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Reinforcement Learning in Brain
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Review
Benton Girdler, William Caldbeck and Jihye Bae*

Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, United States

Creating flexible and robust brain machine interfaces (BMIs) is currently a popular
topic of research that has been explored for decades in medicine, engineering,
commercial, and machine-learning communities. In particular, the use of techniques
using reinforcement learning (RL) has demonstrated impressive results but is under-
represented in the BMI community. To shine more light on this promising relationship,
this article aims to provide an exhaustive review of RL’s applications to BMIs. Our primary
focus in this review is to provide a technical summary of various algorithms used in RL-
based BMIs to decode neural intention, without emphasizing preprocessing techniques
on the neural signals and reward modeling for RL. We first organize the literature
based on the type of RL methods used for neural decoding, and then each algorithm’s
learning strategy is explained along with its application in BMIs. A comparative analysis
highlighting the similarities and uniqueness among neural decoders is provided. Finally,
we end this review with a discussion about the current stage of RLBMIs including their
limitations and promising directions for future research.

Keywords: reinforcement learning (RL), neural decoder, brain machine interface (BMI), neural interface, value
function approximation, policy optimization

INTRODUCTION

Reinforcement learning (RL) has been actively considered in robotics (Kober et al., 2013) to
accomplish industrial automation (Meyes et al., 2017; Stricker et al., 2018) and humanoid robot
behaviors (Peters et al., 2003; Navarro-Guerrero et al., 2012) and in business management to guide
decision making (Huang et al., 2011; García et al., 2012), pricing strategies (Kim et al., 2016;
Krasheninnikova et al., 2019), and stock price prediction (Jae Won, 2001; Wu et al., 2020). The
unique mechanism of RL tries to mimic the human learning process that acquires knowledge based
on experience in a trial-and-error manner. That is, in RL, the learning system not only observes
but also interacts with the environment to collect information to accomplish the goal of a task. This
unique mechanism provides a general framework for a system to adapt to novel environments.

Due to its advantages, flexibility for adaptation, and successful performances in difficult domains
such as those mentioned above (robotics and business management), RL has been incorporated
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in a wide variety of domains, including autonomous driving
(Zhao et al., 2020), natural language processing (Sharma and
Kaushik, 2017), and search engines (Hu et al., 2018). In addition,
RL has started to get more attention in medical applications
(Gottesman et al., 2019; Coronato et al., 2020), including
clinical decision support (Liu et al., 2020) and brain machine
interfaces (BMIs).

Research in BMIs is a multidisciplinary effort that involves
fields such as neurophysiology and engineering. Developments in
this area have a wide range of applications, especially for people
with neuromuscular disabilities, for whom BMIs may become a
significant aid. Neural decoding of neural signals is one of the
main tasks that need to be executed by the BMI.

In a neural decoder, various signal-processing and machine-
learning techniques that find a map from neural signals to
control commands for external devices have been explored (Kao
et al., 2014; Xu et al., 2019). Conventional signal-processing
techniques, including the Kalman filter (Kim et al., 2008),
Kalman filter variations (Li et al., 2009; Gilja et al., 2012;
Pandarinath et al., 2017), and Wiener filter (Salinas and Abbott,
1994; Carmena et al., 2003; Hochberg et al., 2006), have shown
successful performances in neural decoding. An impressive
example describing closed-loop BMI cursor control experiments
on humans with tetraplegia can be found in Kim et al. (2008),
where an average error rate of 13.8% was reported for one subject
using the Kalman filter, called velocity Kalman filter, to decode
the subject’s intracortical neural signals into two-dimensional
velocity vectors of the cursor, (vx,vy). In addition, a variant
of the Kalman filter, called recalibrated feedback intention-
trained Kalman filter, has been integrated with a hidden Markov
model-based state classifier to control a computer cursor that
types on a virtual keyboard. This closed-loop experiment was
conducted by decoding intracortical neural signals from subjects
with amyotrophic lateral sclerosis and spinal cord injury, and the
neural decoder showed competitive performances on typing tasks
(average typing rate of 28.1 correct characters per minute and
bitrate of 2.4 bits per second) (Pandarinath et al., 2017).

Moreover, supervised learning algorithms, such as support
vector machines (Hortal et al., 2015; Toderean and Chiuchisan,
2017; Skomrock et al., 2018) and artificial neural networks,
particularly recurrent neural networks (Oliver and Gedeon,
2010; Sussillo et al., 2012), have been actively considered in
BMIs for neural decoding. It has been shown that a recurrent
neural network can outperform the velocity Kalman filter in a
closed-loop intracortical BMI (Sussillo et al., 2012). In addition,
the closed-loop decoder adaptation strategy allows synergistic
online adaptation for both user and neural decoder providing
better interaction of the user with the environment through
the BMIs and improved performance (Orsborn et al., 2011,
2012; Gilja et al., 2012; Shanechi et al., 2016; Brandman et al.,
2018). Furthermore, following recent advances in deep-learning
techniques, researchers have started investigating various deep-
learning algorithms in BMIs (Mahmood et al., 2019; Mansoor
et al., 2020).

Although these learning approaches have been applied to
neural decoding in real-time control of BMIs, this is probably
not the most appropriate methodology for paraplegic users

because of the absence of ground truth. The basic mechanism
of the above-mentioned signal processing and machine learning
approaches is as follows: given a training set of neural signals
and synchronized movements, the problem is posed as finding
a mapping between these two signals, which can be solved by
applying supervised learning techniques. That is, the kinematic
variables of an external device are set as desired signals, and the
system is trained to obtain the regression model. Unfortunately,
the desired signal is determined by the experimenter, not by
the user. In practice, since the user cannot move, the required
information of the desired signal at each time instant to update
the external device’s movement is missing. In addition, even if the
desired signal is available, functionality is still limited to various
task types or changing environments since frequent calibration
(retraining) becomes necessary.

RL is one of the representative learning schemes, which
provides a general framework for adapting a system to a novel
environment inspired by how biological organisms interact with
the environment and learn from experience. RL allows learning
using only information from the environment, and thus there
is no need for an explicit desired signal. Although RL does
require a reward signal to guide the learning process, it is
important to note that the reward can be obtained based on
the user’s neural activity (Schultz et al., 1998; Marsh et al.,
2015; An et al., 2019). These characteristics are well suited
for the neural decoding task in BMI applications since BMIs
need to have direct communication between the central nervous
system and the computer that controls external devices such
as a prosthetic arm for disabled individuals. Moreover, BMIs
should be able to continuously adapt and adjust to subtle
neural variations.

In this article, we focus on various RL methods that have
been used in BMIs for neural decoding. Although preprocessing
of the acquired neural data is an important step in BMIs, in
this study, we do not place emphasis on the data preprocessing
steps. In addition, interactive RL, which uses human guidance
to optimize learning procedures, has been highlighted in BMIs
(Cruz and Igarashi, 2020; Poole and Lee, 2022). The human
feedback has been largely related to modeling rewards in
RL. Modeling reward is another important step in RL, and
there have been various attempts to model reward based on
neural signals (Iturrate et al., 2010; Marsh et al., 2015; An
et al., 2018; Shen et al., 2019). However, in this article, we
focus on RL models used as a neural decoder in BMIs. Thus,
studies solely based on modeling the rewards are out of the
scope of this review.

To the best of our knowledge, this work is the first
attempt to provide an exhaustive review of neural decoding
algorithms applied to RLBMIs. In this article, we describe
various RL methods that have been used in BMIs to adjust
the parameters of the neural decoders and provide a summary
of their advantages and limitations. It is expected that this
review will not only serve as a reference guide for researchers
already working in RL-based BMIs but also as an introductory
tool to those that may be considering incorporating RL
algorithms into their BMI work. The contributions of the
authors include listing update rules and diagrams from different
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FIGURE 1 | A review flow chart, by following the Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) guidelines (Page et al.,
2021).

RL neural decoders with unified notation over different
studies and providing a taxonomy for various neural decoders
by categorizing their RL base model and type of function
approximation algorithms. Experimental set up and details
are also summarized along with reported neural decoder’s
performances. This article is organized as follows: Section “Search
Methodology” shows the methodology for the literature review
process. Section “Background on Reinforcement Learning”
provides the taxonomy and problem formulations in RL.
Section “Reinforcement Learning Brain Machine Interfaces:
Basic Mechanism” provides an overview of RLBMIs. Section
“Reinforcement Learning in Brain Machine Interfaces: Neural
Decoding Algorithms” reviews various types of neural decoders
applied in RLBMIs. Section “Discussion” discusses future
directions for research in RLBMIs.

SEARCH METHODOLOGY

We chose to search for relevant literature through the following
databases: PubMed, JSTOR, Academic Search Complete, and
Google Scholar. The phrases we employed were “Reinforcement
Learning Brain Machine Interfaces” and “Error Related Potentials
and Brain Machine Interfaces.” Once all seemingly relevant
papers were gathered across the different databases based on
their abstracts, replicates were removed, i.e., the same paper from
different databases. From there, articles were removed after full-
text analysis revealed they were not appropriate for our review,
in the sense that the phrases used above were only superficially
related to the paper (Figure 1).

In addition, Table 1 displays an itemized summary of the
reviewed neural decoders in RLBMIs. The first column shows
the main author and the publication year of the reported study.
Neural decoder type is divided into three subcategories including

RL base model, function approximator, and learning algorithm.
Neural signal and subject types are listed in the subsequent
columns, along with the number of subjects considered in the
RLBMI experiments. The “Subject” column provides gender and
specific species if available, when an animal study was conducted.
The eighth column shows the type of task the subject conducted
while the neural signal was acquired. “External device” shows
the type of device that the subject was controlling. The tenth
column shows the type of BMI experiments, if the subject was
manually controlling the external device and pre-recorded neural
signal was used with the neural decoder, it was listed as “Open,”
and when the subjects’ neural signals were directly controlling
the external device regardless of their behavior, it was marked as
“Closed.” The highlighted performance was summarized under
“Key reported performance.” The best reported performance is
summarized in terms of success rate, for fair comparisons of all
reported studies, and the data amount for evaluation is listed
to provide an understanding of the learning speed. It should be
noted that all provided information from the published studies
has been summarized. However, there are fields that are missing
some information as it was not available in the corresponding
published studies.

BACKGROUND ON REINFORCEMENT
LEARNING

In RL, a controller, called an agent, interacts with a system,
called the environment, over time and modifies its behavior to
improve performance. This performance is assessed in terms of
cumulative rewards, which are assigned based on the task goal.
The agent tries to adjust its behavior by taking actions that will
increase the cumulative reward in the long run; these actions are
directed toward the accomplishment of the task goal.

An RL framework can be formalized with the following
components: a set of states X , a set of actions A, a reward
function R, and a transition probability P . The basic RL
mechanism is as follows: at an arbitrary time t, the agent observes
a state xt ∈ X , from the environment and outputs an action
at ∈ A. This action changes the environment and a new state xt+1
is observed. Upon transitioning to this new state, a reward rt+1 is
presented from the environment to the agent. The process repeats
either indefinitely or until a terminal state is reached. In RL, it is
possible that the agent receives delayed reward information from
the environment by unspecified time amounts.

Policy and Value Functions
Two important concepts associated with the agent are the policy
and value functions. The policy π is a function that maps a state
xt to an action at , π : X → A. That is, the action taken by the
agent is selected based on the agent’s policy. Moreover, the value
function is a measure of the long-term performance of an agent
following a policy π starting from a state xt . There are two types
of value functions: a state-value function and an action-value
function. The state-value function is defined as an expected value
of a cumulative reward Rt , which an agent receives when it starts
in a particular state at time t, xt and follows a policy π:
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TABLE 1 | A summary of reviewed neural decoders in RLBMIs.

Author
(year)

Neural decoder Neural signal
type

Subject Task External
device

Closed or
open loop

Key reported performance

RL base model Function
approximator

Learning
algorithm

Type No. Best reported
success rates

Data amount for
evaluation

Huang et al.
(2022)

Action-value
function, Q

Linear function P300 Linear
Upper
Confidence
Bound (PLUCB)

EEG
32 channel

Healthy human 20 Symbol
selections in a
standard 6 × 6
matrix of symbols

2D screen Open Overall symbol
accuracy:
80.4 12.8%

Two sessions (14
runs/session, 18 symbol
selection/run, 6
sequence/symbol, and 12
flashes/sequence)
1st session: used a
pseudo-detector to
initialize the algorithm
2nd session: symbol
detection

Transferred P300
Linear Upper
Confidence
Bound (TPLUCB)

Overall symbol
accuracy:
79.6 14%

Bae et al.
(2011)

Q-learning Kernel expansion Kernel Temporal
Difference (KTD)
(λ)

Intracortical
M1 (185 units)

Female Bonnet
Macaque

1 2-target
center-out
reaching task

2D Screen Open Around 100%
after 2 epochs

43 trials/epoch
Average over 50 Monte
Carlo runs

Bae et al.
(2015)

Q-learning Kernel expansion Kernel Temporal
Difference (KTD)
(λ)

Intracortical
M1 (185 units)

Female Bonnet
Macaque

1 2-target 1-step
center-out
reaching task

2D Screen Open 2-target: 99% after
3 epochs

Average over 50 Monte
Carlo runs
43 trials/epoch

4-target 1-step
center-out
reaching task

2D Screen Open 4-target: 99% after
5 epochs

Average over 50 Monte
Carlo runs

8-target 1-step
center-out
reaching task

2D Screen Open 8-target: 98% after
6 epochs

Average over 50 Monte
Carlo runs
8-target: 178 trials/epoch

3 target 4-step
center-out
reaching task

2D Screen Open Above 60% after 1
epoch

4 target 2-step
center-out
reaching task

2D Screen Open Above 60% after 1
epoch

Intracortical
M1 (14 units)

Marmoset
Monkey

1 2-target reaching
task

Robotic Arm Closed 90% for Day 1 20 trials (10 trials each per
target)

Bae et al.
(2014)

Q-learning Kernel expansion Correntropy
Kernel Temporal
Differences
(CKTD)

Intracortical
M1 (49 units)

Female Bonnet
Macaque

1 4-target
center-out
reaching task

2D Screen Open 100% after 5
epochs

Average over 50 Monte
Carlo runs
144 trials trials/epochs

Zhang et al.
(2019a)

Q-learning Convolutional neural
networks (CNNs)

Dueling Deep Q
Networks

EEG
14 Channels

Healthy Human 7 6 imagery action
classification

N/A Open Average
classification
accuracy of 93.63%

34,560 samples per
subject

DiGiovanna
et al. (2007a)

Watkin’s Q(λ) Feedforward neural
network

Recursive Least
Square

Intracortical Rat 1 Go no-go task Robotic Arm Closed 93.7% One session: 16 trials

DiGiovanna
et al. (2007b)

Watkin’s Q(λ) Feedforward neural
network

Back-
propagation

Intracortical
M1 (25 units in left

and 33 units in right
hemisphere)

Rat 1 2-Target reaching
task

Robotic Arm Open max observed
81.3%
Avg.: 68.1 10.8%

10 sessions (16
trials/session)

DiGiovanna
et al. (2009)

Watkin’s Q(λ) Feedforward neural
network

Back-
propagation

Intracortical
M1 (rat01: 16 units,

rat02: 17 units,
rat03: 29 units)

Male
Sprague-Dawley

Rat

3 2-target reaching
task

Robotic Arm Closed Avg. performance:
rat01: 68%, rat02:
74%, and rat93:
73%

Avg. 2.1 1.2 session (1
session/day)
Avg. 141.6 41.3 trials

(Continued)
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TABLE 1 | Continued

Author
(year)

Neural decoder Neural signal
type

Subject Task External
device

Closed or
open loop

Key reported performance

RL base model Function
approximator

Learning
algorithm

Type No. Best reported
success rates

Data amount for
evaluation

Sanchez
et al. (2011)

Watkin’s Q(λ) Feedforward neural
network

Back-
propagation

Intracortical
M1 and PMd (total

190∼240 units)

Female Bonnet
Macaque

1 8-target
center-out
reaching task

2D Screen Open Reached 100%
after 18 epochs

43 trials/epoch

Tarigoppula
et al. (2012)

Watkin’s Q(λ) Feedforward neural
network

Back-
propagation

Simulated neurons N/A N/A 8-target
center-out
reaching task

2D Screen Open Over 95% with
optimal
Izhikevich-tuning
depth

80 neurons

Wang Z.
et al. (2015)

Attention-Gated
Reinforcement
Learning (AGREL)

Feedforward neural
network

Attention-Gated
Reinforcement
Learning (AGREL)

Intracortical
M1 (54 active

channels)

Male Rhesus
Macaque

1 4-target
center-out
reaching task

2D Screen Open Average target
acquisition rate
reached to 90.16%

Day 1, 2, 3, and 6 (40 min
data/day)
No repetition of the data
considered.

Shen et al.
(2020)

Attention-Gated
Reinforcement
Learning (AGREL)

Feedforward neural
network

Attention-Gated
Reinforcement
Learning (AGREL)

Intracortical
M1 (16 channel)
and mPFC (16

channel)

Male Sprague
Dawley

6 One level press
task

Lever Open Average success
rate of 87.5%

For six subjects over 300
training epochs
multi day recordings

Zhang et al.
(2020)

Attention-Gated
Reinforcement
Learning (AGREL)

Feedforward neural
network

Transfer Learning
and Mini-batch
based
Attention-Gated
Reinforcement
Learning
(TMAGREL)

Intracortical
M1, S1, and PPC
(monkey01: total
480 neurons and
Monkey02: total

396 neurons)

Male Rhesus
Macaque

2 3-target reaching
and grasping task

N/A Open Approximately 90%
for both monkeys

Monkey01: 600 trails
Monkey02: 300 trials

Li et al.
(2016)

Attention-Gated
Reinforcement
Learning (AGREL)

Feedforward neural
network

Maximum
Correntropy
based
attention-gated
reinforcement
learning

Intracortical
Premotor cortex

(55 channels)

Rhesus Macaque 1 4-target obstacle
avoidance task

2D Screen Open Average success
rate 68.79%

Total 552 trials for 30
Monte Carlo runs

Wang et al.
(2017)

Attention-Gated
Reinforcement
Learning (AGREL)

Kernel expansion Quantized
Attention-Gated
Kernel
Reinforcement
Learning
(QAGKRL)

Intracortical
M1 (96 channels)

and PMd (96
channels)

Male Rhesus
Macaque

1 4-target obstacle
avoidance task

2D Screen Open Average success
rate of
80.83 10.3%

On one type of learning
scenario
Total 5000 trials

Zhang et al.
(2018)

Attention-Gated
Reinforcement
Learning (AGREL)

Kernel expansion Clustering based
Kernel
reinforcement
learning

Four simulated
neurons

N/A N/A 4-target reaching
task

2D Screen Open 99.8 6.6% 20 Monte Carlo runs for
600 epochs

Zhang et al.
(2019b)

Attention-Gated
Reinforcement
Learning (AGREL)

Kernel expansion Clustering based
Kernel
reinforcement
learning

Intracortical
M1 (26 channels)

Male Macaque 1 4-target reaching
task

Robotic Arm Open 94.3 0.9% 20 Monte Carlo runs
After 400 epochs
1000 data point/epoch

Zhang and
Wang (2019)

Attention-Gated
Reinforcement
Learning (AGREL)

Kernel expansion Clustering based
Kernel
reinforcement
learning with a
weight transfer

Three simulated
neurons

N/A N/A Two level
discriminative
task

Lever Open Avg. approximately
95%

20 Monte Carlo runs
1000 trials for each task

(Continued)
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TABLE 1 | Continued

Author
(year)

Neural decoder Neural signal
type

Subject Task External
device

Closed or
open loop

Key reported performance

RL base model Function
approximator

Learning
algorithm

Type No. Best reported
success rates

Data amount for
evaluation

Mahmoudi
and Sanchez
(2011)

Actor-Critic Feedforward neural
network

Back-
propagation

Simulated Neurons N/A N/A 4-target reaching
task (2D
workspace)

Robotic Arm Closed Reached 98% after
less than 200 trials
per target

One session

Intracortical
M1 (20 units) and
NAcc (23 units)

Male
Sprague-Dawley

Rat

1 2-target reaching
task

Robotic Arm Closed reached 100% after
16 trials

One session: 40 trials

Pohlmeyer
et al. (2012)

Actor-Critic Feedforward neural
network

Hebbian
reinforcement
learning

Intracortical
M1 (21 signals) and
NAcc (18 signals)

Marmoset
Monkey (Callithrix

jacchus)

1 2-target reaching
task

Robotic Arm Closed Avg. 90% for the
first 50 trials

Eight sessions (50∼60
trials/session)

Mahmoudi
et al. (2013)

Actor-Critic Feedforward neural
network

Hebbian
reinforcement
learning

Simulated Neurons N/A N/A 2-target
center-out
reaching task

2D Screen Closed 100% after 2 trials
for 2 target tasks

One session

4-target
center-out
reaching task

2D Screen Closed 100% less than 50
additional trials for 4
target tasks

One session

Intracortical
M1 (20 signals)

Marmoset
Monkey (Callithrix

Jacchus)

2 Go no-go task Robotic Arm Open Over 95% after 20
trials for both
monkeys

Three sessions (1
session/day)

Pohlmeyer
et al. (2014)

Actor-Critic Feedforward neural
network

Hebbian
reinforcement
learning

Intracortical
M1 (monkey01:
avg. 18.3 3.1

signals and
monkey02: avg.
21.1 0.4 signals)

Marmoset
Monkey (Callithrix

Jacchus)

2 Go no-go task Robotic Arm Open Avg. 94%:
monkey01
Avg. 90%: monkey
02

1000 sessions: monkey01
200 sessions: monkey 02

Closed Avg. 93%:
monkey01
Avg. 89%:
monkey02

Four sessions (1
session/day)

Prins et al.
(2014)

Actor-Critic Feedforward neural
network

Hebbian
reinforcement
learning

Intracortical
M1 (20 signals)

Marmoset
Monkey (Callithrix

Jacchus)

1 Go no-go task Robotic Arm Open From 77 to 83%
when Critic
accuracy is 90%

100 trials/session

Roset et al.
(2014)

Actor-Critic Feedforward neural
network

Hebbian
reinforcement
learning

EEG
Nine channels

Subject with
Chronic Spinal

Cord Injury

1 Hand grasp or
open task

Functional
Electrical
Stimulation
Device

Closed Avg. around 65% Four closed-loop session
(1st session: 300 trials,
2nd and 3rd sessions: 450
trials, and 4th session: 300
trials)

EEG, electroencephalogram; M1, primary motor cortex; mPFC, medial prefrontal cortex; NAcc, nucleus accumbens; PMd, primate dorsal premotor cortex; PPC, posterior parietal cortex; S1, somatosensory cortex.
Note that in Neural Signal Type, when the input state includes both single and multi-unit activities, a term “signal” was used, as the authors used this term in their studies.
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Vπ (xt) = Eπ [Rt | xt] . (1)

This state-value function indicates the expected cumulative
reward that an agent can collect from a state xt . In addition, an
action-value function considers the expected cumulative reward
obtained by performing an action at while the agent is in the state
xt and following the policy π thereafter:

Qπ (xt, at) = Eπ [Rt | xt, at] . (2)

A discounted infinite-horizon model is popularly chosen for
the cumulative reward Rt :

Rt =
∞∑

k = 0

γkrt + k + 1, 0 < γ < 1, (3)

where the discount factor γ provides emphasis on recently
acquired reward values and prevents the function from growing
unbounded as k→ ∞.

The objective of RL is to find a good policy that maximizes
the expected reward of all future actions given the current
knowledge. By maximizing the rewards made available to an
agent, the goal behavior can be realized. This duality is of course
present by design and is commonly referred to as the Reward
Hypothesis. Since the value function represents the expected
cumulative reward given a policy, the optimal policy π∗, can be
obtained based on the value functions; a policy π is better than
another policy π′ when the policy π gives a greater expected
return than the policy π′. In other words, π ≥ π′ when
Vπ (xt) ≥ Vπ′ (xt) or Qπ (xt, at) ≥ Qπ′ (xt, at) for all xt ∈ X
and at ∈ A. Therefore, the optimal state-value function Vπ∗ (xt)
is defined by,

Vπ∗ (xt) = max
π

Vπ (xt), (4)

and the optimal action-value function Qπ∗ (xt, at) can be
obtained by,

Qπ∗ (xt, at) = max
π

Qπ (xt, at). (5)

The following Bellman optimality equations are obtained by
evaluating the Bellman equation for the optimal value function,

Vπ∗ (xt) = max
at∈A(xt)

∑
xt + 1

Pa
xx′

[
Ra

xx′ + γVπ∗ (xt + 1)
]
, (6)

Qπ∗ (xt, at) =
∑
xt + 1

Pa
xx′

[
Ra

xx′ + γmax
at + 1

Qπ∗ (xt + 1, at + 1)

]
,

(7)

where Pa
xx′ = P(xt + 1 = x′|xt = x, at = a) and

Ra
xx′ = E

[
rt + 1

∣∣ xt = x, at = a, xt+1 = x′
]
. The solution

to these Bellman optimality equations can be obtained using
dynamic programming (DP) methods. However, this procedure
is infeasible when the number of variables increases due to the
exponential growth of the state space, the curse of dimensionality.
In addition, solving this equation requires explicit knowledge of
the environment including the state transition probability Pa

xx′
and reward distribution Ra

xx′ (Sutton and Barto, 1998).

Functional Approximation of the Value
Function and Policy
It is noteworthy that all published works on neural decoding
within RLBMI use some form of functional approximation for
either the value function or the policy. Therefore, in this section,
we provide further details on how the functional approximation
can be considered in RL. Moreover, this is another reason
why we present in separate columns in Table 1, the RL base
model and the function approximation strategies, along with the
learning algorithms.

Various methods can approximately solve the Bellman
optimality equations for each of the value functions. The
approximate solutions often require far less time to resolve, with
the added advantage of requiring less memory. The estimated
value functions will allow comparisons between policies and thus
guide the optimal policy search:

Ṽπ (xt) = fv
(
xt; θfv

)
, (8)

Q̃π (xt, at) = fq
(
xt, at; θfq

)
, (9)

where fv and fq represent arbitrary functions, and θfv and θfq
are their corresponding parameters that define the function.
Furthermore, following the same functional approximation
strategy, the approximated policy can also be represented as
follows:

π : at ≈ fπ(xt; θfπ), (10)

where fπ and θfπ are an arbitrary function and its corresponding
parameters, respectively. Therefore, to avoid high computational
complexity and the need for having explicit knowledge of
the environment including Pa

xx′ and Ra
xx′ , this functional

approximation strategy has been mainly considered in RLBMIs
to model neural decoders.

While there exist various functional approximation methods,
there are mainly two functional approximation methods that
have been considered in RLBMI to approximate the value
functions or policy. One is kernel basis expansion, and the other is
artificial neural networks, specifically, feedforward networks and
convolutional neural networks (CNNs).

Kernel Expansions
The basic idea of kernel methods is to nonlinearly map the
input data to a high-dimensional feature space of vectors. Let
X be a nonempty set. For a positive definite function, κ :

X × X → R (Scholkopf and Smola, 2001; Liu et al., 2010),
there exists a Hilbert space H and a mapping φ : X → H, such
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that κ (x1, x2) = 〈φ(x1),φ(x2)〉. The inner product in the
high-dimensional feature space can be calculated by evaluating
the kernel function in the input space. Here, H is called a
reproducing kernel Hilbert space (RKHS) because it satisfies the
following property,

f (x) =
〈
f , φ(x)

〉
=

〈
f , κ(x, ·)

〉
, ∀f ∈ H. (11)

This property enables the transformation of conventional
linear algorithms in the feature space into nonlinear systems
without explicitly computing the inner product in the high-
dimensional space. The function f can take the role of fv, fq, or
fπ in RL as follows:

f (x) =
n∑

i = 1

αiκ(xi, x), (12)

where n corresponds to the number of available units to compute
and αi is the weighting factor for the unit centered at xi. In many
cases, the number of available units corresponds to the number
of data points that have been seen during training. We can think
about kernel expansions as function approximators where the
number of parameters can grow as more data become available.

Feedforward Neural Networks and Convolutional
Neural Networks
An artificial feedforward neural network is composed of input,
hidden (possibly multiple), and output layers, and each layer
contains a certain number of units which are design parameters
that depend on the problem set up. Let x(`) denote the activation
vector at layer ` so that for a network with L layers, the input
to the network is denoted as x(0)and the output of the network
as x(L). The output of each unit in layer ` can be computed as
follows:

x(`)j = g(`)j

d`−1∑
i = 1

w(`)ij x(`−1)
i + bj

 , (13)

where g(`)j represents an activation function, w(`)ij are the weights
connecting each layer’s units, bj is the bias term to be added,
and d` resents the number of units in layer `. The indexes i
and j represent input to output units, respectively. In addition,
x(`−1)
i shows the ith input to the unit j and x(`)j the unit’s output.

Note that when L = 1 and g is the identity function, this neural
network corresponds to a linear function approximator.

A convolutional neural network is one type of artificial neural
network where additional structure in the units can be used to
group and restrict the weighted sum above to a convolution. For
instance, an electroencephalogram (EEG) signal over a short time
window has channel and time structure and can be seen as a single
input array, similarly, an image can be seen as an input array
with spatial structure and possibly also channel structure, RGB
image as an example.

Along with these different function approximation strategies,
various learning methods have been implemented in RLBMI.
They are summarized in Table 1 and details are provided in the
following sections, specifically section “Reinforcement Learning
in Brain Machine Interfaces: Neural Decoding Algorithms.”

REINFORCEMENT LEARNING BRAIN
MACHINE INTERFACES: BASIC
MECHANISM

What makes RL most viable for BMIs is the ability of the
agent to respond with continuous adaptations to a dynamic
environment. In RLBMIs, the environment includes the subject,
external device, and task-related information (Figure 2). RLBMIs
consider the state of the environment xt as the neural signals of
the subject. The action at generated from the agent is treated as
a representation to control an external device, such as direction,
position, or velocity. Moreover, the agent finds a mapping from
the subject’s neural signal to the action, so the agent takes the role
of the neural decoder.

In the RLBMI architecture, there are two intelligent systems:
the BMI decoder in the agent and the user in the environment
(DiGiovanna et al., 2009). The two intelligent systems learn co-
adaptively based on closed-loop feedback. The agent updates the
state of the environment, namely, the location of a cursor on
a screen or a robotic arm’s position, based on the user’s neural
activity and the received rewards. At the same time, the subject
produces the corresponding brain activity. Through iterations,
both systems learn how to earn rewards based on their joint
behavior. The BMI decoder learns a control strategy based on the
user’s neural state and performs actions in goal-directed tasks that
update the action of the external device in the environment. In
addition, the user learns the task based on the state of the external
device. Notice that both systems act symbiotically by sharing the
external device to complete their tasks, and this co-adaptation
allows for continuous synergistic adaptation between the BMI
decoder and the user even in changing environments.

Environment in Reinforcement Learning
Brain Machine Interface
Various experimental setups, including different types of subjects,
external devices, and tasks, have been investigated to define the
environment in RLBMIs, and Table 1 summarizes how each
study is unique.

The reviewed studies showed variations of the subjects such
as Sprague-Dawley rat, Bonnet Macaque, Rhesus Macaque,
Marmoset monkey, and human. The neural signal type that
has been used in RLBMI research also varies. However, our
literature survey method identified that only two types of data
acquisition technologies have been used with RLBMIs, namely,
intracortical neural signals and EEG. Although these two types of
signals differ in many ways, good performance of RLBMIs has
been achieved with both neural signal modalities. In addition,
it was also found that in some cases, the neural data were
artificially generated. The simulated neuron’s activities may fail
to capture all variations present in real-world scenarios but yield
a viable method to showcase various theoretical properties or
characteristics of an algorithm. Moreover, various dimensions of
neural signals have been considered. The values listed inside of
the parenthesis in “Neural signal types” in Table 1 contain details
of the signal dimensions.

Different types of external devices have been employed in
RLBMI experiments. A cursor on a 2D screen, a robotic arm,
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FIGURE 2 | RLBMI architecture with labeled RL components. This figure is modified based on Figure 1 in DiGiovanna et al. (2009).

and a lever are the three different types of devices being reported.
Moreover, numerous tasks have been investigated. A multi-target
center-out reaching task and its variations, such as a multi-
target reaching task and multi-target reaching and grasping task,
have been the most commonly considered in RLBMIs, but go
no-go task, lever pressing task, and obstacle avoidance task have
also been applied.

Agent in Reinforcement Learning Brain
Machine Interface
Agent in RLBMI can be considered as a neural decoder since it
provides a mapping from a state to action. Various RL algorithms
have been considered in RLBMIs. We categorize the neural
decoding algorithms based on the fundamental RL approaches
each study considered. Q-learning, Watkin’s Q(λ), Attention-
Gated Reinforcement Learning, and Actor-Critic are the main
four RL algorithms considered in RLBMIs. The following section
explains in further detail how each neural decoder works
differently and points out each algorithm’s uniqueness.

In addition, each neural decoder’s reported performance
is also summarized. We categorize its performance based on
task type and open- or closed-loop experimental setups. It is
notable that even though most of the studies implement RLBMI
in open-loop setups, similar types of neural decoders have
been implemented in both open- and closed-loop experiments.
The open-loop experiments allow more resource intensive
investigations, yet the closed-loop experiments provide the most
applicable setup for real-world deployments.

REINFORCEMENT LEARNING IN BRAIN
MACHINE INTERFACES: NEURAL
DECODING ALGORITHMS

Table 1 provides an itemized summary of reviewed neural
decoders integrated in RLBMI. This section provides further
details of each neural decoder, along with Table 1. We first
categorize each neural decoder based on the RL base model in
sections “Approximation of the Action-Value Function, Q” and

“Actor-Critic.” We then list learning algorithms for each model
under their corresponding subsections. Specific neural signal type
is identified and the type of task, which the external device
needed to complete, is summarized. In addition, key-reported
performances are listed in terms of success rates.

For the best comparison of overall reviewed neural decoders
in RLBMI, we chose success rates as the evaluation metric.
Since the function approximation algorithms are typically applied
to approximate the value functions in RLBMI, it is common
to show how the value function is estimated to evaluate the
neural decoder’s performance. However, the estimated value is
not always directly associated with how an actual movement
is selected. Furthermore, confusion matrix and precision-recall
curves are commonly considered evaluation metrics in typical
classification tasks, but not all reviewed studies report them. Note
that these metrics are only suitable when a single step reaching
task is considered because an action, a choice of direction
that can match a class label, happens at each step in multi-
step tasks. In addition, we only report the best performances
in each study. Generalization of the reported performance
is still limited due to neural and measurement variability.
Each study reports the neural decoder’s performance on each
subject and session separately. Since each study has a different
number of subjects and recording sessions, we describe the best
reported performance.

Approximation of the Action-Value
Function, Q
A recently published study introduces how a linear
approximation of the action-value function Q can be used
to detect Chinese symbols under the P300 brain–computer
interface paradigm (Huang et al., 2022). The P300 brain–
computer interface paradigm uses a unique setting that requires
stimulations to produce synchronization of EEG patterns. This
study uses different visual stimulations to represent each row
and column that can be associated with a symbol location
in a 6 × 6 (row × column) display. A linear relationship is
used to approximate the action-value function, Q = θTx,
where θ is a coefficient vector, and x is constructed from a
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d-dimensional feature vector based on the EEG epoch. The θ
values are optimized by minimizing the difference between the
expected and the actual Q values, Q∗ − Q̃. For an action selection
strategy, an upper confidence bound (UCB) is used. This study
also provides transferred P300 linear upper confidence bound
(TPLUCB), by transferring θ information from different subjects
to a new subject. PLUCB and TPLUCB showed improved
performance over a conventional algorithm called stepwise linear
discriminant analysis (SWLDA); their reported overall symbol
accuracies are 80.4± 12.8% and 79.6± 14%, respectively.

Q-learning and Its Variations
Temporal difference (TD) learning is an incremental learning
method specialized for multi-step prediction problems. It
provides an efficient learning procedure that can be applied to
RL. TD learning allows learning directly from new experiences
without having a model of the environment. In addition,
it employs temporal difference error, in composition with
previous estimations, to provide updates to the current predictor
(Sutton, 1988).

Q-learning is an off-policy TD algorithm based
on the following incremental TD update rule for the
action-value function.

Q (xt, at)← Q (xt, at) + η[rt + 1

+ γmax
a

Q (xt + 1, a)− Q (xt, at)], (14)

where η and γ are the step-size and discount factors, respectively,
and η, γ ∈[0,1]. The current action at is selected based on a
policy derived from the current Q(xt, at), and ε-greedy is a
commonly considered policy. Despite the policy, this update rule
allows selecting the next action at+1, which results in the greatest
valuation ofQ given the state and action pair. Q-learning does not
require a model of the environment to converge upon an optimal
policy and is, therefore, invaluable in stochastic and dynamical
learning situations.

The Q(λ) algorithm is an extension of Q-learning by adding
the eligibility trace λ, which allows learning, based on a sequence
of actions selected. Although there are two different Q(λ)
algorithms, including Watkins’ Q(λ) (Watkins, 1989) and Peng’s
Q(λ) (Peng and Williams, 1996), the RLBMI studies showed
a specific focus on Watkin’s Q(λ) algorithm. Watkin’s Q(λ)
algorithm uses the following cost function Jt :

Jt =
1
2
(
TDerrorλt

)2
, (15)

TDerrorλt = TDerrort +
T−1∑
n = 1

(γλ)nTDerrort + n, (16)

TDerrort = rt + 1 + γQ (xt + 1, at + 1)− Q(xt, at), (17)

where T is the length of a trial. Its update rule is derived by
∂Jt

∂Q(xt,at) = 0.
Attention-Gated Reinforcement Learning was introduced

as a biologically realistic learning scheme by integrating

feedback connections, called attention effects, and synaptic
plasticity (Roelfsema and van Ooyen, 2005). Attention-Gated
Reinforcement Learning is a policy-based learning method with
an instantaneous reward. Two unique components of Attention-
Gated Reinforcement Learning are global error signal δ, which
reflects changes in reward expectancy, and an attention signal,
which feeds back from the output layer to the previous layers.
The global error signal δ is defined in such a way, that it increases
learning when unexpected actions are taken. Another key
difference between the Attention-Gated Reinforcement Learning
is a form of policy π for which the units in the output layer engage
in a competition. That is, the new form of policy introduces
that in each iteration, one output unit is selected, based on the
stochastic Softmax rule, and only the winning unit is updated
(Roelfsema and van Ooyen, 2005).

It is notable that compared to Q(λ) algorithms, Attention-
Gated Reinforcement Learning considers the same mechanisms
of state and action relations; that is, a neural signal is treated as
an input state, xt , and the output is represented as the action,
at , to control an external device. Moreover, the Attention-Gated
Reinforcement Learning network is set to estimate the action-
value function, Q. The unique difference in the Attention-Gated
Reinforcement Learning network is that a new form of policy is
applied to select one corresponding action.

Q-Learning via Kernel Temporal Difference(λ)
The value functions can be estimated adaptively using the TD(λ)
algorithm, which approximates the value functions using a linear
function approximator. However, this may be a limitation in
practice. A nonlinear variant of the TD algorithm, called Kernel
Temporal Difference(λ), was introduced by integrating kernel
methods (Bae et al., 2011, 2015).

Bae et al. (2011) showed how the action-value function Q
can be approximated using Kernel Temporal Difference(λ) in
Q-learning, Q̃π (xt, at) = f

(
xt, at; θf

)
. The function f can be

optimized using the following update rule:

f ← f + η

m∑
i = 1

1f̃ i, (18)

1f̃ i = (ri + 1 +
〈
f , γφ (xi + 1)− φ(xi)

〉
)

i∑
k = 1

λi−kφ(xk).

(19)

Here, η is the stepsize, and m is the length of a trial. We should
note that differently from Q(λ), this algorithm uses the eligibility
trace λ as in TD(λ) (Sutton, 1988). That is, the λ value is not set
to zero depending on the chosen greedy policy but takes a main
role as a memory to trace more recent trials. Figure 3 shows how
this algorithm can be considered in the basic RL structure.

Bae et al. (2011) showed that using female Bonnet Macaque’s
intracortical recordings, this algorithm properly finds matching
directions on a 2-target center-out reaching task after 2 epochs
of training. The application of Kernel Temporal Difference(λ)
was extended and a convergence property was explained
in Bae et al. (2015). This study investigated the algorithm’s
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FIGURE 3 | The decoding structure of RLBMI using a Q-learning via Kernel Temporal Difference(λ). This figure is modified based on Figure 1 in Bae et al. (2015).

performance on various setups in open-loop experiments
and presented results from closed-loop RLBMI experiments,
using monkey’s intracortical signals. Considering that most of
the reviewed studies implemented RL-based neural decoding
algorithms on a single-step task, which allows one step from the
initial location to the target, a distinctive feature of this study is
that it investigated multi-step reaching tasks, as well. In addition,
the best performance on the closed-loop 2-target reaching task to
control a robotic arm showed 90% accuracy.

Q-Learning via Correntropy Kernel Temporal
Difference
A new cost function, called Correntropy, has been integrated
in Kernel Temporal Difference, to address possible issues under
noise-corrupted environments (Bae et al., 2014). Highly noise-
corrupted environments lead to difficulties in learning, and this
may result in failure to obtain the desired behavior of the
agent. The generalized correlation function, Correntropy, was
first introduced by Liu et al. (2007). Correntropy is defined in
terms of inner products of vectors in the kernel feature space,

Correntropy (X1,X2) = E[κ(X1 − X2)], (20)

where X1 and X2 represent two random variables, and κ is
a translation invariant kernel. When Correntropy is set as a
cost function in Kernel Temporal Difference(λ), Q-learning
via Correntropy Kernel Temporal Difference approximates the
action-value function Q for an action k in the following way;

Q̃
(
xt, at = k

)
= η

t−1∑
i = 1

e
−

(
TDerror2i

2h2
c

)
TDerrori Iki κ(xt, xi),

(21)

where η is the stepsize, hc is the Correntropy kernel size,
and TDerrori denotes a Temporal Difference error defined
as TDerrori = ri + 1 + γmaxa Q (xi + 1, a)− Q(xi, ai = k).

Recall that the reward ri + 1 corresponds to the action selected
by the current policy with input xi because it is assumed
that this action causes the next input state xi + 1. Here, Iki
is an indicator vector with the same size as the number of
outputs; only the kth entry of the vector is set to 1, and
the rest of the entries are 0. The selection of the action
unit k at time i can be based on an ε-greedy method.
Therefore, only the parameter vector corresponding to the
winning action gets updated. Correntropy Kernel Temporal
Differences showed slightly faster learning speed than Kernel
Temporal Difference(λ = 0) when intracortical recordings from
a female Bonnet Macaque were decoded to control a cursor
on a screen in a 4-target center-out reaching task. In
addition, interestingly, more balanced learning through four
different targets was observed, compared to Kernel Temporal
Difference(λ = 0), and this may bring a potential benefit to the
closed-loop RLBMIs.

Dueling Deep Q Networks
Although there have been dramatic expansions in deep RL
studies, which combine RL and deep learning, the application
of deep RL in BMIs still lacks. Zhang et al. (2019b) is a
unique study introducing the application of Dueling Deep
Q Networks (Wang Z. et al., 2015) to classify different
neural patterns associated with six different behaviors. In
addition, considering most of RLBMIs have used intracortical
neural signals, this study is distinctive from other studies,
by using EEG. It should be noted that due to the challenges
of EEG, lower signal-to-noise ratio and spatial resolution
than the intracortical recordings, the imagery actions
related to typing commands are not directly associated. For
instance, to make a robot move forward, the subject should
imagine upward, and for turning left, the subject should
imagine downward, etc.

Dueling Deep Q Networks use a special deep network
architecture composed of a set of convolutional layers followed by
two streams of fully connected layers. The basic idea of Dueling
Deep Q Networks is to estimate the action-value function Q in
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composition with the state-value function V and the advantage
function, Aπ (xt, at) = Qπ (xt, at)− Vπ(xt), using the deep
network architecture:

Q (xt, at; θ, w, v) = V (xt; θ, v)

+

(
A(xt, at; θ,w)− max

a∈|A|
A(xt, a; θ,w)

)
,

(22)

where θ represents the parameters of the convolutional layers, w
and v are the parameters of the two streams of the fully connected
layers, respectively. That is, after the input neural representation
passes through the convolutional layers, the output of the
convolutional layer splits into two different fully connected
networks, which represent the state-value function V and the
advantage function A, separately. Once the state-value function
V and the advantage function A are obtained, the action-value
function can be computed. Based on seven healthy human EEGs,
this algorithm reached average classification accuracy of 93.63%.

Watkin’s Q(λ) With Conventional Artificial Neural
Networks
Watkin’s Q(λ) has been considered to find the optimal policy
π∗. Depending on BMI applications, various strategies have
been applied to approximate the action-value function Q in
Watkin’s Q(λ). For example, an Artificial Neural Network was
implemented in DiGiovanna et al. (2007b) and Sanchez et al.
(2011), and a Time Delayed Neural Network (TDNN) was
applied in DiGiovanna et al. (2007a, 2009) and Tarigoppula et al.
(2012).

DiGiovanna et al. (2007b) investigated single-layer
perceptron, multilayer perceptron with linear outputs, and
multilayer perceptron with nonlinear outputs in go no-go task
to control a robotic arm’s movement using a rat’s intracortical
signals. Interestingly, this study combines a supervised learning
algorithm, called the Multiple Paired Forward Inverse Model,
to decide whether the robotic arm’s moving direction is either
to the left or right. In the case of the single-layer perceptron,
in the closed-loop experiment, the neural decoder reached
93.7% performance accuracy in the first session containing 16
trials, where 8 trials are for the left target and the rest for the
right target.

Sanchez et al. (2011) used multilayer perceptron with back
propagation to estimate the action-value function with Watkin’s
Q(λ). In an open-loop experiment, this study shows that the
neural decoder can properly find a bonnet macaque’s intracortical
signal to action directions in an 8-target center-out reaching
task on a 2D screen.

In addition, DiGiovanna et al. (2007a, 2009) are from the same
main authors, and these studies follow the same experimental
paradigm and decoding algorithm; both showed that using a
TDNN with backpropagation in Watkin’s Q(λ) to estimate
the action-value function Q, a rat’s intracortical signal can be
successfully decoded to control a robotic arm.

The work of Tarigoppula et al. (2012) investigated the
properties of neurons that help to obtain a reasonable
performance of the neural decoder. The authors tested a

computational spiking neuron model, named Izhikevich
neuron model (Izhikevich, 2004), on an 8-target center-out
reaching task to validate the correlation with Izhikevich-
tuning depth and the Q(λ) learning’s success rate. The
authors defined the Izhikevich-tuning depth as a/b, where
the current inputs to the Izhikevich neuron are noted as
I = a ×

(
weightage of a neuron

)
+ b, and a and b are

variables to be chosen. The defined tuning depth explains that
the behavior of the neuron model is influenced by the ratio
of modulated input current, indicated in a, and the baseline
input current, represented as b. In addition, a TDNN with
backpropagation was used in Watkin’s Q(λ) to approximate the
action-value function. Different depth values are investigated
with 80 neurons, and it is shown that when Izhikevich-
tuning depth is over 0.75, the RL agent provides a success
rate of over 95%.

Attention-Gated Reinforcement Learning
Attention-Gated Reinforcement Learning has been applied in
RLBMI (Wang Y. et al., 2015 and Shen et al., 2020). When a
three-layer neural network is considered, the weights between the
input and hidden units w(1)ij and hidden and output units w(2)jk are
updated based on the error backpropagation rule (Bishop, 1995)
as follows:

w(1)ij ← w(1)ij + η1x
(0)
i x(1)j f (δ) (1− x(1)j )

C∑
k = 1

x(2)k w(2)jk ,

(23)

w(2)jk ← w(2)jk + η2x
(1)
j x(2)k f (δ), (24)

where η1 and η2 are the stepsizes, x(0)i , x(1)j , and x(2)k represent
the input, hidden, and output units, respectively. C shows
the number of the hidden units. Here, the input unit, x(0)i ,
is the representation of the neural signals, and the output
unit x(2)k is the action-value function representing one class of
action. In addition, the expansive function f (δ) is a function
of the global error. It will be described in the following
paragraph, how Wang Y. et al. (2015) study sets this expansive
function as an example.

One requirement of Attention-Gated Reinforcement
Learning is the instantaneous reward. Thus, the approximated
instantaneous reward is commonly considered. For example,
in Wang Y. et al. (2015), the instantaneous reward was
approximated based on the distance differences of the moving
cursor as follows:

rt + 1 =

{
1

1 + e−α1dt
, 1dt 6= 0

1, 1dt = 0, π (st) = ah or ar
, (25)

where α is a scaling factor, which was set to 20, and 1dt is the
distance between the position of the moving cursor at time t
and t + 1. ah and ar correspond to the monkey’s actions, which
are holding the joystick and resting, respectively. Once the agent
receives the instantaneous reward, the global error signal can
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be defined. Wang Y. et al. (2015) sets the global error signal as
follows:

δt =
[

2− Pr
(
x(2)k,t = 1

) ]
rt + 1 − 1. (26)

Here, Pr
(
x(2)k,t = 1

)
is the probability that the output unit k at

time t is the winning unit. The definition of the global error signal
leads to defining the expansive function. In Wang Y. et al. (2015),
the expansive function is set as follows:

f (δt) =

{
δt

1−δt + β
, δt ≥ 0

δt, δt < 0
, (27)

where β is the scaling factor, which was set as 10−4. This expansive
function is used in the updating rule.

In Wang Y. et al. (2015), a male Rhesus Macaque’s intracortical
signals from the primary motor cortex (M1) were recorded while
it was moving a joystick. The joystick’s corresponding movement
was displayed on a 2D screen as a cursor location. Its intracortical
signals are input to the Attention-Gated Reinforcement Learning
model to reach four different target locations. This experiment
allowed seven different actions including up, down, left, and right
position holding of y-axis, position holding of x-axis, and resting.
After applying 4 days of data (days 1, 2, 3, and 6), allowing 40 min
recordings per day, their neural decoder reached an average target
acquisition rate of 90.16%.

In addition, by modeling reward, based on the medial
prefrontal cortex (mPFC) from rates using a support vector
machine, Shen et al. (2020) showed the possibility of using
Attention-Gated Reinforcement Learning in autonomous
RLBMI that can self-evaluate the external device’s behavior. After
the introduction of successful implementation of Attention-
Gated Reinforcement Learning, variants of Attention-Gated
Reinforcement Learning have been introduced in RLBMIs,
which are described in the following subsections.

Transfer Learning Mini Batch Attention-Gated
Reinforcement Learning
The main departure of Zhang et al. (2020) from Wang Y.
et al. (2015) is the incorporation of transfer learning and
mini-batch training to alleviate degradation of performance
on the agent due to neural plasticity; i.e., changing neural
patterns over time associated with the same action. A principal
component analysis (PCA)-based domain adaptation was used
as the form of transfer learning, which projects the previously
observed neural data and current data to a shared feature
space that reduces the differences between them. After that,
at each iteration, a mini-batch of samples, the last N
samples, is used to update the Attention-Gated Reinforcement
Learning weights.

In Zhang et al. (2020), the error signal δt was defined in the
following way,

δt = rt − E[rt], (28)

where E[rt] represents the expected reward based on the agent’s
policy. The expansive function is defined as the same in Wang Y.
et al. (2015) by setting β = 0. Note that Shen et al. (2020) and
Zhang et al. (2020) both alter the method proposed in Wang Y.
et al. (2015) with a slightly different error signal and expansive
function, while Shen et al. (2020) also incorporates a reward
model and Zhang et al. (2020) introduces transfer learning and
mini-batch concepts.

Zhang et al. (2020) used intracortical recordings from two
adult male Rhesus Macaques while they are performing 3-target
reaching and grasping tasks. The neural decoder showed a success
rate of approximately 90% for both monkeys.

Maximum Correntropy-Based Attention-Gated
Reinforcement Learning
The same group as Wang Y. et al. (2015) integrated Correntropy
(Liu et al., 2007) as a cost function to obtain robust Attention-
Gated Reinforcement Learning performance (Liu et al., 2007).
By taking the Correntropy as a cost function in Attention-
Gated Reinforcement Learning, the updating rule introduced in
Attention-Gated Reinforcement Learning is modified as follows:

w(1)ij ← w(1)ij + η1x
(0)
i x(1)j κ(δ)f (δ)

(
1− x(1)j

)
w(2)jk , (29)

w(2)jk ← w(2)jk + η2x
(1)
j κ(δ)f (δ), (30)

where κ is the Correntropy kernel function, and κ(δ) represents
the kernel value on the error signal δ. This yields the following
Correntropy definition:

Correntropy = E[κ(δ)]. (31)

When a Rhesus Macaque was performing a 4-target obstacle
task on a 2D screen by moving a joystick, the monkey’s premotor
cortex signals were recorded. The new cost function in Attention-
Gated Reinforcement Learning allowed an improved success
rate of decoding the monkey’s neural intention by more than
20% (from 44.63 to 68.79%) compared to Attention-Gated
Reinforcement Learning (Li et al., 2016).

Quantized Attention-Gated Kernel Reinforcement
Learning
Moreover, to address the issue of local minima entrapment
on the multilayer perceptron, employed in Attention-Gated
Reinforcement Learning, the same group, as Wang Y. et al.
(2015), extended Attention-Gated Reinforcement Learning by
integrating kernel methods (Wang et al., 2017). That is, the
action-value function was approximated by a superposition of
kernels as in kernel methods,

Q̃k (xt) =
t−1∑
k = 1

ηf (δ) 〈φ (xt) ,φ (xk)〉

=

t−1∑
k = 1

ηf (δ)κ(xt, xk), (32)
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where η is the stepsize, f (δ) is the expansive function, and
κ is the kernel function. In addition to the introduction of
the kernel method, Wang et al. (2017) applied a quantization
method (Chen et al., 2012) to avoid the linear growth of the
computational complexity.

A male Rhesus Macaque’s intracortical signals from both
M1 and primate dorsal premotor cortex (PMd) were decoded
to a cursor location to perform a 4-target obstacle avoidance
task. The monkey was moving a joystick to control the cursor
location displayed on a 2D screen. Authors investigated various
learning scenarios and average success rates of 80.83 ± 10.3%
were reported. It is remarkable that although the value of the
success rate seems lower than the other reported studies including
Wang Y. et al. (2015) and Zhang et al. (2020), considering the
complexity of the task type, obstacle avoidance tasks, this success
rate is significant.

Clustering-Based Kernel Reinforcement Learning
Zhang et al. (2018, 2019a) extended Quantized Attention-Gated
Kernel Reinforcement Learning by introducing the concept
of data clustering. The data clustering considers only the
selected subspace of RKHS to compute the action-value function.
Moreover, the weight update is applied only to the nearest cluster
to the chosen action.

Zhang et al. (2018) provide a proof of concept of the
clustering-based kernel RL approach in RLBMIs by using
simulated neurons. This study shows decoding performance
improvement of this approach (99.8 ± 6.6%) compared to
Quantized Attention-Gated Kernel Reinforcement Learning
(97.8 ± 8.8%). Moreover, Zhang et al. (2019a) use a male
Macaque’s intracortical recordings from M1 to control a
robotic arm. It shows that with a relatively small number of
kernels (approximately 800 kernels) compared to Quantized
Attention-Gated Kernel Reinforcement Learning (approximately
3500 kernels), their proposed approach can reach similar
decoding accuracy to Quantized Attention-Gated Kernel
Reinforcement Learning. With sufficient RL training, higher
accuracy (94.3 ± 0.9%) than Quantized Attention-Gated Kernel
Reinforcement Learning (91.8 ± 3.4%) is observed. In addition
(Zhang and Wang, 2019), shows the efficiency of using weight
transfer to lead the agent’s quick adaptation to a similar task.
This study validates how the acquired decoding knowledge from
one task can be effectively transferred to a similar task, by first
training the RL agent to one-level pressing tasks to two-level
pressing tasks using three simulated neurons.

Actor-Critic
Actor-Critic contains two separate structures: one takes a role as
a policy since it selects an action based on a given state, and this
structure is called an Actor. Another structure estimates the value
function, and it is known as a Critic. In addition, compared to
Q-learning, Actor-Critic is an on-policy algorithm. This means
that the Critic always follows a fixed policy provided by the
Actor. In RLBMIs, the conventional Actor-Critic model has been
extended to directly communicate with the user’s neural signals.
That is, at each time, the Actor selects an action at based on
the user’s neural signal xt and the Critic provides a Temporal

Difference error to update the policy in the Actor, based on the
estimated value function in the Critic (Figure 4).

Actor-Critic With Artificial Neural Networks
In Mahmoudi and Sanchez (2011), the policy in the Actor was
modeled using a TDNN, and with the objective function, this
results in the following update rule:

θ← θ + ηTDerrort9(xt), (33)

where η is the stepsize, the temporal difference error is defined
as an instantaneous error, TDerrort = γQt − Qt + 1, and 9(xt)
represents the projected M1 neural state in the feature space. In
this study, the Actor tries to optimize the parameters of the policy
π (xt, at | θ) to maximize the average expected rewards; that is,
θ∗ = argmaxπJ (θ), where J (θ) = 1

T
∑T−1

t = 0 Qt , and T is the
number of steps considered.

A uniqueness of the approach of Mahmoudi and Sanchez
(2011) is that the reward value was assigned directly from the
recorded activities from Nucleus Accumbens (NAcc). Moreover,
the neural state was used from the intracortical neural signals
at M1. It is notable that Mahmoudi and Sanchez (2011) follow
the same experimental setup introduced in DiGiovanna et al.
(2007a, 2009). Although the authors found that NAcc obtains a
rich representation of goal information, it is still challenging to
decide how to assign a specific reward value from the acquired
neural population information at NAcc.

Actor-Critic With Hebbian Reinforcement Learning
Although integration of Hebbian reinforcement learning to
train Actor was first introduced and implemented in BMIs in
Pohlmeyer et al. (2012), Mahmoudi et al. (2013) provides details
on how the Hebbian reinforcement learning can be used to train
the Actor. Consider a probability mass function g written as,

g
(
ρ,w(1)ij , x

(0)
i

)
= Pr

(
x(1)j = ρ|w(1)ij , x

(0)
i

)
, (34)

where the node j takes a certain value ρ. The input x(0)i from
node i through synaptic weight w(1)ij generates the output x(1)j .
The weights can be updated based on Hebb’s rule (Trappenberg,
2004), which follows the activity-dependent features of synaptic
plasticity. By extending the Hebbian reinforcement learning, the
authors introduced the following update rule:

w(1)ij ← w(1)ij + η + r
(
x(1)j − pj

)
x(0)i

+ η− (1− r)
(

1− x(1)j − pj
)
x(0)i , (35)

where η+ and η− are separate step sizes corresponding to reward
and penalty components, respectively, and pj is an output state
of the node j. In addition to Pohlmeyer et al. (2012, 2014),
Mahmoudi et al. (2013), and Prins et al. (2014) use the same
learning algorithm for the neural decoder. Note that in these
studies differently from Mahmoudi and Sanchez (2011), signals
acquired from NAcc were not used to provide the reward
values to the Critic.
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FIGURE 4 | The decoding structure of RLBMI using the Actor-Critic. This figure is modified based on Figure 6.15 in Sutton and Barto (1998).

Mahmoudi et al. (2013) showed that the neural decoder
can adapt to episodic tasks over time. By simulating neuron
activities based on the standard Izhikevich neuron model,
the authors first start with 2-target reaching task and then
expanded to 4-target reaching task, and it was shown that the
neural decoder can adapt to the changing environment over
time and reach 100% success rates in less than a total of 75
trials. Moreover, in an open-loop experiment, based on two
Marmoset monkeys’ intracortical neural signals, recorded at M1,
the neural decoder reached over 95% success rates after 20 trials
for both monkeys.

In addition, Pohlmeyer et al. (2012, 2014) are from the same
authors, and these two studies share the same experimental
paradigm, yet Pohlmeyer et al. (2014) presents an expanded
study from Pohlmeyer et al. (2012). Pohlmeyer et al. (2012)
used a fully connected, three-layer, feedforward neural network
integrated with the Hebbian reinforcement learning algorithm in
the Actor. The Actor-Critic algorithm showed an average 90%
success rate over eight sessions for the first 50 trials by decoding
a Marmoset monkey’s intracortical signals from M1 and NAcc.
Pohlmeyer et al. (2014) used the same subjects and followed the
same experimental paradigm as Mahmoudi et al. (2013), but it
was extended to closed-loop experiments. Interestingly, even for
the closed-loop experiments, a similar performance was reported;
over 90% success rates for both monkeys and four sessions.

Moreover, Prins et al. (2014) investigated how Critic’s
feedback influences the overall performance of the Actor-Critic
with the Hebbian reinforcement learning. When the Critic
was able to provide 90% accurate feedback value using the
Hebbian reinforcement learning approach to Actor, performance
improvements on the policy were observed (from 77 to 83%).

Furthermore, Roset et al. (2014) provided an experimental test
bed for using the Actor-Critic with the Hebbian reinforcement
learning to control a functional electrical stimulation device on
a subject with chronic spinal cord injury using EEG. For four
closed-loop sessions, performances on both Actors and Critics
reached around 65%. In this study, it is notable that the Critic

used the detected error-related potential (ErrP) to input binary
feedback to the Actor.

DISCUSSION

BMIs have great potential to help paralyzed individuals
regain movement capabilities. RL provides its unique learning
mechanism based on trial-and-error paired with rewards that
enable active exploration of the environment. The indirect
learning guidance, given in terms of a reward signal, which can
be directly obtained from the user’s brain activity, allows RL
techniques to be seamlessly integrated into a larger variety of tasks
allowing for more versatile and realistic BMIs.

From the literature, we covered in this article, we can see
that the neural decoders in RLBMIs can be categorized by the
functional approximation approaches and learning strategies on
their key RL components. Functional approximators provide
estimated value function and policy in RL, by integrating
with different learning methods. Therefore, when considering
neural decoders in RLBMI, it is required first to decide on
the RL base model that can determine how certain value
functions and/or policies will be approximated. For example,
if Q-learning is chosen, action-value function is approximated
based on the state and reward values. Second, a type of
function approximator should be chosen and then an appropriate
learning method must be selected. Depending on the choice of
the function approximation method, different parameters need
to be tuned and factors, such as computational complexity,
must be considered.

Although studies show that RL has great potential for
BMI applications, RLBMI applications are still limited. Our
literature review shows that two main RL base models have been
considered in RLBMIs: Q-learning and Actor-Critic. Although
we separately listed Q-learning, Watkin’s Q(λ), and Attention-
Gated Reinforcement Learning in Table 1, Watkin’s Q(λ)
and Attention-Gated Reinforcement Learning are Q-learning
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variants, as we mentioned in section “Q-learning and Its
Variations.” We find that most of the studies used Q-learning. We
consider one of the main reasons behind this is that Q-learning
allows the simplest and reasonably effective learning format for
neural decoders. Both Q-learning and Actor-Critic use a measure
of the value function. However, Q-learning specifically considers
the action-value function, but Actor-Critic typically uses the
state-value function in the Critic. The main difference between
Q-learning and Actor-Critic is that Actor-Critic has an additional
component, called an Actor that updates the policy based on
exploration. It is known that this policy improvement strategy
from the Actor, by using the estimated value function from the
Critic, provides more stable and faster learning than Q-learning
(Sutton and Barto, 1998). However, from the reviewed RLBMI
studies, no critical performance differences were observed. This
may be due to other factors at play such as the functional
approximation and learning models and the complexity of
the experimental setup and neural signals. From the reported
studies, it is limited to conclude which RL base model is more
suitable for BMIs since no study has shown comparisons of
the two different RL base models. Each study selects one RL
base model and has its own experimental setup and subjects.
Some studies show comparisons of the performance of different
functional approximation and learning models, but they use the
same RL base model.

Learning speed on RLBMIs depends on the complexity of
the tasks and neural patterns from the subject. The choice of
functional approximation method determines the computational
complexity and number of parameters to optimize. This can
influence the speed of learning and generalization capabilities.
When selecting the functional approximation algorithm, the
RLBMI designer should be aware of each method’s characteristics.
An artificial neural network is the most well-known machine-
learning model and perhaps the easiest one to implement, thanks
to the availability of well-developed machine-learning toolboxes
and libraries for mainstream coding languages. However, when
artificial neural networks are considered, strategies to overcome
local minima or saddle points and to initialize weights should be
addressed, and the structure of the neural network, including the
type and number of layers and units per layer, should be carefully
selected along with other hyperparameters including the step size
used for training with gradient descent.

Furthermore, kernel methods allow an effective way of
computation, allowing nonlinear approximation in input space,
but linear computation in the feature space, RKHS. Depending
on the use, convergence can be also guaranteed. However, when
kernel methods are considered, one must factor in how the
implementation can handle a potentially increasing number
of kernel units. This requires the incorporation of additional
methods that control the growth of the number of kernel centers
in the structure.

In addition, characteristics of the learning method should
be also considered when designing neural decoders in RLBMIs.
For instance, Correntropy provides robust performance in
the presence of outliers, but it requires tuning of additional
hyperparameters, such as the Correntropy kernel size, and a
proper understanding of the environment is required, since

Correntropy brings benefits to the performance under certain
conditions, including cases where there are highly noisy neural
signals, and the reward values are corrupted. Furthermore,
batch approaches demand investigating what is the optimal
batch size and a suitable update strategy. In RLBMI, further
investigation of functional approximation and learning methods
should be conducted. In the reported studies, the choice of the
function approximation method is still limited, and the effects of
certain learning strategies on the selected function approximation
method have not been fully understood.

Although similar tasks have been considered in various
studies, it is still limited to conclude which neural decoder
provides the best performance due to the subject variations
and differences in the experimental setup. Ideally, a neural
decoder in RLBMIs ultimately finds a proper mapping from
the user’s intention to control an external device, with sufficient
explorations over time. Most of the reported studies show
around or over 90% success rates in closed-loop experiments.
However, DiGiovanna et al. (2009) reported around 70% success
rates in closed-loop experiments. It could be because of the
selection of the animal species. Although animals go through
behavior training procedures, it is challenging to maintain their
engagement during the entire experiment duration. In addition,
reaching tasks for the rat require complex associations of all four
limbs and entire body movement. In contrast, monkeys can still
sit on a chair to conduct reaching tasks by only moving one arm.
It is worth noting that relatively lower success rates in open-
loop experiments reflect the acquired data are not sufficient to
decode complex tasks.

Extracting reward values from the brain is one of the potential
advantages of using RL in BMIs, but the majority of the studies
fail to address the effect on a choice of a reward modeling
method and to explain how the neural signals, extracted for the
reward, can be directly communicated to the neural decoder.
Few studies have shown possibilities of model reward values in
RLBMI based on neural activity from the Nucleus Accumbens
(NAcc) (Mahmoudi and Sanchez, 2011; Prins et al., 2017), M1
(Marsh et al., 2015), and mPFC (Shen et al., 2020). However,
most of the reported studies solely focus on the performance
of the neural decoder by setting reward values based on the
experimental setup. Thus, further investigations on the selection
of a neural decoder and a reward model are still required.

Furthermore, most studies, which used intracortical signals
to validate the neural decoder’s capabilities, showed promising
performances and provided detailed setups required for the
RLBMI implementations. For example, Bae et al. (2015)
explained theoretical properties to guarantee the neural decoder’s
convergence. Tarigoppula et al. (2012) provided specific neuron
characteristics to boost the neural decoder’s performance.
Moreover, Mahmoudi et al. (2013) introduced a learning
strategy to adapt a previously learned RL model to a similar
task environment. Although these studies are promising, there
are many areas for improvement and further exploration.
To consider practical implementations of RLBMIs, further
investigations of the neural decoders on complex tasks and
capabilities for completing sequential tasks are necessary. So
far, most studies considered single-step reaching tasks. Although
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Wang et al. (2017) embedded a 4-target obstacle avoidance task,
it was limited to only one subject in an open-loop experiment.
One possible approach to address this aspect is to set up sub-goals
in RLBMIs (Jurgenson et al., 2019; Paul et al., 2019) that allows
a hierarchical sub-goal structure in a task. This will lead to an
increased number of steps required to reach a goal and extend the
task’s complexity, such as sequential reaching tasks for different
goals. Moreover, there is ample room for improving learning
speed in RLBMIs. Various transfer learning techniques could be
employed to improve the learning rate and to adapt efficiently
to changing environments, for instance, when new patterns of
neural signals and different types of tasks arise (Tayler and Stone,
2009; Zhu et al., 2020).

In addition, RLBMI literature is mostly comprised of open-
loop experiments. This limits their credibility to transfer to real-
world scenarios. The number of subjects considered is typically
very small, one or two, which is most likely due to the surgical
procedures that are required to obtain intracortical signals
and behavioral training when recording animals. Therefore,
generalization over different subjects has not been investigated
yet. In this review, the maximum subject number reported was
20 when EEG was used. Since EEG allows a noninvasive measure
of brain activity, it provides an easier and more flexible setup
for RLBMIs than the highly invasive intracortical acquisitions.
However, it should be noted that EEG brings its own challenges
such as degraded signal quality to properly distinguish the
different subject’s intentions.

It is well known that due to the nature of the EEG recording
process, the spatial resolution is poor, and the signal-to-noise
ratio is low (Nicolas-Alonso and Gomez-Gil, 2012). In addition,
EEGs are easily contaminated with artifacts, such as movement
and electrooculogram (EOG). Therefore, applying additional
signal-processing techniques, such as filtering and implementing
independent component analysis, become unavoidable (Khosla
et al., 2020). In addition, EEG-based BMIs commonly consider
imagined motor-imagery targets that are not directly associated
with the task itself. That is, due to the challenging separation of
neural patterns, experimenters usually assign unrelated imagery
to different directions. For instance, Zhang et al. (2019b)
implemented an EEG-based BMI where specific instructions to
engage a robot to move forward, the subject imagined moving
upward, and to turn left, the subject imagined moving downward,

and so on. These are unique characteristics of EEG-based BMIs
regardless of the employed learning strategy, supervised or
reinforcement learning, to tune the parameters of the neural
decoder. Studies about neural decoders using RL in EEG-based
BMIs are still lacking. There is not enough evidence to provide
a conclusive statement about their feasibilities. However, authors
want to emphasize its great potential due to its own benefits of
the noninvasive recording.

Neural decoders introduced in RLBMIs have shown
great potential, and the reported studies encourage further
investigations to assess their feasibility. Although RLBMIs are
at an early stage to be useful in real-life scenarios, with the
aid of advanced RL modeling strategies and signal processing
techniques, further investigation might yield more realistic
RLBMIs that can be used to assist paralyzed individuals.
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