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A heavy element is a special character for high thermoelectric performance since it
generally guarantees a low lattice thermal conductivity. Here, we unexpectedly found a
promising thermoelectric performance in a two-dimensional semiconducting monolayer
consisting of a light boron element. Using first-principles combined with the Boltzmann
transport theory, we have shown that in contrast to graphene or black phosphorus, the
boron monolayer has a low lattice thermal conductivity arising from its complex crystal of
hexagonal vacancies. The conduction band with an intrinsic camelback shape leads to the
high DOS and a high n-type Seebeck coefficient, while the highly degenerate valence band
along with the small hole effective mass contributes to the high p-type power factor. As a
result, we obtained the p-type thermoelectric figure of merit up to 0.96 at 300 K, indicating
that the boron monolayer is a promising p-type thermoelectric material.
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INTRODUCTION

In the past decade, people devoted themselves to improve the thermoelectric efficiency by trying to
individually control the thermoelectric coefficients through low-dimensional crystals such as single
layers, nanowires, 2D heterostructures, and nanotubes. The thermoelectric performance of a material
is usually characterized by the dimensionless figure of merit ZT � S2σT/κ, where S is the Seebeck
coefficient, σ is the electrical conductivity, κ is the thermal conductivity including both electronic and
lattice contributions, and T is the absolute temperature, respectively (Mohanraman et al., 2015; Hu
et al., 2021). High ZT requires a superior electronic transport but a minimized phonon transport at
the same time, the latter usually arises from heavy elements (Ding et al., 2016). For instance, the
lattice thermal conductivity of traditional commercial bulk thermoelectric materials such as Bi2Te3
and PbTe are lower than 1W/mK (Pei and Liu, 2012; Hellman and Broido, 2014). Although the
thermoelectric coefficient in some cases can be individually controlled in a low-dimensional crystal,
the high lattice thermal conductivity still prevents a striking improvement of ZT (Kumar and
Schwingenschlögl, 2015).

Balandin et al. (2008) experimentally reported that the thermal conductivity of single-layer
graphene is higher than 4000W/mK at room temperature. For monolayer MoS2, it is about 100W/
mK at 300 K based on Yang’s report (Jin et al., 2015). Using a molecular dynamics simulation, Xu
et al. (2015) obtained the lattice thermal conductivity of phosphorene along the zigzag direction that
is higher than 150W/mK at 300 K. Among these popular single-layer crystals, it was found that an
extremely high thermal conductivity leads to poor ZT, which can be ascribed to the following two
factors: 1) light elements with high vibration frequency and 2) large atomic weight difference forbids
the anharmonic scattering. In this regard, we intended to think that is there possibility to achieve
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promising thermoelectric transport in other single-layer crystal
consisting of light elements? In recent years, boron, one of the
carbon’s nearest neighbors, demonstrated the polymorphism in
two-dimensional crystals, which are called borophene. However,
most of the boron monolayers were found to be metallic by
experiment or theory. Interestingly, Hu et al. recently proposed a
series of semiconducting boron monolayers formulated by the
connected network of hexagonal vacancies (Xu et al., 2017). Such
semiconducting phases of the boron monolayer are expected to
achieve in experiments since the controlled synthesis of the boron
monolayer is a mature technology (Kong et al., 2018; Kiraly et al.,
2019).

The semiconducting βs1 boron monolayer has an indirect
bandgap of 0.74 eV based on HSE06 functional (Xu et al.,
2017), and the multi-valley character of both conduction and
valence band near the Fermi level indicates the promising
electronic transport performance. In addition, the complex
crystal consisting of twelve boron atoms and hexagonal
vacancies leads to large number of coupled phonon branches,
which points to possible low lattice thermal conductivity in the
crystal. To explore the potential of the semiconducting βs1 boron
monolayer as a thermoelectric material, we studied its
thermoelectric transport performance by first-principles
combined with Boltzmann transport equations. We found that
the lattice thermal conductivity is 20.2 W/mK at 300 K, and
highly degenerate hole pockets with small effective mass lead
to the high p-type power factor. Finally, the optimal ZT reaches
0.96 at 300 K for p-type doping, which is a recorded value among
two-dimensional monolayers.

COMPUTATIONAL DETAILS

The first-principles calculations were performed within the
framework of density function theory (DFT) using projector-
augmented wave (PAW) (Perdew et al., 1997) pseudopotentials
and Perdew–Burke–Ernzerhof (PBE) (Kresse and Furthmüller,
1996) exchange correlation functionals as implemented in VASP
(Tran and Blaha, 2009). To construct the single-layer crystal, a
15-Å-thick vacuum slab was added along the z-direction. The
plane-wave cutoff energy was set to 400 eV and the
Monkhorst–Pack k mesh was 15 × 15 × 1. Geometry
optimization was converged until the force acting on the ions
become smaller than 10−3 eV/Å. When we calculated the
electronic structure, a modified Becke–Johnson (mBJ) (Tran
and Blaha, 2009) functional was also considered to yield the
accurate effective mass and bandgap.

The electronic transport properties were calculated using the
Boltzmann transport equation (BTE) under a constant relaxation
time approximation as implemented in BoltzTraP (Madsen and
Singh, 2006). A rigid band approximation is used to treat doping,
and the Fermi level shifts up for n-type doping while down for the
p-type. However, within this approximation, the Seebeck
coefficient can be calculated independent of carrier relaxation
time τ, while the evaluation of electrical conductivity still requires
the knowledge of τ. In this regard, we employed deformation
potential theory based on effective mass approximation to

calculate τ (Herring and Vogt, 1956). At last, we performed
phonon BTE solution as implemented in the ShengBTE (Li et al.,
2014) package to calculate lattice thermal conductivity. Second-
and third-order interatomic force constants (IFCs) are quite
necessary inputs for pBTE, which were obtained from DFT
calculations using a converged 4 × 4 × 1 supercell. The
phonon spectrum was obtained from the Phonopy code (Togo
et al., 2008), and a converged cutoff distance of 0.4 nm for
interactive distance was used in calculating anharmonic IFCs.

RESULTS AND DISCUSSION

Figure 1A shows the crystal structure of the βs1 semiconducting
boron monolayer, which consists of a connected network of
hexagonal vacancies that can be divided into triangle regions
and heptagon regions, according to Hu et al (Xu et al., 2017). The
space group is Amm2 and the lattice parameter 6.12 Å after
relaxation is consistent with Hu’s result (Xu et al., 2017).
Figure 1B shows the Brillouin zone path, that is, Γ-Y-P1-Γ-N-
P1. Based on Hu et al (Xu et al., 2017), the HSE06 band structure
indicates that the βs1 boron monolayer is an indirect
semiconductor with a bandgap of 0.74 eV, and also, the

FIGURE 1 | The atomic structure (A) and the Brillouin zone path (B) of
the βs1 boron monolayer and (C) shows the calculated band structure and
density of states.
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phonon spectrum and molecular dynamics simulation confirm
the thermal stability of this boron monolayer. In contrast to
monolayer TMDCs with a large bandgap, the moderate bandgap
of the boron monolayer may possess better electronic transport
performance.

As shown in Figure 1C, the calculated band structure of the βs1
boron monolayer displays an indirect bandgap of 0.68 eV based
on mBJ modification, which is very close to the result of HSE06
(Xu et al., 2017). The mBJ functional has been shown to yield the
accurate bandgap, effective mass, and frontier-band ordering.
The conduction band minimum (CBM) is located in the interval
between Γ and P1 points, while the valence band maximum
(VBM) is located in the interval between Γ and Y points. In
consistent with previous calculation, the VBM is dominated by
the out-of-plane pz orbitals while the CBM is attributed to the in-
plane s+px,y orbitals (Xu et al., 2017), and this semiconducting βs1
boron monolayer was realized by modulating the in-plane s+px,y
orbitals and pz-derived bands through the connected network of
hexagonal vacancies, according to Hu et al (Xu et al., 2017).

Interestingly, the band structure of the βs1 boron monolayer
possesses several advantages of electronic transport performance.
First, the lowest conduction band, shown in Figure 1C, exhibits a
camelback shape along the P1-Γ-N direction. The camelback
shape is known in topological materials where the spin-orbital
coupling is not large enough to cause inversion between the
frontier bands (Eremeev et al., 2010). Here, this interesting band

dispersion is obtained in the light βs1 boron monolayer. The
importance of the camelback shape in electronic transport is that
it can increase the number of degenerate carrier pockets, which
thereby increases the density of states (DOS) effective mass (Ding
et al., 2019a; Ding et al., 2019b). As one can see in the right panel
of Figure 1C, the DOS at the CBM is markedly higher than that at
VBM. As a result, a higher n-type Seebeck coefficient can be
achieved in this boron monolayer. In addition to CBM, there are
these band extremes of VBM along Γ-Y, P1-Γ, and Γ-N,
respectively, which are highly degenerate in energy and
indicate more carrier pockets joining in hole transport. The
carrier effective mass near the Fermi level dominates the
carrier mobility and relaxation time and plays an important
role in thermoelectric transport (Peng et al., 2014). As one can
see, the band near the VBM is more dispersive than that near the
CBM, yielding a hole effective mass 0.57m0 smaller than the
0.998m0 of an electron.

Calculated electronic transport properties including the
Seebeck coefficient, electrical conductivity, and the power
factor at room temperature are shown in Figure 2. The
Seebeck coefficient decreases while the electrical conductivity
increases with the increase of carrier density since they are
inversely related to carrier density. In this regard, the power
factor cannot be improved infinitely but can be optimized by
modulating carrier density. In Figure 2A, the higher n-type
Seebeck coefficient can be attributed to the camelback-shaped

FIGURE 2 | Calculated Seebeck coefficient (A), electrical conductivity
(B), and the power factor (C) of the βs1 boron monolayer at 300 K.

TABLE 1 | Calculated DP constant, elastic modulus, carrier effective mass, carrier
mobility, and carrier relaxation time at 300 K.

El C2D m* μ τ

(eV) (eVÅ⁻2) (me) (cm2V1⁻1s⁻1) (10⁻14s)

n-type −6.93 29.2 0.998 208.6 11.797
p-type −3.03 29.2 0.57 3,344.7 108.034

FIGURE 3 | The phonon dispersion and density of states of the βs1 boron
monolayer.
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band, as discussed above. To obtain the electrical conductivity as
shown in Figure 2B, we employed deformation potential theory
(Herring and Vogt, 1956) to calculate the carrier relaxation time.
Calculated results are shown in Table 1. It is crucial to find that
the lower deformation potential constant of holes reflects the
minimal sensitivity of valence band maximum to deformation.
Along with the smaller hole effective mass, a high hole mobility
and long hole relaxation time were obtained, as compared to an
electron. As a result, the p-type power factor is much higher than
n-type, as shown in Figure 2C. The maximum power factor of the
p-doped semiconducting boron monolayer reaches 121 mW/
mK2 at an optimal carrier density of 3.14 × 1012 cm−2, while it
is only about 17mW/mK2 in monolayer MoS2 (Jin et al., 2015).
The Seebeck coefficient under this optimal carrier density for n-
and p-type are 263 µV/K and 175 µV/K, respectively, which are
the standard values of thermoelectric materials (Sun and Singh,
2016).

Calculated phonon dispersion of the βs1 boron monolayer is
shown in Figure 3. First, in contrast to graphene, in phosphorene
and monolayer MoS2, the twelve atoms in the unit cell leads to
thirty-six phonon branches. It was found that a complex crystal
with many optical modes is usually associated with low lattice

thermal conductivity (Ding et al., 2018; Hu et al., 2020a; Hu et al.,
2020b). A number of optical modes gather in frequency about
10 THz. High-frequency phonons with low velocity often do
little contribution to lattice thermal conductivity. One can also
see that the low-lying optical modes are coupled with acoustic
modes, which is different from phosphorene or monolayer MoS2
where there is a wide frequency gap among optical branches or
between acoustic and optical branches (Fei et al., 2014; Jin et al.,
2015). A strong coupling of phonon modes will increase the
anharmonic scattering processes and leads to the low lattice
thermal conductivity. Although the allowed phonon frequency
of about 40 THz is higher than that of phosphorene and
monolayer MoS2 due to the light element, the allowed
acoustic frequency of about 5 THz of phonon modes is quite
lower than graphene, phosphorene, and monolayer MoS2 (Fei
et al., 2014; Jin et al., 2015; Ge et al., 2016). These advantages of
low lattice thermal conductivity in the βs1 boron monolayer are
probably associated with its complex crystal of hexagonal
vacancies.

Figure 4A shows the calculated lattice thermal conductivity of
the boron monolayer with respect to temperature. It can be seen
that the BTE results are well fitted with κ∝1/T. The lattice

FIGURE 4 | (A) Calculated lattice thermal conductivity with respect to temperature, phonon group velocity (B), and anharmonic scattering (C) of the βs1 boron
monolayer. (D) shows the cumulative lattice thermal conductivity with respect to the mean free path at 300 K.
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thermal conductivity at room temperature is about 20W/mK,
which is much lower than that of graphene (above 4000W/mK)
(Balandin et al., 2008), phosphorene (above 150W/mK along
zigzag) (Xu et al., 2015) consisting of light element, and also
monolayer MoS2 (about 100W/mK) (Jin et al., 2015). Thus, the
βs1 boron monolayer with a light boron element in the crystal also
exhibits low lattice thermal conductivity, as compared to previous
light monolayers. Such a low lattice thermal conductivity can be
ascribed to the large number of optical modes and the strongly
coupled phonon modes as arising from the complex unit cell with
a network of hexagonal vacancies, as discussed above. The low
group velocity of optical modes, as shown in Figure 4B, indicates
that the acoustic and low-lying optical modes do most of the
contribution to phonon transport. One can see from Figure 4C
that the anharmonic scattering rate increases with the increase in
temperature, and such scattering rate is much higher than
monolayer MoS2 in which the scattering rates of phonons
almost lie below 1ps−1 (Ding et al., 2018). Figure 4D shows
the cumulative lattice thermal conductivity as a function of mean
free path at 300 K, which points to the well convergence of the
lattice thermal conductivity.

Combining the electronic and phonon transport
properties, we evaluated the thermoelectric performance of
the βs1 boron monolayer. Figure 5 shows the figure of merit
ZT values for both the n- and p-doped boron monolayer as a
function of the carrier concentration at room temperature.
Obviously, the p-type thermoelectric performance is superior

to n-type due to the excellent p-type power factor. Combined
with the relatively low lattice thermal conductivity, the
optimal p-type ZT value of the boron monolayer reaches
0.96 at an optimal carrier concentration of about 1 ×
1012 cm−2, which is a recorded value among single-layer
materials consisting of light elements. Our results indicate
that the semiconducting βs1 boron monolayer has a potential
application in thermoelectric devices.

CONCLUSION

We have investigated the thermoelectric performance of a
semiconducting βs1 boron monolayer using first-principles
combined with Boltzmann transport equations. We have
shown that the high n-type Seebeck coefficient arises from the
camelback shape of the lowest conduction band, while the highly
degenerate valence band with small effective mass leads to the
high hole mobility and long relaxation time, which contributes to
the superior hole transport performance. Importantly, we found
relatively low lattice thermal conductivity in the boron
monolayer, ∼20W/mK at 300 K, as compared with graphene
or phosphorene also consisting of a light element. This is
primarily ascribed to the complex unit cell with the hexagonal
vacancy. Finally, we obtained an optimal p-type ZT of about
0.96 at 300 K in this boron monolayer, indicating its potential as
p-type thermoelectric materials.
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