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Rationale & Objective: Tubulointerstitial damage is
a feature of early chronic kidney disease (CKD),
but current clinical tests capture it poorly. Urine
biomarkers of tubulointerstitial health may identify
risk of CKD.

Study Design: Prospective cohort (Atheroscle-
rosis Risk in Communities [ARIC]) and case-cohort
(Multi-Ethnic Study of Atherosclerosis [MESA] and
Reasons for Geographic and Racial Differences in
Stroke [REGARDS]).

Setting & Participants: Adults with estimated
glomerular filtration rate (eGFR) ≥60 mL/min/
1.73 m2 and without diabetes in the ARIC,
REGARDS, and MESA studies.

Exposures: Baseline urine monocyte chemo-
attractant protein-1 (MCP-1), alpha-1-microglobulin
(α1m), kidney injury molecule-1, epidermal growth
factor, and chitinase-3-like protein 1.

Outcome: Incident CKD or end-stage kidney
disease.

Analytical Approach: Multivariable Cox propor-
tional hazards regression for each cohort; meta-
analysis of results from all 3 cohorts.

Results: 872 ARIC participants (444 cases of
incident CKD), 636 MESA participants (158
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cases), and 924 REGARDS participants (488
cases) were sampled. Across cohorts, mean age
ranged from 60 ± 10 to 63 ± 8 years, and baseline
eGFR ranged from 88 ± 13 to 91 ± 14 mL/min/
1.73 m2. In ARIC, higher concentrations of urine
MCP-1, α1m, and kidney injury molecule-1 were
associated with incident CKD. In MESA, higher
concentration of urine MCP-1 and lower
concentration of epidermal growth factor were
each associated with incident CKD. In
REGARDS, none of the biomarkers were
associated with incident CKD. In meta-analysis of
all 3 cohorts, each 2-fold increase α1m
concentration was associated with incident CKD
(HR, 1.19; 95% CI, 1.08-1.31).

Limitations: Observational design susceptible
to confounding; competing risks during long
follow-up period; meta-analysis limited to 3
cohorts.

Conclusions: In 3 combined cohorts of adults
without prevalent CKD or diabetes, higher urine
α1m concentration was independently associated
with incident CKD. 4 biomarkers were associated
with incident CKD in at least 1 of the cohorts when
analyzed individually. Kidney tubule health markers
might inform CKD risk independent of eGFR and
albuminuria.
Chronic kidney disease (CKD) affects hundreds of
millions of adults worldwide and is a major risk factor

for end-stage kidney disease, cardiovascular disease (CVD),
and mortality.1,2 However, diagnosing CKD at actionable
stages is challenging; currently, recognition of CKD de-
pends on serum creatinine (SCr) concentration and urine
albumin excretion, measures of glomerular filtration and
integrity, respectively. Although these markers are inde-
pendently associated with adverse kidney and non-kidney
outcomes, they are insensitive for the detection of early
kidney disease and correlate poorly with tubulointerstitial
health.3,4 Biopsy studies have demonstrated that tubu-
lointerstitial pathology is strongly associated with pro-
gressive kidney disease—but by the time abnormal SCr and
albuminuria are detected, there may be irreversible inter-
stitial fibrosis and tubular atrophy.5-8
The need for sensitive and noninvasive measures of
tubulointerstitial health fuels the development of new
kidney biomarkers. Urine-based biomarkers are promising
in light of their easy collection, relationship to the path-
ologic sites of interest, and consistent associations with
important clinical outcomes. Prior work with kidney tu-
bule biomarkers has revealed independent associations
with acute kidney injury incidence and progression, CKD
progression, CVD, and mortality in several special pop-
ulations at elevated risk of adverse outcomes.9-18 However,
whether urine biomarkers are informative in populations
at lower risk of CKD remains uncertain.

To address this question, we leveraged 3 large cohorts
of adults with estimated glomerular filtration rate
(eGFR) ≥60 mL/min/1.73 m2 and without diabetes to
measure 5 urine biomarkers of kidney tubule health:
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PLAIN-LANGUAGE SUMMARY
This study analyzed 3 cohorts (ARIC, MESA, and
REGARDS) of adults without diabetes or prevalent
chronic kidney disease (CKD) to determine the associ-
ations of 5 urinary biomarkers of kidney tubulointer-
stitial health with incident CKD, independent of
traditional measures of kidney health. Meta-analysis of
results from all 3 cohorts suggested that higher baseline
levels of urine alpha-1-microglobulin were associated
with incident CKD at follow-up. Results from individual
cohorts suggested that in addition to alpha-1-
microglobulin, monocyte chemoattractant protein-1,
kidney injury molecule-1, and epidermal growth fac-
tor may also be associated with the development of
CKD. These findings underscore the importance of
kidney tubule interstitial health in defining risk of CKD
independent of creatinine and urine albumin.
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monocyte chemoattractant protein-1 (MCP-1), alpha-1-
microglobulin (α1m), kidney injury molecule-1 (KIM-1),
epidermal growth factor (EGF), and chitinase-3-like protein
1 (YKL-40). These biomarkers represent distinct aspects
of tubulointerstitial health, including tubulointerstitial
injury and inflammation (MCP-1), proximal tubule
reabsorptive capacity (α1m), proximal tubule injury
(KIM-1), tubule synthetic function and reparative ca-
pacity (EGF), and tubule epithelial cell repair (YKL-40).
We hypothesized that baseline urine concentrations of
one or more of these kidney tubule biomarkers would be
independently associated with incident CKD among
adults without diabetes.

METHODS

Study Design and Populations

We selected 3 well-characterized cohorts of community-
dwelling adults: Atherosclerosis Risk in Communities
(ARIC) study, Multi-Ethnic Study of Atherosclerosis
(MESA), and Reasons for Geographic and Racial Differ-
ences in Stroke (REGARDS). All participants provided
informed consent, and this ancillary study was approved
by the institutional review board of Johns Hopkins Uni-
versity. The design and original methods for these cohorts
have been previously described.19-23 In brief, ARIC
recruited 15,792 mostly Black and White adults aged 45-
64 years from 1987 through 1989 and followed them
with exams and telephone surveys. SCr concentration was
measured at visit 4 (1996-1998), which was considered
baseline for the present analyses, and again at visit 5
(2011-2013), which was used for outcome ascertainment.
MESA enrolled 6,814 racially and ethnically diverse adults
aged 45-84 years without symptoms or diagnoses of CVD.
SCr was measured at baseline (2000-2002), visit 3 (2004-
2005), visit 4 (2005-2007), and visit 5 (2010-2011).
2

REGARDS recruited 30,239 Black and White adults
aged ≥45 years between 2003 and 2007. Blood and urine
specimens were collected at baseline for SCr and urine
biomarker measurement. SCr was measured at a second
visit between 2013 and 2016. We measured urine bio-
markers concurrently with baseline SCr measurements in
all cohorts.

All 872 ARIC participants meeting inclusion criteria of
baseline eGFR ≥60 mL/min/1.73 m2, no diagnosis of
diabetes, and available SCr at follow-up visit 5 were
included in analyses. In addition to excluding partici-
pants with diabetes, we excluded participants based on
missing covariates, conditioned on V5 attendance and
available urinary albumin-creatinine ratio at both time
points. There were 444 incident CKD events (see
“Outcome Ascertainment” below) over a median
follow-up of 14.5 (quartile [Q]1, Q3: 14.1, 15.2) years
in ARIC. Participants from MESA and REGARDS were
sampled using a case-cohort design, whereby a random
subcohort of participants meeting the aforementioned
inclusion criteria were sampled for analyses. All addi-
tional cases of incident CKD arising from outside the
random subcohort were also included in analyses based
on the same inclusion criteria. A total of 5,137 partici-
pants in MESA met inclusion criteria, from which we
randomly sampled a subcohort of 495 individuals. Over
a median follow-up of 9.2 (Q1, Q3, 5.5, 9.6) years,
there were 158 cases of incident CKD in MESA, with 17
cases arising from within the subcohort and 141 addi-
tional cases also included in the analysis. From the
overall cohort of 10,299 REGARDS participants with
baseline eGFR ≥60 mL/min/1.73 m2, no diabetes, and a
second in-home visit, we randomly sampled a subcohort
of 500, of which 493 individuals had adequate urine for
these analyses. Over a median follow-up of 9.4 (Q1, Q3,
8.6, 9.9) years, there were a total of 488 incident cases
of CKD, with 57 cases arising from the subcohort and
431 cases arising from outside the subcohort included in
the analysis.

Kidney Tubule Biomarkers

Frozen urine samples were kept in continuous storage
at −80�C. All biomarker assays were performed at a single
laboratory (Brigham and Women’s Hospital, Boston, MA)
using a standard protocol by personnel blinded to clinical
outcomes. Urine KIM-1, MCP-1, YKL-40, and EGF were
measured on the Luminex 200 platform with a
laboratory-developed multiplex assay (Luminex Corpo-
ration). Urine α1m was measured on a Siemens BNII
nephelometer (Siemens, Inc). All measurements except
α1m were made in duplicate, and mean values were used
in analyses. If the intra-assay coefficient of variation
exceeded 15%, the assay was repeated (Table S1). All
models were adjusted for urine creatinine (Ucr) con-
centration to account for differences in urine tonicity at
sample collection.
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Covariates

SCr was calibrated to isotope dilution using mass spec-
trometry and used to calculate eGFR according to the 2009
CKD-EPI (Chronic Kidney Disease Epidemiology Collabo-
ration) equation.24 Urine albumin concentration was
measured with the BNII ProSpec (Siemens, Inc). Ucr
concentration was measured by the Jaffe method on the
Modular P chemistry analyzer (Roche/Hitachi). We
adjusted for urine albumin and Ucr concentrations sepa-
rately in multivariable models, whereas albuminuria was
expressed as urinary albumin-creatinine ratio in descriptive
statistics.

Sociodemographic and clinical characteristics were
obtained in baseline exams for each cohort. Models for all
3 cohorts included the following covariates: age, sex,
race, education level, current smoking, body mass index,
systolic blood pressure, antihypertensive medication use,
Ucr concentration, urine albumin, and eGFR. Models for
ARIC also adjusted for history of CVD, which included
both coronary heart disease and stroke. Because of the
distribution of race across ARIC study sites, we adjusted
for combinations of race and study site rather than
adjusting for each covariate separately. MESA models did
not adjust for history of CVD, coronary heart disease, or
stroke because MESA participants had to be free of these
diagnoses at baseline for inclusion in the cohort. Models
for REGARDS adjusted for coronary heart disease and
stroke.

Outcome Ascertainment

We defined the outcome of incident CKD as a decrease to
eGFR <60 mL/min/1.73 m2 and ≥40% decline in eGFR
from the baseline value to the value at a subsequent SCr
measurement. In the ARIC study, incident CKD was also
defined to include participants who received kidney
replacement therapy (dialysis or transplant) as identified
by linkage to the US Renal Data System registry to capture
those who may not have had available eGFR at follow-
up.25 All individuals across the 3 cohorts who satisfied
inclusion criteria and met the outcome definition were
considered cases and included in analyses.

Statistical Analysis

Using baseline data from each of the 3 cohorts, we tabu-
lated descriptive statistics. Spearman rank correlations be-
tween the investigational biomarkers, urine albumin, Ucr,
and eGFR were calculated. We modeled the risk of incident
CKD for each biomarker separately in each cohort using
multivariable Cox proportional hazards regression. Models
for MESA and REGARDS accounted for the case-cohort
design using the pseudo-likelihood method proposed by
Prentice.26

For the primary analysis, biomarkers were log2-
transformed to represent each 2-fold higher concentra-
tion. An additional analysis modeled urine biomarkers in
quartiles to evaluate the functional forms of associations.
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Values of α1m that were below the lower limit of
detection (LLOD) of <5.63 mg/L were set to one-half of
the LLOD in ARIC analyses and to 5.62 mg/L in MESA
and REGARDS analyses. Two nested models were
applied: model 1 adjusted for age, sex, race, education,
study site (only in ARIC), body mass index, systolic
blood pressure, antihypertensive medication use, prev-
alent CVD or coronary heart disease and stroke (except
for MESA), and Ucr; model 2 additionally adjusted for
baseline eGFR and urine albumin. An alternative analysis
that indexed urine biomarkers to Ucr, rather than
adjusting for Ucr, was also performed and is presented
in Tables S2-S4. A 2-tailed P value <0.05 was considered
statistically significant.

To estimate the summary effect of each biomarker on
risk of incident CKD, we performed a meta-analysis that
included all 3 cohorts. The cohort-specific estimates for
each biomarker from the fully-adjusted model (model 2)
were combined using a fixed effects meta-analysis. The
percentage of variation across cohorts due to heterogeneity
was expressed as I2, and between-study variance was
expressed as τ2.

Analyses were performed using IBM SPSS version 26
(IBM Corp), R Core Team (2020) from R: A language and
environment for statistical computing (R Foundation for Statistical
Computing; www.R-project.org), and Stata version 16.1
(StataCorp LLC).
RESULTS

Baseline characteristics of included participants from
ARIC, MESA, and REGARDS are presented in Table 1
(Table S9). Compared with participants from ARIC and
REGARDS, MESA participants appeared to be younger, had
a higher proportion of men with lower body mass index,
lower blood pressure, and less antihypertensive medica-
tion use. The REGARDS subcohort had the highest pro-
portion of Black participants and lowest proportion of
smokers. Mean baseline age was 63 ± 5 years in ARIC,
60 ± 10 years in MESA, and 63 ± 8 years in REGARDS.
Mean baseline eGFR was 88 ± 13 mL/min/1.73 m2 in
ARIC, 91 ± 14 mL/min/1.73 m2 in MESA, and
89 ± 14 mL/min/1.73 m2 in REGARDS. None of the
participants had diabetes, by design.

In ARIC, 63% of α1m and 16% of YKL-40 measure-
ments were below the LLOD. In MESA, 47% of α1m and
6% of YKL-40 measurements were below the LLOD. In
REGARDS, 43% of α1m and 3% of YKL-40 measurements
were below the LLOD.

Spearman correlations of the urine biomarkers with
urinary albumin-creatinine ratio and eGFR in each cohort
are presented in Tables S5-S8. The investigational bio-
markers were modestly to moderately correlated with each
other. The investigational biomarkers were, in general,
weakly correlated with urinary albumin-creatinine ratio
and eGFR.
3
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Table 1. Baseline Characteristics of Included ARIC, MESA, and REGARDS Participants

Characteristic

Cohort

ARIC MESA REGARDS
Na 872 495 493
Age (y) 63 (5) 60 (10) 63 (8)
Female 499 (57%) 258 (52%) 285 (58%)
Black race 158 (18%) 119 (24%) 147 (30%)
Education
Less than high school graduate 137 (16%) 73 (15%) 41 (8%)
High School graduate 286 (33%) 82 (17%) 105 (21%)
Some college/vocational schoolb 69 (8%) 123 (25%) 112 (23%)
At least college graduate 380 (44%) 217 (44%) 235 (48%)

Current smokers 111 (13%) 70 (14%) 40 (8%)
Body mass index (kg/m2) 28.9 (5.4) 27.9 (5.1) 28.4 (5.8)
Hypertensive 400 (46%) 179 (36%) 214 (43%)
SBP (mm Hg) 128 (18) 123 (21) 125 (16)
DBP (mm Hg) 72 (10) 71 (11) 76 (9)
Heart failurec — 0 (0%) 27 (6%)
CAD/CHD/stroke 59 (7%) 0 (0%) 62 (13%)
Antihypertensive medication use 336 (38%) 149 (30%) 177 (36%)
ACEi/ARB use 100 (11%) 43 (9%) 107 (22%)
Diuretic use 133 (15%) 55 (11%) 93 (19%)
eGFR (mL/min/1.73 m2) 88 (13) 91 (14) 89 (14)
UACR (mg/g) 4 [2, 7] 4.7 [3.1, 9.4] 6.1 [4.2, 9.7]
Note: Data presented as mean (SD), number (%), or median [quartile 1, quartile 3].
Abbreviations: ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARIC, Atherosclerosis Risk in Communities; CAD, coronary artery
disease; CHD, coronary heart disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; MESA, Multi-Ethnic Study of Atherosclerosis;
REGARDS, Reasons for Geographic and Racial Differences in Stroke; SBP, systolic blood pressure; UACR, urinary albumin-creatinine ratio.
aN for ARIC represents size of included cohort; N for MESA and REGARDS represents size of random subcohort.
bARIC included an education category for “vocational school”; MESA and REGARDS included categories for “some college.”
cARIC did not record history of heart failure.
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Associations of Urine Markers of Tubule Injury and

Dysfunction with Incident CKD in Individual Cohorts

Fully-adjusted continuous models demonstrated that
higher urine MCP-1, KIM-1, and α1m were each associ-
ated with higher risk of incident CKD in ARIC, while urine
EGF and YKL-40 were not (Table 2). Analyses by
biomarker quartiles were consistent with findings from the
continuous log2 models and suggested a linear relationship
of biomarkers with CKD risk (Table 2).

In MESA, fully-adjusted continuous models demon-
strated that each 2-fold higher level of urine MCP-1 was
associated with incident CKD, whereas each 2-fold higher
level of urine EGF was associated with a significantly lower
risk of incident CKD (Table 3). Urine α1m, KIM-1, and
YKL-40 were not significantly associated with incident
CKD in adjusted linear models.

In REGARDS, none of the urine biomarkers was
significantly associated with incident CKD in the fully-
adjusted linear models (Table 4).

Meta-analysis of ARIC, MESA, and REGARDS

The meta-analyzed summary estimate from the fully-
adjusted models across the 3 cohorts demonstrated that
higher urine α1m was associated with a significantly
greater risk of incident CKD with minimal heterogeneity
across cohorts (Table 5). Each 2-fold higher level of α1m
4

was associated with a 19% higher risk of incident CKD
(95% confidence interval, 8%-31%) in the continuous
model, an association that appeared monotonic across
quartiles.

Summary point estimates for MCP-1, KIM-1, EGF, and
YKL-40 did not reach statistical significance in meta-
analysis. Heterogeneity for MCP-1 was higher across the
3 cohorts with I2 of 69% (test of homogeneity P = 0.041).
There was no evidence for associations of KIM-1, EGF, or
YKL-40 with incident CKD when data were meta-analyzed
across the 3 cohorts.
DISCUSSION

Across 3 cohorts of community-living adults with pre-
served glomerular filtration rate and without diabetes, we
investigated the association of 5 urine biomarkers of kid-
ney tubulointerstitial health with risk of incident CKD.
Four of these biomarkers were significantly associated with
incident CKD in at least 1 of the 3 cohorts. These associ-
ations were independent of baseline eGFR and urine al-
bumin level, highlighting distinct dimensions of kidney
tubule health incompletely captured by current methods of
kidney function assessment. Of these biomarkers, higher
urine α1m had the most consistent association with CKD
risk in meta-analysis across all 3 cohorts. These results
Kidney Med Vol 6 | Iss 6 | June 2024 | 100834



Table 2. Association of Urine Biomarkers With Incident CKD in ARIC Participants With eGFR ≥60 mL/min/1.73 m2 and Without
Diabetes at Baseline

MCP-1 Per 2-Fold Higher
Quartile 1:
<43.7 pg/mL

Quartile 2: 43.7-99.7
pg/mL

Quartile 3: 99.8-
194.1 pg/mL

Quartile 4:
>194.1 pg/mL

Cases/N 438/859 75/181 92/197 120/225 157/269
Model 1 1.26 (1.14, 1.39) 1 (ref) 1.16 (0.85, 1.59) 1.53 (1.11, 2.12) 1.94 (1.35, 2.77)

Model 2 1.26 (1.14, 1.39) 1 (ref) 1.16 (0.85, 1.59) 1.52 (1.10, 2.10) 1.92 (1.34, 2.74)

α1m Per 2-Fold Higher Quartile
1:<LLOD

Quartile 2: LLOD-7.4
mg/L

Quartile 3: 7.5-
10.2 mg/L

Quartile 4:
>10.2 mg/L

Cases/N 444/872 254/548 59/104 53/98 78/122
Model 1 1.24 (1.11, 1.39) 1 (ref) 1.27 (0.93, 1.73) 1.37 (0.99, 1.88) 1.55 (1.14, 2.12)

Model 2 1.20 (1.07, 1.34) 1 (ref) 1.26 (0.93, 1.71) 1.34 (0.97, 1.85) 1.43 (1.04, 1.97)

KIM-1 Per 2-Fold Higher Quartile 1:
<346.6 pg/mL

Quartile 2: 346.6-
766.4 pg/mL

Quartile 3: 766.5-
1,421.9 pg/mL

Quartile 4:
>1,421.9 pg/mL

Cases/N 444/872 87/194 99/206 104/211 154/261
Model 1 1.18 (1.07, 1.29) 1 (ref) 0.96 (0.71, 1.29) 1.18 (0.86, 1.62) 1.52 (1.06, 2.19)

Model 2 1.16 (1.06, 1.27) 1 (ref) 0.95 (0.71, 1.29) 1.18 (0.86, 1.62) 1.45 (1.01, 2.08)

EGF Per 2-Fold Higher Quartile 1:
<3,443.7
pg/mL

Quartile 2: 3,443.7-
5,960.6 pg/mL

Quartile 3: 5,960.7-
9,026.9 pg/mL

Quartile 4:
>9,026.9 pg/mL

Cases/N 444/871 105/212 118/225 124/231 97/204
Model 1 0.89 (0.78, 1.01) 1 (ref) 1.01 (0.76, 1.33) 1.11 (0.81, 1.52) 0.90 (0.60, 1.35)
Model 2 0.90 (0.80, 1.03) 1 (ref) 1.00 (0.76, 1.33) 1.14 (0.83, 1.56) 0.93 (0.61, 1.40)
YKL-40 Per 2-Fold Higher Quartile 1:<127.3

pg/mL
Quartile 2: 127.3-
235.1 pg/mL

Quartile 3: 235.2-
389.2 pg/mL

Quartile 4:
>389.2 pg/mL

Cases/N 392/752 119/209 90/180 80/170 155/313
Model 1 0.95 (0.88, 1.02) 1 (ref) 0.87 (0.66, 1.15) 0.76 (0.57, 1.01) 0.78 (0.61, 0.99)

Model 2 0.94 (0.87, 1.01) 1 (ref) 0.86 (0.65, 1.14) 0.74 (0.56, 0.99) 0.74 (0.58, 0.95)

Note: Associations presented as hazard ratio (95% confidence intervals). Model 1: adjusted for age, sex, race-center, smoking, body mass index, systolic blood
pressure, antihypertensive medication use, prevalent cardiovascular disease, education level, and urine creatinine concentration; model 2 additionally adjusted for
baseline eGFR and urine albumin concentration.
Abbreviations: α1m, alpha-1-microglobulin; ARIC, Atherosclerosis Risk in Communities; CKD, chronic kidney disease; EGF, epidermal growth factor; eGFR, estimated
glomerular filtration rate; KIM-1, kidney injury molecule-1; LLOD, lower limit of detection; MCP-1, monocyte chemoattractant protein-1; N, number at risk; ref,
reference; YKL-40, chitinase-3-like protein 1.
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support our overall hypothesis that urine kidney tubule
biomarkers may be useful for elucidating pathways of
kidney disease progression, improving early detection of
kidney damage, and defining the epidemiology of kidney
disease among relatively healthy adults.

The meta-analysis demonstrated that higher urine α1m
concentrations were independently associated with inci-
dent CKD in a combined sample of over 2,400 adults
without diabetes. This association had little heterogeneity
across cohorts. Summary estimates for the association of
urine MCP-1 with incident CKD were similar to those of
α1m, although these meta-analyzed estimates were not
statistically significant, and we observed substantially
greater heterogeneity for this biomarker across the cohorts.
α1m is freely filtered and normally avidly reabsorbed by
the proximal tubule; higher urine α1m levels identify
decrements in proximal tubule reabsorptive capacity.
Urine MCP-1 reflects the infiltration of immune cells into
kidney tubules in response to injury and inflammation.
Thus, our findings suggest potential roles for proximal
tubule reabsorptive dysfunction, in addition to injury and
inflammation, in the development of CKD in relatively
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healthy populations. Prior studies in populations with
elevated risk of progressive CKD have demonstrated that
many of these biomarkers have strong associations with
adverse outcomes.10,13,27,28 The current study builds upon
that work, demonstrating that select urine biomarkers
reveal risk of CKD even in populations with lower baseline
risk and relatively preserved glomerular filtration rate.
Because interstitial fibrosis and tubular atrophy may
develop before any apparent declines in glomerular
filtration rate,4 these biomarkers of tubulointerstitial health
hold promise to identify very early kidney disease that
could be amenable to therapeutic interventions, potentially
enabling initiation of therapies that would prevent CKD
and associated morbidity.

Higher urine α1m concentrations represent proximal
tubule reabsorptive dysfunction and have been indepen-
dently associated with CKD progression in high-risk pop-
ulations.10,29,30 Much like glucose, filtered α1m is
normally reabsorbed by tubules and absent from urine,
hence the large proportion of undetectable α1m values
noted in this study of adults with preserved eGFR. Yet,
higher urine α1m was significantly associated with
5



Table 3. Association of Urine Biomarkers With Incident CKD in MESA Participants With eGFR ≥60 mL/min/1.73 m2 and Without Diabetes at Baseline

MCP-1 Per 2-Fold Higher
Quartile 1:
<102 pg/mL

Quartile 2:
102-176 pg/mL

Quartile 3:
177-289 pg/mL

Quartile 4: >289
pg/mL

N (total subcohort) 495 124 124 124 123
Cases in subcohort 17 2 6 3 6
Additional cases 142 22 25 34 61
Model 1 1.53 (1.14, 2.04) 1 (ref) 1.24 (0.53, 2.92) 1.15 (0.44, 3.01) 2.54 (0.88, 7.32)
Model 2 1.38 (1.02, 1.86) 1 (ref) 1.12 (0.47, 2.66) 0.75 (0.28, 2.03) 1.88 (0.64, 5.52)
α1m Per 2-Fold Higher Quartile 1:<LLOD Quartile 2:

5.63-7.49 mg/L
Quartile 3:
7.50-11.91 mg/L

Quartile 4:>11.91
mg/L

N (total subcohort) 495 251 82 85 77
Cases in subcohort 17 9 3 3 2
Additional cases 142 51 24 29 38
Model 1 1.35 (1.12, 1.63) 1 (ref) 1.32 (0.68, 2.54) 1.53 (0.78, 3.01) 2.42 (1.31, 4.45)

Model 2 1.17 (0.95, 1.44) 1 (ref) 1.08 (0.55, 2.11) 1.18 (0.60, 2.31) 1.52 (0.79, 2.92)
KIM-1 Per 2-Fold Higher Quartile 1:<992

pg/mL
Quartile 2:
993-1,752 pg/mL

Quartile 3:
1,753-2,909 pg/mL

Quartile 4:>2,909
pg/mL

N (total subcohort) 495 124 124 124 123
Cases in subcohort 17 3 7 2 5
Additional cases 141 26 29 34 52
Model 1 1.07 (0.80, 1.45) 1 (ref) 0.89 (0.43, 1.84) 0.91 (0.41, 2.03) 1.40 (0.56, 3.48)
Model 2 0.99 (0.73, 1.34) 1 (ref) 0.81 (0.39, 1.71) 0.78 (0.34, 1.80) 1.04 (0.41, 2.65)
EGF Per 2-Fold Higher Quartile 1:<4,987

pg/mL
Quartile 2:
4,987-7,367 pg/mL

Quartile 3:
7,368-10,607 pg/mL

Quartile 4:>10,607
pg/mL

N (total subcohort) 494 124 123 124 123
Cases in subcohort 17 9 4 3 1
Additional cases 142 42 39 33 28
Model 1 0.53 (0.33, 0.87) 1 (ref) 0.37 (0.17, 0.82) 0.41 (0.18, 0.92) 0.23 (0.09, 0.62)

Model 2 0.57 (0.35, 0.95) 1 (ref) 0.45 (0.19, 1.06) 0.45 (0.19, 1.07) 0.27 (0.09, 0.79)

YKL-40 Per 2-Fold Higher Quartile 1:<206
pg/mL

Quartile 2:
206-380 pg/mL

Quartile 3:
381-624 pg/mL

Quartile 4:>624
pg/mL

N (total subcohort) 466 117 116 117 116
Cases in subcohort 15 2 4 6 3
Additional cases 137 35 16 32 54
Model 1 0.94 (0.81, 1.09) 1 (ref) 0.45 (0.22, 0.94) 0.70 (0.36, 1.36) 0.74 (0.38, 1.42)
Model 2 0.89 (0.77, 1.03) 1 (ref) 0.39 (0.18, 0.83) 0.59 (0.30, 1.16) 0.59 (0.30, 1.15)
Note: Associations presented as hazard ratio (95% confidence intervals). Model 1: adjusted for age, sex, race, education, smoking, body mass index, systolic blood pressure, antihypertensive medication use, and urine creatinine
concentration; model 2 additionally adjusted for baseline eGFR and urine albumin concentration.
Abbreviations: α1m, alpha-1-microglobulin; CKD, chronic kidney disease; EGF, epidermal growth factor; eGFR, estimated glomerular filtration rate; KIM-1, kidney injury molecule-1; LLOD, lower limit of detection; MCP-1,
monocyte chemoattractant protein-1; MESA, Multi-Ethnic Study of Atherosclerosis; N, number at risk; ref, reference; YKL-40, chitinase-3-like protein 1.
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Table 4. Association of Urine Biomarkers With Incident CKD in REGARDS Participants With eGFR ≥60 mL/min/1.73 m2 and Without Diabetes at Baseline

MCP-1 Per 2-Fold Higher
Quartile 1:
<116 pg/mL

Quartile 2:
116-215 pg/mL

Quartile 3:
216-329 pg/mL

Quartile 4: >329
pg/mL

N (total subcohort) 492 123 123 123 123
Cases in subcohort 57 13 15 12 17
Additional cases 431 96 121 97 117
Model 1 1.00 (0.80, 1.25) 1 (ref) 0.95 (0.57, 1.59) 0.79 (0.43, 1.44) 0.99 (0.51, 1.93)
Model 2 0.94 (0.75, 1.18) 1 (ref) 0.96 (0.57, 1.61) 0.76 (0.41, 1.38) 0.86 (0.43, 1.71)
α1m Per 2-Fold Higher Quartile 1:<LLOD Quartile 2:

5.63-8.21 mg/L
Quartile 3:
8.22-12.70 mg/L

Quartile 4:>12.70
mg/L

N (total subcohort) 493 215 98 96 84
Cases in subcohort 57 23 8 10 16
Additional cases 431 185 78 81 87
Model 1 1.18 (0.93, 1.48) 1 (ref) 0.84 (0.53, 1.35) 0.98 (0.60, 1.59) 1.41 (0.86, 2.33)
Model 2 1.12 (0.87, 1.44) 1 (ref) 0.84 (0.53,1.34) 0.98 (0.61, 1.59) 1.30 (0.77, 2.20)
KIM-1 Per 2-Fold Higher Quartile 1:<1,297

pg/mL
Quartile 2:
1,297-2,148 pg/mL

Quartile 3:
2,149-3,262 pg/mL

Quartile 4:>3,262
pg/mL

N (total subcohort) 493 124 123 123 123
Cases in subcohort 57 14 12 13 18
Additional cases 431 90 114 118 109
Model 1 0.98 (0.78, 1.22) 1 (ref) 0.92 (0.56, 1.52) 0.84 (0.49, 1.44) 0.72 (0.41, 1.29)
Model 2 0.96 (0.77, 1.21) 1 (ref) 0.97 (0.59, 1.59) 0.80 (0.47, 1.37) 0.71 (0.40, 1.28)
EGF Per 2-Fold Higher Quartile 1:<1,621

pg/mL
Quartile 2:
1,621-1,994 pg/mL

Quartile 3:
1,995-2,810 pg/mL

Quartile 4:>2,810
pg/mL

N (total subcohort) 493 124 123 123 123
Cases in subcohort 57 17 14 13 13
Additional cases 431 102 99 115 115
Model 1 1.17 (0.98, 1.39) 1 (ref) 0.90 (0.57, 1.43) 1.29 (0.81, 2.07) 1.49 (0.92, 2.39)
Model 2 1.15 (0.96, 1.38) 1 (ref) 0.93 (0.58, 1.48) 1.35 (0.84, 2.18) 1.49 (0.91, 2.42)
YKL-40 Per 2-Fold Higher Quartile 1:<263

pg/mL
Quartile
2: 263-424 pg/mL

Quartile 3:
425-736 pg/mL

Quartile 4:>736
pg/mL

N (total subcohort) 475 119 119 119 118
Cases in subcohort 55 11 13 20 11
Additional cases 422 94 93 117 118
Model 1 1.03 (0.91, 1.17) 1 (ref) 1.08 (0.69, 1.70) 1.35 (0.86, 2.10) 1.12 (0.70, 1.78)
Model 2 1.02 (0.90, 1.15) 1 (ref) 1.11 (0.71, 1.74) 1.36 (0.86, 2.13) 1.07 (0.67, 1.72)
Note: Associations presented as hazard ratio (95% confidence intervals). Model 1: adjusted for age, sex, race, education, smoking, body mass index, systolic blood pressure, antihypertensive medication use, prevalent coronary
heart disease, history of stroke, and urine creatinine concentration; model 2: additionally adjusted for baseline eGFR and urine albumin concentration.
Abbreviations: α1m, alpha-1-microglobulin; CKD, chronic kidney disease; EGF, epidermal growth factor; eGFR, estimated glomerular filtration rate; KIM-1, kidney injury molecule-1; LLOD, lower limit of detection; MCP-1,
monocyte chemoattractant protein-1; N, number at risk; ref, reference; REGARDS, Reasons for Geographic and Racial Differences in Stroke; YKL-40, chitinase-3-like protein 1.
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incident CKD across 3 well-characterized cohorts even after
adjustment for other risk factors, suggesting that this
biomarker remains informative even among lower-risk
populations.

Urine MCP-1 is another promising biomarker and was
significantly associated with incident CKD in both ARIC
and MESA. The absence of associations in REGARDS and a
higher degree of heterogeneity observed in meta-analysis
for this biomarker make these findings less definitive
than those for α1m and require further study. MCP-1,
believed to reflect tubulointerstitial inflammation and
injury, has been associated with kidney injury and poor
outcomes in multiple contexts, particularly among persons
with known kidney disease. For example, participants with
proteinuric CKD and type 1 diabetes in the Diabetes
Control and Complications Trial/Epidemiology of Diabetes
Interventions and Complications study had higher con-
centrations of urine MCP-1 compared to controls with
preserved eGFR and normalbuminuria.31 Higher urine
MCP-1 has also been associated with risk of allograft failure
among kidney transplant recipients.11 In persons with type
2 diabetes with preserved kidney function, higher urine
MCP-1 concentrations were also associated with subse-
quent declines in kidney function.32 In previously hospi-
talized patients with and without acute kidney injury,
higher urine MCP-1 concentrations were associated with
greater eGFR decline and higher risk of incident CKD and
end-stage kidney disease.33 These studies demonstrate that
tubulointerstitial disease captured by urine MCP-1 can be
detected before worsening kidney function in a range of
settings. Our study adds to this literature by demonstrating
that the same is true among community-dwelling adults
without diabetes or clinical kidney disease in 2 of 3 co-
horts evaluated.

Our analyses did not identify consistent associations of
KIM-1, EGF, or YKL-40 with incident CKD, although ev-
idence from individual cohorts identified some isolated
associations. KIM-1, a marker of proximal tubule injury, is
perhaps the most well-characterized biomarker in the
panel evaluated here. It has been qualified by the US Food
and Drug Administration for the detection of kidney injury
and the determination of truly normal kidney function in
preclinical drug development.34-36 Previously, higher
urine KIM-1 concentration was associated with incident
CKD and rapid kidney function decline in a nested case-
control study of MESA participants, 18% of whom had
baseline diabetes.37 This study now corroborates that
finding in ARIC participants without prevalent diabetes or
CKD. EGF is involved in kidney tubule cell repair and
regeneration and is viewed as a marker of tubule synthetic
function. Unlike the other tubule function and injury
biomarkers we studied, lower urine EGF levels have been
associated with persistent and progressive declines in
kidney function in high-risk groups.13,38-41 However, as-
sociations of urine EGF with kidney outcomes in lower-risk
adults more closely resembling the general population have
been relatively unexplored. Here, we demonstrated that
Kidney Med Vol 6 | Iss 6 | June 2024 | 100834
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lower urine EGF in non-diabetic MESA participants was
associated with higher risk of incident CKD, although this
was not observed in the other 2 cohorts.

This study benefits from the use of 3 large cohorts with
extensive recording of comorbid conditions, known CKD
risk factors, and a relatively large number of incident CKD
events. An efficient case-cohort design applied to MESA
and REGARDS made it feasible to measure several different
biomarkers concurrently. All biomarker measurements
were performed in a single laboratory with uniform
techniques. We used a specific outcome definition,
ensuring that incident CKD cases were valid and clinically
meaningful.42 Meta-analysis enabled integration of find-
ings from individual cohorts. However, because the meta-
analysis was limited to only 3 studies with important
differences in inclusion criteria, the estimates of hetero-
geneity should be interpreted cautiously. Although all
participants analyzed for this study had baseline
eGFR >60 mL/min/1.73 m2 and no diabetes, MESA
excluded persons with prevalent CVD. The resulting MESA
cohort was slightly younger with a lower proportion of
baseline hypertension and lower mean blood pressures,
compared with the ARIC and REGARDS participants.
Another limitation is the possibility for residual con-
founding due to the observational study design. Due to
relatively long follow-up times, our analyses were sus-
ceptible to bias from competing outcomes. For example,
participants with abnormal baseline markers of tubule
injury and dysfunction may have been more likely to die
before developing CKD, thus attenuating the observed
associations. Long intervals between SCr measurements
made it difficult to identify incident CKD near the time of
onset, potentially obscuring associations between bio-
markers and the outcome. The incident CKD definition
required participants to survive and return to follow-up
visits by necessity, thus survival bias may have influ-
enced the results. Because biomarkers were measured only
once at baseline, we could not evaluate whether repeat
measurements and longitudinal biomarker changes pro-
vide additional information. Finally, we could not deter-
mine whether the tubulointerstitial pathology underlying
urine biomarker levels can be modified by lifestyle
changes, treatment of comorbid conditions, or neph-
roprotective medications.

In conclusion, higher urine α1m measured in
community-living individuals without CKD at baseline and
diabetes is associated with future development of CKD
independent of baseline eGFR, albuminuria, and other risk
factors, a finding that was consistent across 3 distinct co-
horts. Other biomarkers of kidney tubule health had
similar associations in individual cohorts. These findings
enhance the understanding of CKD development by
demonstrating the early importance of tubule dysfunction
in the pathophysiology of kidney disease progression. This
insight raises the possibility that kidney tubule biomarkers
could identify early tubulointerstitial disease, allowing
clinicians to investigate potential causes and institute
Kidney Med Vol 6 | Iss 6 | June 2024 | 100834
therapies at actionable stages, before the accumulation of
substantial damage and evident glomerular filtration rate
loss. This strategy may become increasingly relevant with
the advent of drugs proposed to target or prevent kidney
fibrosis, which are presumed to be most useful in the
earliest stages of kidney disease.43-45 In support of this
goal, future studies should continue to evaluate kidney
tubule biomarkers in younger and healthier populations,
document changes over time, and determine whether the
damage represented by urine biomarkers is therapeutically
actionable.
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