0.7053 |0.5193 |0.6138 |0.6246 |0.6084
SCH 0.3387/0.38600.3844/0.3893 0.7014/0.7175/0.7255/0.7282 |0.6092/0.62860.6385/0.6408
Text |IMH 0.1362 |/0.1395 0.1436 |0.1398 |0.5635 |0.5675 |0.5671 |0.5684 |0.3553 |0.3539 |0.3670 0.3583
to- SCM-seq |0.3690 |0.4064 0.4301 |0.4316 |0.6524 [0.6670 [0.6766 |0.6807 |0.4979 |0.5079 |0.5183 |0.5218
Image |[LSSH 0.4286 |0.4654 0.4901 0.5029 |0.4286 |0.4654 |0.4901 |0.5029 |0.3466 |0.3541 |0.3725 |0.3772
CMFH |0.1280 |0.1309 |0.1351 |0.1331 |0.5732 |0.5732 |0.5738 |0.5742 |0.3580 |0.3565 |0.3574 (0.3573
CcCQ 0.2731 |0.2859 (0.2869 (0.2863 |0.5746 0.5753 |0.5755 |0.5755 |0.3633 |0.3651 |0.3657 [0.3658
SePH-km|0.6379 |0.6451 |0.6662 |0.6706 |0.7389 |0.7457 |0.7476 |0.7497 |0.6203 |0.6358 0.6405 0.6391
DCH 0.6624 |0.7040 |0.7241 |0.7203 [0.7513 |0.7664 0.7716 [0.7967 |0.7041 |0.6995 |0.7085 |0.7355
SDMCH |0.7085 |0.7272 |0.7513 |0.7533 |0.7154 |0.6818 |0.7920 |0.7843 |0.6199 |0.7364 |0.7454 |0.7339
SCH 0.7267/0.75700.76060.7614 [0.7723/0.7851/0.8028/0.8158 |0.73900.76050.7694/0.7739

4.2 Baselines and Evaluation Metrics

We compared the proposed SCH with the sate-of-the-art shallow baselines,
including four supervised methods, i.e., SCM-seq [18], CVH [7], SePH-km [9],
DCH [17], SDMCH [12] and four unsupervised methods, i.e., LSSH [20], CCQ
[11], IMH [14], and CMFH [2]. The parameters of SCH were selected by a vali-
dation procedure, i.e., « = 4.5, 3 =0.01, u = 0.5, Ay = 0.3, Ao = 0.7, p = 0.01,
and v = 0.01.

We chose Mean Average Precision (MAP), precision-recall and top-N preci-
sion curves as performance metrics to evaluate the proposed SCH and all the
compared method.

4.3 Results and Discussions

MAP Results. We reported the MAP results of SCH and all of the compared
methods on there datasets with bit length varying from 16 bits to 128 bits in
Table 1, including the results of the Image-to-Text and Text-to-Image search
tasks. From these results, we have the following observations. Firstly, SCH out-
performs all supervised and unsupervised baselines in all cases. In terms of quan-
titative comparison, our method achieves about 4.6% and 6% overall improve-
ments over DCH and SDMCH which have better performance compared with
other baselines, respectively. These well demonstrate the effectiveness of SCH.
One of the main reasons for the superiority of our SCH is that it can capture
more similarity and discriminative information constructing the semantic repre-
sentation and embed the information into the binary codes. Another reason is
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Fig. 1. Top-N precision curves with 128-bit on three datasets.

that it solves the optimization problem discretely and learns the binary codes
directly, reducing the quantization errors. Secondly, Generally speaking, with
code length increasing, the performance of all methods keeps increasing, which
means that utilizing longer hash codes can contain more semantic information.
Lastly, Most of the methods have better performance when searching images
with the given text query than the other retrieval task. The main reason is that
the text features can better describe the content information of an image-text
pair than that of the image features.

Top-N Precision and Precision-Recall Curves. The top-N precision and
precision-recall curves of the cases with 128 bits are plotted in Fig.1 and 2.
From the figure, we can find that SCH has the best overall performance. In
addition, we can also observe that most of the supervised methods outperform
the unsupervised ones, reflecting the importance of supervised information in
the learning of binary codes. Moreover, From the top-N precision curves, we can
see that SCH performs much better than all the compared methods, especially
at the early stage. This implies SCH returns more samples close to queries when
N is small, which is very important in a retrieval task.

To summarize, from the comparison between our SCH and other methods
on Wiki, MIRFlickr-25K and NUS-WIDE, we can have the conclusion that the
proposed SCH can work well on these datasets, and outperform other state-of-
the-art cross-modal hashing methods.
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Fig. 2. Precision-recall curves with 128-bit on three datasets.

5 Conclusion and Future Work

In this paper, we propose a scalable supervised hashing method for cross-modal
retrieval, i.e., Semantics-reconstructing Hashing for Cross-modal Retrieval. It
learns efficient and effective hash codes semantically consistent with semantic
information by reconstructing semantic representation with labels. Moreover,
with the semantic representation, it constructs the correlations between the origi-
nal features, the labels and the binary codes for the entire dataset. Furthermore,
it simultaneously learns the hash codes and the hash functions without any
relaxation, reducing the quantization errors and makes the optimization easy
to be solved by an iterative algorithm. Extensive experiments on three widely
used datasets demonstrate that SCH outperforms eight state-of-the-art shallow
baselines for cross-modal search.

In our work, we concentrate on the design of the loss function and the discrete
optimization scheme. And we believe that SCH can be combined with a deep
model to generate an end-to-end deep hashing method. We leave this as our
future work.
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