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Abstract

Fritillaria spp. constitute important traditional Chinese medicinal plants. Xinjiang is one of

two diversity hotspots in China in which eight Fritillaria species occur, two of which are

endemic to the region. Furthermore, the phylogenetic relationships of Xinjiang Fritillaria

species (including F. yuminensis) within the genus are unclear. In the present study, we

sequenced the chloroplast (cp) genomes of seven Fritillaria species in Xinjiang using the

Illumina HiSeq platform, with the aim of assessing the global structural patterns of the seven

cp genomes and identifying highly variable cp DNA sequences. These were compared

to previously sequenced Fritillaria cp genomes. Phylogenetic analysis was then used to

evaluate the relationships of the Xinjiang species and assess the evolution of an undivided

stigma. The seven cp genomes ranged from 151,764 to 152,112 bp, presenting a traditional

quadripartite structure. The gene order and gene content of the seven cp genomes were

identical. A comparison of the 13 cp genomes indicated that the structure is highly con-

served. Ten highly divergent regions were identified that could be valuable in phylogenetic

and population genetic studies. The phylogenetic relationships of the 13 Fritillaria species

inferred from the protein-coding genes, large single-copy, small single-copy, and inverted

repeat regions were identical and highly resolved. The phylogenetic relationships of the spe-

cies corresponded with their geographic distribution patterns, in that the north group (con-

sisting of eight species from Xinjiang and Heilongjiang in North China) and the south group

(including six species from South China) were basically divided at 40˚N. Species with an

undivided stigma were not monophyletic, suggesting that this trait might have evolved sev-

eral times in the genus.
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Introduction

The genus Fritillaria L. (Liliaceae) consists of approximately 140 species and is widely distrib-

uted in Europe (mostly in the Mediterranean region), Central Asia, China, Japan, and North

America [1]. Twenty-four species occur in China, of which 15 are endemic. They are distrib-

uted throughout most provinces in China, among which Sichuan and Xinjiang constitute two

diversity hotspots. Seven species occur in Xinjiang, and F. tortifolia X.Z.Duan & X.J.Zheng and

F. yuminensis X.Z.Duan are endemic to this region. Two further species, F. tachengensis X.Z.

Duan & X.J.Zheng (endemic) and F. ferganensis Losinsk, recorded in Flora Xinjiangensis, were

reduced to the synonyms of F. yuminensis and F. walujewii Regel, respectively, in the Flora of

China (FOC, http://foc.eflora.cn/).

The morphological traits of Fritillaria species, particularly the Fritillaria cirrhosa D.Don

complex (referring to F. cirrhosa and closely-related species in morphology), which are widely

distributed in southwest China [2], are complex due to the high variability of several charac-

ters, including leaf width; leaf curling; petals tessellated or not, and bract number. However,

the mechanism of the variation is not clear and the current classification of some species is

only temporary. More comprehensive studies into the morphological variation in the genus

are required to facilitate a precise and reasonable species classification [2]. Furthermore, the

species occurring in Xinjiang also exhibit significant morphological variation due to the diver-

sity of microclimates (mountains, swamps, saline conditions, and other habitats). Currently,

16 variants are recorded in Flora Xinjiangensis, though they are treated as synonyms of the

corresponding accepted species names in the FOC and The Plant List (www.theplantlist.org).

Certain character variations of some individuals are prominent and beyond the characteristic

range of the genus, such as 8–12 petals, 4–8 stamens, and a 3–5-lobed stigma. Moreover, the

stigma of most Fritillaria species is 3-lobed, but in a few species, i.e., F. yuminensis and F. kare-
linii (Fisch. ex D.Don) Baker, it is undivided. It has been proposed that an undivided stigma is

a primitive characteristic [3], but physiological and molecular evidence is required to test this

hypothesis and to assess the evolution of this trait within the genus.

The bulbs of some Fritillaria species, including F. thunbergii Miq., F. cirrhosa, F. walujewii,
and F. pallidiflora Schrenk, have long been used in traditional Chinese medicine [4]. As a

result, long-term excessive harvesting has led to substantial declines in the size of wild Fritil-
laria populations. At present, all of the eight species in Xinjiang have been classified as vulnera-

ble according to the list of rare endangered endemic higher plants of Xinjiang [5], which has

attracted scientific interest. The genetic diversity of some species in the genus was previously

assessed, and corresponding conservation areas were proposed [6, 7]; however, some species

with very narrow distributions and greater extinction threat require evaluation. A scientific

approach to conservation requires an accurate understanding of the population genetic diver-

sity and structure. The diversity estimated by different markers, such as plastid DNA, genomic

inter-simple sequence repeats (ISSRs), and single nucleotide polymorphisms (SNPs), can be

used to comprehensively inform conservation strategies.

The classification of the genus was previously revised where it was subdivided into eight

subgenera, including Davidii, Liliorhiza, Japonica, Fritillaria, Rhinopetalum, Petilium, Theresia,

and Korolkowia [8]. A later phylogenetic analysis of 37 Fritillaria species using matK, trnK
intron, rp116 intron, and nrDNA ITS [1] supported this subgeneric classification [8]. Khour-

ang et al. investigated the phylogenetic position of nine species in Iran using the ITS and

trnL-F regions [9], and showed that members of the subgenera Fritillaria and Rhinopetalum
formed one clade. However, a phylogenetic study of 92 species using matK, rbcL, and rpl16
[10] indicated that, in contrast to the results of [1, 9], Fritillaria appeared to be polyphyletic.

Additionally, the monophyly of seven out of the eight newly classified subgenera by Rix [8]
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(F. subgenus davidii, Liliorhiza, Japonica, Rhinopetalum, Petilium, Theresia, and Korolkowia)

was well supported. The largest subgenus (F. subgenus Fritillaria) formed two strongly sup-

ported clades, with one clade comprising taxa that occur mainly in Europe, the Middle East,

and North Africa, and the other clade comprising taxa occurring in China and Central Asia

[10]. However, the relationships of some of these species were not well resolved, particularly F.

thunbergii Miq. and F. cirrhosa. The phylogenetic position of the Xinjiang-endemic species F.

yuminensis remains unclear.

The chloroplast (cp) genome in angiosperms is highly conserved, with a quadripartite struc-

ture consisting of a large single copy (LSC) region, a small single copy (SSC) region, and two

copies of a larger inverted repeat (IR). The gene orders in these regions are also similar; how-

ever, structural rearrangements and gene losses can be found in some lineages [11, 12]. Plastid

sequences have been widely used for deciphering phylogenetic relationships and in DNA bar-

coding to identify plant species [13]. However, DNA barcoding for species identification and

phylogenetic analysis is hampered by weak resolution in some plants [14–16]. Complete cp

genomes have therefore emerged as a means of improving the resolution of phylogenies that

have varied among, or been unresolved in, earlier single- and multi-gene studies [17–20].

With the rapid development of next-generation sequencing techniques, it is now more conve-

nient and relatively inexpensive to obtain cp genome sequences and extend gene-based phylo-

genetics to phylogenomics.

To date, a total of six Fritillaria cp genomes have been sequenced and are available on Gen-

Bank. Park et al. reported the cp genomes of F. ussuriensis and F. cirrhosa and performed a

comparative analysis with four Fritillaria cp genomes available on GenBank, the outcome of

which has provided a basic understanding of the cp genome characteristics of the genus [21].

In the present study, we sequenced the cp genomes of seven Fritillaria species from Xinjiang

using the Illumina HiSeq platform. The aims of this study were to (1) analyze the global struc-

tural patterns of the seven cp genomes and compare them with the six cp genomes available on

GenBank; (2) discover highly divergent DNA markers that can be used for population genet-

ics; and (3) evaluate the phylogenetic relationships of the Xinjiang species, particularly the

position of F. yuminensis, and assess the evolution of an undivided stigma in the genus.

Materials and methods

Plant materials

Fresh leaves of seven Fritillaria species were collected from Tacheng and Yili Prefecture of Xin-

jiang Uygur Autonomous Region, China. The geographic origin and coordinates of sampling

locations were listed in S1 Table. The sample collection was approved by the Forestry Bureau

of Tacheng Prefecture and Yili Prefecture. For each species, two to five individuals were sam-

pled. Voucher specimens were deposited at the Xinjiang Institute of Ecology and Geography,

Chinese Academy of Sciences (S1 Table).

Genome sequencing

Total DNA was extracted from approximately 100 mg of fresh leaves using the CTAB method

following Yao et al. [22]. Illumina paired-end libraries were constructed and sequenced by the

Illumina HiSeq X-Ten platform (Illumina Inc., USA) at the Germplasm Bank of Wild Species

in Southwest China, Kunming Institution of Botany, Chinese Academy of Sciences. Each indi-

vidual of each species was sequenced independently. In total, 22 individuals of seven species

were sequenced. Because the cp genome sequences of repeat individuals of each species were

almost identical, therefore, we reported only one genome of each species.

Chloroplast genome of seven Fritillaria species
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Genome assembly and annotation

The raw reads were trimmed and assembled into contigs using SPAdes [23]. Contigs repre-

senting the cp genome were obtained after a BLAST search using the cp genome sequence of

F. cirrhosa (GenBank No. KY646167) as a reference sequence. The resulting contigs were

assembled after being aligned to the reference genome using Geneious 4.8 [24] and annotated

using the Dual Organellar GenoMe Annotator (DOGMA) database [25]. The cp genome map

was generated using OGDRAW (http://ogdraw.mpimp-golm.mpg.de/) [26]. The raw sequenc-

ing data were deposited in GenBank SRA database (SAMN08348372–SAMN08348378,

https://submit.ncbi.nlm.nih.gov/subs/sra). The annotated seven cp genomes were deposited in

GenBank (accession number MG200070, MG211818-MG211823).

Genome comparison

A comparative plot consisting of full alignments of the cp genomes with annotations was pro-

duced by mVISTA using F. cirrhosa as the reference. The sequences were aligned using MEGA

6 [27] and then manually adjusted using BioEdit software (http://www.mbio.ncsu.edu/bioedit/

bioedit.html). Subsequently, a sliding window analysis was conducted to evaluate the nucleo-

tide diversity (Pi) of the cp genome using DnaSP 5.1 [28]. The step size and window length

was set to 200 bp and 600 bp, respectively. The number of variable sites and the Pi across the

complete cp genomes, LSC, SSC, and IR regions were calculated using DnaSP 5.1. The p-dis-

tance among species was calculated in MEGA 6 to evaluate the divergence of Fritillaria species.

Phylogenetic analyses

Sequences of the 13 Fritillaria species and three Lilium species were aligned using MEGA 6.

Phylogenies were constructed by maximum likelihood (ML) and Bayesian Inference (BI) anal-

yses using the protein-coding genes (PCGs), LSC, SSC, and IR regions. ML analyses were con-

ducted in MEGA 6, while BI analyses were conducted using BEAST 1.7 [29]. GTR+G+I and

GTR+G were selected as the best substitution models for the ML and BI analyses according to

the Akaike information criterion (AIC) [30] and Bayesian information criterion (BIC) [31],

respectively, and were estimated using MrModeltest 2.3 [32]. For ML, initial tree(s) for the

heuristic search were obtained automatically by applying the Neighbor-Join and BioNJ algo-

rithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood

approach. The tree was drawn to scale, with branch lengths measured in the number of substi-

tutions per site. All alignment positions containing more than 5% gaps were eliminated. For

BI, two independent Markov Chain Monte Carlo chains were conducted simultaneously for

2 × 107 generations and sampled every 1,000 generations. Each run was assessed using Tracer

1.6 [33] to evaluate whether a sufficient effective sample size (ESS) had been reached. The two

runs were considered as converged when the ESS of all relevant parameters was above 200. A

consensus maximum clade credibility (MCC) tree was generated from the 75% post-burn-in

trees using TreeAnnotator 1.7.

Results

Genome sequencing, assembly, and genome features

Illumina sequencing generated 3.5 to 7.1 Gb of raw reads and 164,351 to 697,002 paired-end

reads for the seven Fritillaria species. After the de novo assembly, eight to 19 contigs covering

the whole chloroplast genome were used to generate a complete cp genome (S1 Table). Using

reference-guided assembly, seven Fritillaria cp genomes were obtained, with coverage of 162×
to 688× for each species.
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The full-length cp genomes of the seven species ranged from 151,764 in F. meleagroides
Patrin ex Schult. & Schult.f. to 152,112 bp in F. karelinii (Table 1). The cp genome presented a

typical quadripartite structure including one LSC region (81,533–81,879 bp), one SSC region

(17,277–17,526 bp), and a pair of IR regions (52,654–52,778 bp; 26,327–26,389 each).

The gene content and order were identical in the seven species. A total of 114 distinct genes

were annotated, including 78 PCGs, 30 tRNA genes, four rRNA genes, infA (translation initia-

tion factor gene), and hypothetical ORF ycf15 (S2 Table). Eighteen genes were duplicated in

the cp genome, including eight tRNAs (trnA-UGC, trnI-CAU, trnI-GAU, trnL-CAA, trnN-

GUU, trnR-ACG, trnV-GAC, trnH-GUG), four rRNAs (rrn16, rrn23, rrn4.5, rrn5), and six

PCGs (ndhB, rpl2, rpl23, rps12, ycf2, rps7). Gene rps12was trans-spliced because the 50end was

located in the LSC region and the 30 end in the IR region. Gene ycf1 in the junction region

between SSC and IRb was the only pseudogene found due to the incomplete duplication of the

normal copy in the junction region (Fig 1). There were 18 intron-containing genes, among

which two genes (ycf3 and clpP) had two introns each, while the other 16 had one intron,

including 10 PCGs (atpF, rpoC1, rpl2, ndhB, ndhA, petB, petD, rpl16, rps16, rps12) and six

tRNA genes (trnA-UGC, trnG-GCC, trnI-GAU, trnK-UUU, trnL-UAA, trnV-UAC) (Fig 1).

The Pi of the seven species was 0.00648. SSC had the highest Pi value, while IR had the low-

est value (Table 2). The mean p-distance among the seven species was 0.00558, ranging from

0.003 to 0.01. The distance between F. karelinii /F. meleagroides and the other five species was

larger than that between the five species (S3 Table), indicating that F. karelinii and F. melea-
groides were most divergent.

Genome sequence divergence

We compared the Pi of the LSC, SSC, and IR regions of the cp genome. In total, 3,199 variable

sites were found (Pi = 0.00557), indicating moderate genetic divergence of the Fritillaria cp

genomes. The IR regions exhibited the lowest Pi (0.00148), while SSC had the highest Pi

(0.01044) (Table 2). The p-distances among the Fritillaria species ranged from 0.0001 to 0.01,

and F. karelinii, F. meleagroides, and F. ussuriensis exhibited the greatest sequence divergence.

The Pi of the Xinjiang species (0.00648) was higher than that of the species from the other

regions (0.00419), as the two highly divergent species F. karelinii and F. meleagroides are from

Xinjiang.

Table 1. The chloroplast genomic characteristics of 13 Fritillaria species.

Species Genome (bp) LSC (bp) SSC (bp) IRs (bp) PCG tRNA rRNA GC (%) GenBank accession No.

F. pallidiflora Schrenk 152,078 81,787 17,513 26,389 78 30 4 37 MG211822

F. tortifolia X.Z.Duan & X.J.Zheng 152,005 81,778 17,509 26,359 78 30 4 37 MG211819

F. walujewii Regel 151,920 81,743 17,523 26,327 78 30 4 36.9 MG211820

F. verticillata Willd. 151,959 81,730 17,509 26,360 78 30 4 36.9 MG211823

F. karelinii (Fisch. ex D.Don) Baker 152,112 81,879 17,473 26,381 78 30 4 36.9 MG211818

F. meleagroides Patrin ex Schult. & Schult.f. 151,764 81,833 17,277 26,327 78 30 4 36.9 MG211821

F. yuminensis X.Z.Duan 151,813 81,533 17,526 26,377 78 30 4 36.9 MG200070

F. ussuriensis Maxim. 151,524 81,732 17,114 26,339 78 30 4 36.95 KY646166

F. cirrhosa D.Don 151,083 81,390 17,537 26,078 78 30 4 36.96 KY646167

F. hupenesis P.K.Hsiao & K.C.Hsia 152,145 81,898 17,553 26,347 77 30 4 37 NC024736

F. taipaiensis P.Y.Li 151,693 81,390 17,550 26,352 78 30 4 37 NC023247

F. unibracteata P.K.Hsiao & K.C.Hsia 151,009 81,290 17,541 26,089 78 30 4 37 KF769142

F. thunbergii Miq. 152,155 81,890 17,565 26,350 78 30 4 37 KY646165

https://doi.org/10.1371/journal.pone.0194613.t001
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Junction characteristics

The junction of the LSC, SSC, and IR regions of the seven species are shown in Fig 2. The

rps19 gene located in the LSC was extended into the IRa by 11–43 bp. The border between

IRa/SSC and SSC/IRb extended into the ycf1 genes. Overlaps of 17 bp were found between the

ycf1 pseudogene and the ndhF gene. The trnH genes were all located in the IR region, 158–189

bp from the IRb/LSC boundary.

Genome-wide comparative analyses

We aligned the 13 Fritillaria cp genomes using mVISTA, and found that the gene order and clus-

ters were very similar in all the species (Fig 3). Using sliding window analysis, we identified the

10 most divergent regions that could be utilized as potential molecular markers for population

Fig 1. Gene map of the Fritillaria cp genome. Genes belonging to different functional groups are color-coded. The

dashed area in the inner circle indicates the GC content. Cp genome size ranges are provided for the seven Xinjiang

Fritillaria species.

https://doi.org/10.1371/journal.pone.0194613.g001

Table 2. Variable site analyses in Fritillaria chloroplast genomes.

Among 13 Fritillaria species Among seven Xinjiang species Among other six species

Region Total sites Variable sites Pi Variable sites Pi Variable sites Pi

LSC 84,114 2,227 0.00737 1,734 0.00782 1,368 0.00638

SSC 17,854 672 0.01044 518 0.0112 346 0.00774

IR 26,550 152 0.00148 126 0.00169 59 0.00094

Complete cp genome 154,837 3,199 0.00557 2,498 0.00684 1,625 0.00419

https://doi.org/10.1371/journal.pone.0194613.t002
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Fig 2. Comparison of LSC, SSC, and IR border regions among the 13 Fritillaria cp genomes. Colored boxes for genes

represent the gene position. ψ: pseudogenes. �: these six species were redrawn according to Park et al. [21].

https://doi.org/10.1371/journal.pone.0194613.g002
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genetic and phylogenetic studies in Fritillaria. These regions included matK-rps16, trnS-trnG,

atpH-atpI, trnC-petN, trnE-trnT-psbT, trnT-trnL-trnF, rps12-psbB, rpl32-trnL in IGS, and the petB
intron and ycf1 in the coding region (Fig 4). Additionally, psbB-psbH, petD-rpoA, ycf4-cemA, and

ycf2 also constitute potential candidates.

Fig 3. Comparison of 13 Fritillaria cp genomes with F. cirrhosa as the reference. LSC: long single copy region; SSC: short single

copy region; IRa and IRb: inverted regions. Gray arrow: gene and translation direction; blue block: exon of the gene; red block:

conserved non-coding sequences (CNS). Sequence identities are labeled at the right side and range between 50%-100%.

https://doi.org/10.1371/journal.pone.0194613.g003

Fig 4. Sliding window analysis of the entire chloroplast genome of 13 Fritillaria species.

https://doi.org/10.1371/journal.pone.0194613.g004
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Phylogenetic analyses

The phylogenetic analyses were conducted with the PCGs, LSC, SSC, and IR regions using ML

and BI inference methods. All the analyses revealed congruent tree topologies, and all branches

were highly supported (S1 Fig). Two clades were identified among the 13 Fritillaria species.

Clade I contained F. ussuriensis, F. meleagroides, and F. karelinii. The sister clade (clade II)

comprised the remaining 10 species, in which two subclades were strongly supported. Sub-

clade I contained species from South China (F. cirrhosa, F. unibracteata, F. taipaiensis, F. hupe-
hensis, and F. thunbergii). Subclade II included five Xinjiang species, namely F. tortifolia, F.

verticillata, F. yuminensis, F. pallidiflora, and F. walujewii. The seven Xinjiang species did not

form a monophyletic group, as F. meleagroides and F. karelinii were separated from the other

five species. Additionally, F. yuminensis had a close phylogenetic relationship with F. tortifolia
and F. verticillata.

Discussion

In this study, seven new cp genomes of Fritillaria were sequenced and ranged in size from

151,764 to 152,112 bp. The reported Fritillaria cp genome size in this study is consistent with

previously sequenced Fritillaria cp genomes, and is also within the cp genome size range of

angiosperms. The gene content and gene order were the same in the seven Xinjiang species,

containing 78 PCGs, 30 tRNA genes, four rRNA genes, and the infA and ycf15 genes. Com-

pared with the other six species, the tRNA and rRNA genes were identical, but the PCGs

differed, ranging from 77 to 78 due to the absence of the clpP gene in the cp genome of F. hupe-
hensis. The hypothetical gene ycf68 was present in the cp genome of F. unibracteata, while

ycf15was absent from F. taipaiensis, F. thunbergii, and F. ussuriensis. The absence or presence

of some genes in a particular species of a genus has also been observed in Ipomoea [34]. The

functions of ycf15 and ycf68 are ambiguous in various land plants; for instance, ycf15 in Ipo-
moea purpurea and Ageratina adenophora encode a complete RF15 protein, but the former has

no ycf68, while the latter has one incomplete ycf68 open reading frame. In Musa acuminata,

these two genes were determined as non-functional due to the presence of several stop codons

in the gene sequence [34].

The boundaries between IR and LSC or SSC were identical, except in F. taipaiensis. The

LSC/IRa boundary of Fritillaria is located in the rps19 gene, and a small section of the 50end of

rps19 is in the IRb region, which is similar to Ilex [22] and Brassicaceae species [35–38]. In con-

trast, rps19 does not extend into the IR in Lupinus luteus [39] and Millettia pinnata [40], while

in others, such as Phaseolus vulgaris [41] and Oryza [42], the whole gene is contained inside

the IR. ψycf1 spans the SSC/IRa boundary and overlaps with the ndhF gene in most of the Frit-
illaria species. However, these are separated and located at each side of the boundary in the F.

taipaiensis cp genome, which has also been observed in Petroselinum crispum (HM596073),

Tiedemania filiformis (HM596071), and Panax ginseng (AY582139). The SSC/IRb boundary is

inside the ycf1 gene, which is consistent with many plants, including those from Asteraceae

[43], Ilex [22], Lilium [44], and Ananas [45]. Conversely, in Cryptochloa strictiflora [46] and

Ipomoea batata [34], the junction falls into the ndhF gene due to the loss of the ycf1 gene. The

trnH gene is duplicated in the IRs in Fritillaria, as observed in Lilium [44], whereas trnH is a

single cope gene located in the LSC of other species, such as Ipomoea batata [34], Datura stra-
monium [47], and Citrus aurantiifolia [48].

The genomic structure and gene order of the Fritillaria cp genomes are highly conserved,

and no rearrangement has occurred. The IRs of the Fritillaria species were about 26 kb, which

is within the size range of most angiosperm cp genomes (20–28 kb). The IR usually varies

between 200 and 300 nucleotides in seed plants. However, the extreme expansion of the IRs
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has been observed in Oenothera (54 kb) [49], Fabaceae (50 kb) [50], and Pelargonium×hor-
torum (75 kb) [51]. In contrast, the loss or near loss of the IR has also been also detected in Ero-
dium and Sarcocaulon [52]. These significant contractions and expansions of the IR contribute

towards genome size variation.

Several variable cp DNA markers have been used in phylogenetic studies of Fritillaria, for

instance rbcL, matK, and atpB. Some divergent intergenic spacers, i.e., trnH-psbA, rpl32-trnL,

psbB-psbH, and trnS-trnG, are more informative and suitable in lower taxonomic ranks [53].

Upon comparison of the 13 cp genomes, the 10 most divergent regions were identified, and

included matK-rps16, trnS-trnG, atpH-atpI, trnC-petN, trnE-trnT-psbT, trnT-trnL-trnF,

rps12-psbB, and rpl32-trnL in IGS, and the petB intron and ycf1 in the coding region. The Pi

of these regions ranged from 0.015 to 0.022. Additionally, psbB-psbH, petD-rpoA, ycf4-cemA,

and ycf2 also constitute potential candidates, which corroborates previous studies [44]. These

highly divergent regions (also called hotspots) in the cp genome are useful for further phyloge-

netic and population genetics studies. However, in contrast to Park et al. [21], we found the

petB intron to be highly divergent. Furthermore, the clpP intron was also found to be highly

variable, as reported in Acacia ligulata [54]. Gene ycf1 is considered as the most promising

plastid DNA barcode of land plants [55].

Universal DNA barcoding is widely used in the identification of plant species, but has sev-

eral limitations [14–16]. The complete cp genome, as a super DNA barcode, has been success-

fully used in numerous phylogenetic studies of seed plants [56, 57] and in resolving species

relationships at lower taxonomic levels [58]. Park et al. conducted a phylogenetic study of six

Fritillaria species based on the cp genome and concluded that plastome phylogenies are suit-

able for uncovering relationships among Fritillaria species, and obtain good support with high

bootstrap values [21]. We constructed phylogenetic trees of 13 Fritillaria species using the

PCG, LSC, SSC, and IR datasets. The phylogenetic relationships within the genus were identi-

cal and strongly supported in all of the phylogenies. In this study, Fritillaria appears to be a

monophyletic group, which differs from the results of Day et al. [10] and may be attributed to

our smaller sampling size. However, the positions of F. cirrhosa and F. thunbergii are far more

highly resolved in our study (S1 Fig).

With some exceptions, our phylogenies are largely consistent with Day et al. [10] and

support the polyphyletic classification of F. subgenus Fritillaria by Rix [8]. Two species of F.

subgenus Fritillaria (F. meleagroides and F. ussuriensis) clustered together and are sister to F.

karelinii of F. subgenus Rhinopetalum in clade I (Figs 5 and 6), which is similar to the results of

Khourang et al. [9], and may be attributed to the small sample size. The other 10 species of F.

subgenus Fritillaria formed a strongly supported clade (clade II), and two subclades were

resolved in clade II. The five species from outside Xinjiang formed a strongly supported sub-

clade (subclade I), which was sister to subclade II containing the other five Xinjiang species.

This indicated that the Xinjiang species had a close genetic affinity. Interestingly, we found

that the eight species in clade I and subclade II of clade II originate from Xinjiang and Hei-

longjiang in North China (named the “north group”), and the five species in subclade I of

clade II originate from South China (named the “south group”). An alternative explanation of

the phylogenetic pattern is that the southern taxa diverged from the northern taxa and become

distinct due to limited seed flow or genetic contact.

The seven Xinjiang species did not form a monophyletic group, as F. karelinii and F. melea-
groides were highly divergent from the other five species, and, interestingly, also differ in their

morphology and habitat. Specifically, F. meleagroides occurs in a variety of habitats, including

hilly slopes, shallow waters in mountainous areas, saline areas, and shallow swamps, while F.

karelinii can usually be found in the plains of Artemisia desert habitats (desert habitat domi-

nated by some drought tolerant Artemisia species) or low gravel hills. This species has a style
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that is longer than the stamens, and the stigma is scarcely lobed and slightly inflated at the top

(Figs 5 and 6).

Endemic species are often limited to specific geographic areas, and in many instances have

evolved vicariantly [59]. Previous studies have demonstrated that specific limiting factors in

an environment can significantly influence the geographic distribution patterns of species,

including physical factors (i.e., temperature, light, moisture, aridity) and biotic factors (i.e.,

competition, predation, food availability). These factors usually influence the survival and

propagation ability of plants. For instance, Corynephorus canescens is widely distributed in mid

and south Europe, and its northern distribution limit in Europe coincides with the 15˚C iso-

therm in July, as its germination and flowering are affected by low temperature [60]. The win-

ter distribution and abundance patterns of several avian species are directly linked to their

physiological limits, with the northern range limit being associated with the −4˚C isotherm of

the average minimum January temperature [61]. As high solar radiation and temperature are

most favorable for the C4 photosynthetic pathway, C4 grass abundance patterns in North

America are separated at 40˚N, where the C4 grass abundance is above 50% north of 40˚N and

below 50% south of 40˚N [62].

Interestingly, we also discovered that the northern and southern groups were largely sepa-

rated at 40˚N (Fig 5). However, the determining factor(s) influencing the distribution of Fritil-
laria species are not investigated in the present study. However, we hypothesize that soil

moisture is an important environmental constraint influencing the growth of Fritillaria and

other spring ephemeral plants. A semi-arid or desert climate prevails in Xinjiang and the pre-

cipitation is very low. Adequate water supply is only available from snow melting during

March to June. From late June, the climate turns dry and hot, and is not suitable for growth.

They have therefore adapted to a complete growth cycle ahead of the hot summer. Conversely,

Fig 5. Map indicating the distribution of Fritillaria in China. The distribution area of each species is drawn according to the

records in the FOC and Flora Xinjiangensis. Photographs of the species are also provided.

https://doi.org/10.1371/journal.pone.0194613.g005
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Fig 6. The evolutionary progression of stigmatic traits within the genus.

https://doi.org/10.1371/journal.pone.0194613.g006
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in south China, such as Sichuan, Hubei, and Zhejiang, precipitation is greater in summer, and

thus some species have much longer growth cycles and can thrive from August to October

(i.e., F. cirrhosa) (S4 Table).

The stigma in the majority of Fritillaria species is 3-lobed; however, in a few species, i.e., F.

yuminensis and F. karelinii, the stigma is undivided (Fig 6). We surveyed 48 species in FOC

and Flora of USSR, and found that only four species possess a scarcely lobed stigma. It was pro-

posed that the trait of an undivided stigma might be a primitive characteristic [3]. Our results

do not support this hypothesis. The phylogenies demonstrate that F. karelinii diverges early,

while F. yuminensis does not, and F. karelinii is closely related to F. tortifolia and F. verticillata.

Moreover, in comparison to the phylogeny of Day et al. [10], F. karelinii is not resolved as a

basal species. Therefore, at this stage, we cannot infer a definite evolutionary trend for this

trait. More cp genomes need to be sequenced to gain a comprehensive and accurate assess-

ment of the evolutionary progression of the stigma. Furthermore, as F. yuminensis and F.

karelinii do not form a monophyletic clade, this suggests that this trait might have evolved

independently several times in the genus.

Additionally, wild Fritillaria populations have been dramatically reduced due to excessive

harvesting in recent decades. During our field investigation, we noted that F. meleagroides and

F. karelinii were rare in the wild. The endemic species F. yuminensis is now endangered and

can only be found in remote areas that are uninhabited by humans and livestock. Small popu-

lations of the other endemic species F. tortifolia can only be found in remote areas and natural

reserves. Although all seven species in Xinjiang are listed in the class I protection plant list of

Xinjiang, conservation action is urgently required. Population diversity is an important index

in the formulation of a scientific conservation strategy. The newly sequenced cp genomes

of these seven Fritillaria species would be useful for the development of SSR markers, and

together with the identified divergent regions DNA regions, could be used to comprehensively

assess the genetic diversity of wild populations in order to inform the protection of these valu-

able medicinal resources.

As there are more than 140 species in the genus, the currently sequenced species only repre-

sent a very limited sample. However, we provide evidence that the cp genome can increase the

resolution of phylogenetic relationships within the genus. More cp genomes are required to

clarify the taxonomic and phylogenetic relationships of Fritillaria species at lower taxonomic

levels, and can be used to estimate the population genetic diversity in order to formulate effec-

tive protection strategies.
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values. Outgroup: Lilium brownii KY748296; L. bakerianum KY748301; L. henryi KY748302.

(TIF)
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