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Iodine is an essential micronutrient for most of the living beings, including humans.
Besides its indispensable role in animals, it also plays an important role in the
environment. It undergoes several chemical and biological transformations resulting
in the production of volatile methylated iodides, which play a key role in the iodine’s
global geochemical cycle. Since it can also mitigate the process of climate change, it is
reasonable to study its biogeochemistry. Therefore, the aim of this review is to provide
information on its origin, global fluxes and mechanisms of production in the environment.
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INTRODUCTION

Atmospheric iodine species, such as methyl-iodides, are distributed to terrestrial and aquatic
environments via wet and dry depositions. The primary processes that affect iodine’s allocation
and speciation in the atmosphere are photochemical reactions (Moore and Zafiriou, 1994), and the
production of volatile iodide’s transformants by marine phytoplankton, cyanobacteria and algae,
which are the main sources of biogenic alkyl-iodides in the atmosphere (Carpenter, 2003).

The environmental relevance of the methyl-iodide is highlighted by the estimates which suggest
that in the regions between 40 N◦ and 40 S◦ up to 174 Gg of methyl-iodide is produced annually via
biological and photochemical processes (Stemmler et al., 2014). Furthermore, according to Bell et al.
(2002), almost 70% of the annual flux of methyl-iodide originates from the open oceanic waters.
These accrued volatile organo-iodine species participate in the formation of cloud condensation
nuclei (Saunders and Saiz-Lopez, 2009), which can cause albedo and regional cooling with a
negative effect on climate. Furthermore, the reactive methyl-iodide species also take part in the
depletion of ozone layer (Chameides and Davis, 1980; Solomon et al., 1994; Davis et al., 1996).

MECHANISMS OF METHYL-IODIDES’ GENESIS

Methyl-iodide compounds are produced in seawater via the reaction between photochemically
produced methyl and iodine radicals, typically in temperate and tropical waters (Moore and
Zafiriou, 1994). Nevertheless, the illumination, as well as the acidic pH, and the dissolved organic
carbon presence accelerate the production of methyl-iodide in sea water (Chen et al., 2020).

Besides photochemical reaction, iodide methylation can be mediated biologically. Thayer (2002)
noted that there are three pathways of iodine methylation. The first pathway is the reaction of iodide
with β-dimethylsulphoniopropionate (DMSP), an algal osmoprotectant. However, the production
of methyl-halides through this reaction is not favored, because of its endothermic character. Thus,
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it was estimated that only less than 1% of methyl-
halides in the atmosphere are produced by this reaction
(Hu and Moore, 1996).

The second mechanism suggests the direct transformation
of iodide into methylated species via enzymatic
transformation originally proposed for arsenic methylation
(Challenger, 1951). Via this methylation pathway, the
transformation of inorganic iodide into methylated
compounds involves the nucleophilic attack of iodide
at the electrophilic CH3

+S site of the S-adenosyl-L-
methionine methyl donor mediated by the methyltransferases
(Itoh et al., 2009). This pathway is proved to be
favored by various microorganism. Amachi et al. (2001)
demonstrated that methyl-iodide producing ability
is widespread among marine and terrestrial bacteria
(e.g., Variovorax sp., Photobacterium leiognathi), while
anaerobic microorganisms (e.g., methanogens) produce
methyl-iodide less likely. In plants, Hol-1 protein was
identified as a methyltransferase that catalyzes the
S-adenosyl-L-methionine dependent methylation of halides
(Landini et al., 2012).

The third mechanism suggests the formation of methyl-
iodide by vanadium-dependent haloperoxidases (Punitha
et al., 2018) in the presence of hydrogen peroxide
(Leblanc et al., 2006). Iodine specific iodoperoxidase was
identified in various marine diatoms and macrophytes
(Colin et al., 2003). Such peroxidase is also considered
to be responsible for iodine methylation in plants
(Neidleman and Geigert, 1987).

PRODUCTION OF METHYL-IODIDE IN
SEAWATER

Elemental iodine is also released into the atmosphere by
photochemical oxidation of iodide by UV radiation in the
presence of O2 (Saunders and Saiz-Lopez, 2009):

4 I− + O2 + H2O + hv→ 2 I2 + 2 OH− (1)

Methylated iodine compounds are produced photochemically
in seawater via the reaction between photochemically produced
methyl radicals and iodine atoms (Moore and Zafiriou, 1994) via
the reaction:

CH3
.
+ ·I → CH3I (2)

While iodine radicals can be produced via the reaction of I2
with NO3 radicals while sunlight is not needed for this reaction
(Saiz-Lopez et al., 2006):

I2 + ·NO3 → INO3 + I· (3)

Other possible pathways are suggested too by Moore and
Zafiriou (1994) but they are unlikely to occur in natural non-
contaminated waters.

PRODUCTION OF METHYL-IODIDE BY
MARINE ALGAE

Küpper et al. (2018) studied iodine metabolism in the
filamentous brown alga Ectocarpus siliculosus, whose
predominant emission was methyl-iodide among various
other volatile halogenated compounds. Elevated methyl-
iodide concentrations were also found in the algal beds of
Laminaria digitata at the coasts of Scotland (Nightingale
et al., 1995) and California (Manley et al., 1992). Excessive
amounts of methyl-iodide levels are also common in the
beds of giant kelp (Macrocystis pyrifera), but it is not
considered a significant source of iodine (Manley and
Dastoor, 1987). Large amounts of iodine were observed
also above the sea ice in the Weddell sea at Antarctic coast
presumably originating from diatoms found in the sea ice
(Atkinson et al., 2012).

Since algal activity is sensitive to light, it should
also affect the production of methyl-iodide. However,
the results are contradicting. While Nightingale et al.
(1995) indicated that the methyl-iodide production by L.
digitata was enhanced in the dark, Carpenter et al. (2000)
noted that the organoiodine production by macroalgae is
stimulated by light.

PRODUCTION OF METHYL-IODIDE BY
BACTERIA

Aerobic incubation of seawater showed that the iodine is
volatilized from the seawater biologically. Further investigation
showed that the production of methyl-iodide is due to
bacterial activity, thus, the addition of antibiotics caused
a significant decrease in iodine’s volatilization (Amachi
et al., 2004). Fuse et al. (2003) isolated two strains of
iodine-producing bacteria, identified as Roseovarius spp.,
which were capable of producing not only methyl-iodide
but also other methyl-iodide derivatives from the iodide
supplemented media. Members of the Proteobacteria,
Cytophaga-Flexibacter-Bacteroides group (Amachi et al.,
2004), and also the strains of Alteromonas macleodii and
Vibrio splendidus (Amachi et al., 2001) can also facilitate
organo-iodide release from the seawater. Smythe-Wright
et al. (2006) estimated that the methyl-iodide production
by cyanobacteria Prochlorococcus at 5.3 × 1011 g year−1.
However, Brownell et al. (2010) suggested, that methyl
iodide production of this species accounts only about
0.3% of the global marine production, in future it may
represent a remarkable source of volatile iodine species in
low latitude waters of the Atlantic and Indian oceans, since
the recent models showed an increase in the abundance of
this bacterial species by up to 15% due to global warming
(Smythe-Wright et al., 2006) while the production rate is
dependent on the physiological state of cells and culture
conditions (Hughes et al., 2011). Under optimal conditions,
some bacterial strains belonging to Erythobacter are capable
of producing as much as 49 pmol L−1 h−1 of methyl-iodide
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(Fujimori et al., 2012). Nevertheless, Gómez-Consarnau et al.
(2021) noted that the methyl-iodide synthesis is a generalized
process in representatives of the major marine heterotrophic
bacterial groups.

PRODUCTION OF METHYL-IODIDE IN
TERRESTRIAL ENVIRONMENTS

In soils, the presence of manganese oxides can contribute to
the formation of methyl-iodide abiotically. Under conditions
that the iodide and the natural organic matter is present,
Allard et al. (2010) showed that the manganese sand can
initiate the formation of methyl-iodide. However, the
speciation of the final product depends on the properties
of the present organic matter. While the methyl-iodide
was produced in the presence of humic acids, the abiotic
synthesis of high-molecular alkyl-iodides, such as propyl-
and butyl-iodides, was enhanced when the other major
fractions of soil organic matter were also present and
exposed to iodine.

The iodine volatilization from soils is stimulated by plants,
especially in flooded soils, partially due to the action of
enzymes produced by the roots (Muramatsu and Yoshida, 1995).
Furthermore, in flooded soils where redox potential is low,
thus, under such conditions, iodine is reductively desorbed from
the soil particles to soil solution as iodide and transformed
into reactive volatile species (Yuita, 1992). Some soil organic
compounds with large carbonyl moieties, or alkyl-chlorides can
enhance the formation of volatile iodine compounds, while
aromatic compounds can stabilize the iodine in soil (Taghipour
and Evans, 2001). Biotic transformation of iodine into the
methyl-iodides plays also prominent role in the oligotrophic
sediments at nuclear waste sites where the isolated microcosm
possessed iodine methylation abilities (Bagwell et al., 2019).

Production of Methyl-Iodide by Plants
Methyl-halides do not play a fundamental role in the
plant development (Rhew et al., 2003), although iodine
has reportedly adverse effects on plant’s growth at high
concentrations (Duborská et al., 2018). Therefore, the
accumulated iodine is preferentially volatilized as methyl-
iodide through the activity of specific methyl transferase
encoded by HOL (HARMLESS TO OZONE LAYER) genes
(Carlessi et al., 2021). There are two types of HOL genes
from which the HOL-1 is responsible for iodine methylation
(Landini et al., 2012).

Contribution of methyl-iodide production by higher plants
on total flux of iodine to atmosphere from soils is minor on
global scale, however, it was estimated that the total annual
amount of volatilized iodine from rice fields approximates
2 × 1010 g (Muramatsu and Yoshida, 1995). Furthermore, the
emission of methyl-iodide from the shoots of rice plant are more
significant in comparison to the contribution of flooded soil
surface (Muramatsu and Yoshida, 1995).

The enzyme responsible for iodide methylation in leaves of
cabbage (Brassica oleracea) was classified as a halide/bisulfide

TABLE 1 | Global production, loss, emission, and inventory of methyl-iodide
(Stemmler et al., 2014).

Production pathway

Production (Gg.year−1) 348.27

Biological (%) 0.2

Photochemicala (%) 28

Photochemicalb (%) 72

Net emission (Gg.year−1) 170.61

Loss (Gg.year−1) 164.97

Inventory (Gg) 14.10

aProduction from semi-labile dissolved organic carbon. bProduction from refractory
dissolved organic carbon.

methyltransferase with pH optimum for iodide methylation in
the range of 5.5–7. It catalyzes the S-adenosyl-L-methionine-
dependent methylation of the halides (iodide, bromide, and
chloride) to monohalogenated methanes (Attieh et al., 1995).

Various other species of Brassicaceae family (e.g., B. rapa and
Raphanus sativus) and species of the Poaceae family, such as
Triticum aestivum, were also reported to be able of releasing of
volatile iodine species (Rhew et al., 2003); and it is generally
accepted that the iodide methylation is widespread among higher
plants (Saini et al., 1995).

Production of Methyl-Iodide by Fungi
Generally, fungi are not considered relevant producers of
methylated iodine species on global scale. However, considering
their abundance in the environment, more attention should
be taken toward their investigation. So far, the methyl-
iodide was the only reported volatile organic transformant
of iodine produced by fungi (Ban-Nai et al., 2006). The
release of environmentally significant amount of methyl-
iodide was reported from wood-rotting fungus Phellinus
pomaceus (Harper, 1985). Various Basidiomycota species,
including Lentinula edodes, Hebeloma vinosophyllum, Pleurotus
ostreatus and Agaricus bisporus (Ban-Nai et al., 2006), as well
as the ectomycorrhizal fungal species Cenococcum geophilum,
Hebeloma crustuliniforme, Inocybe maculata, and Laccaria
laccata (Redeker et al., 2004) were also reported to produce
methyl-iodide under laboratory conditions. However, the exact
mechanism of iodine biovolatilization by fungi is not yet
sufficiently explained; and, thus, it was hypothesized that both
intracellular and extracellular transformations into methyl-
iodides may occur (Urík et al., 2007; Duborská et al.,
2017). It is also very likely that the filamentous fungi
can facilitate iodine methylation indirectly via production of
extracellular metabolites, e.g., the strains of Alternaria alternata,
Fusarium oxysporum, Penicillium roqueforti, P. chrysogenum,
Cladosporium cladosporioides, Aspergillus niger and A. oryzae,
which possess the abilities of methyl-iodide production. While
the precursor for such transformation by fungi in aquatic
environments was reportedly almost exclusively iodide, the
preferable source in terrestrial systems seems to be iodate
(Duborská et al., 2017).
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GLOBAL EFFLUXES OF
METHYL-IODIDES

While the global annual ocean-atmosphere flux of methyl-
iodide is estimated at 219 Gg, its local estimations vary
significantly depending on the region or season. In seawater,
the photochemical and biological processes are co-occurring,
thus, both biological and photochemical production pathways
(Table 1) need to be taken into account to approximate the global
production of methyl-iodide (Stemmler et al., 2014).

While the biological production of methyl-iodide is observable
during the whole year in the tropical eastern Atlantic and
equatorial Pacific zones, the fluxes in regions with boreal
winter occur predominantly from the atmosphere to the
ocean (Stemmler et al., 2014). In the southern ocean, the
biological production is limited to the period of austral spring
(Stemmler et al., 2014). On the other hand, a large number of
macroalgae isolated from the Antarctic are capable of methyl-
iodide production (Laturnus et al., 1998). Smythe-Wright et al.
(2006) estimated that the annual flux of methyl-iodide produced
by cyanobacterium Prochlorococcus alone is 4.3 × 109 mol.
However, Manley and de la Cuesta (1997) stated that methyl-
iodide produced by the marine phytoplankton is not significant
on global scale. Butler et al. (1981) suggested that the methyl-
iodide produced by the phytoplankton is only a short-lived
intermediate which is converted to methyl-chloride.

Nevertheless, the terrestrial sources are not as significant as the
marine sources. However, the rice plants possessing the ability
to methylate iodide are considered a significant source with 5%
contribution to the global flux of methyl-iodide (Redeker et al.,
2000). Furthermore, Dimmer et al. (2001) reported annual flux
of 1.4 Gg from peatland ecosystems and 7.3 Gg from wetlands.
Burning of biomass can also contribute to the annual flux of
methyl-iodide by up to 3.5 Gg (Blake et al., 1996).

CONCLUSION

Since methyl-iodides play an important role in the depletion
of ozone layer and the formation of cloud condensation
nuclei which can results in regional cooling with a negative
climate feedback, the release of organoiodine compounds can
mitigate global warming, causing a further increase in number
of iodide-methylating bacteria and algae. This short review
provides a biogeochemical context for such a scenario since
it notes the mechanisms that are behind the formation and
propagation of methyl-iodide into the environment. It also
highlights that process of transforming iodine into methyl-
iodine is regulated and accelerated biotically, and this ability
is almost universal across the genera of various organisms,
including phytoplankton, fungi and plants as well. To conclude,
the research to improve understanding of the contribution of
biogenic sources on methyl-iodide distribution and their impact
on the environment is much needed.
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