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Up to 40% of very preterm infants (≤32 weeks’ gestational age) were identified with
a cognitive deficit at 2 years of age. Yet, accurate clinical diagnosis of cognitive
deficit cannot be made until early childhood around 3–5 years of age. Recently,
brain structural connectome that was constructed by advanced diffusion tensor
imaging (DTI) technique has been playing an important role in understanding human
cognitive functions. However, available annotated neuroimaging datasets with clinical
and outcome information are usually limited and expensive to enlarge in the very preterm
infants’ studies. These challenges hinder the development of neonatal prognostic
tools for early prediction of cognitive deficit in very preterm infants. In this study, we
considered the brain structural connectome as a 2D image and applied established
deep convolutional neural networks to learn the spatial and topological information
of the brain connectome. Furthermore, the transfer learning technique was utilized
to mitigate the issue of insufficient training data. As such, we developed a transfer
learning enhanced convolutional neural network (TL-CNN) model for early prediction of
cognitive assessment at 2 years of age in very preterm infants using brain structural
connectome. A total of 110 very preterm infants were enrolled in this work. Brain
structural connectome was constructed using DTI images scanned at term-equivalent
age. Bayley III cognitive assessments were conducted at 2 years of corrected age.
We applied the proposed model to both cognitive deficit classification and continuous
cognitive score prediction tasks. The results demonstrated that TL-CNN achieved
improved performance compared to multiple peer models. Finally, we identified the
brain regions most discriminative to the cognitive deficit. The results suggest that deep
learning models may facilitate early prediction of later neurodevelopmental outcomes in
very preterm infants at term-equivalent age.

Keywords: convolutional neural network, deep learning, cognitive deficit, transfer learning, structural
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INTRODUCTION

A high prevalence of long-term cognitive deficit is well-
established in very preterm infants (≤32 weeks’ gestational age),
with 35–40% of this population identified with a deficit at
2 years of age (Blencowe et al., 2012; Hamilton et al., 2016). This
neurological deficit may affect the infant throughout life, thereby
resulting in difficulties in academic skills and building social
relationships. Yet, no robust prognostic screening technique is
available following neonatal intensive care stay. Typically, an
accurate diagnosis of cognitive deficit cannot be made until early
childhood around 3–5 years of age. This delayed diagnosis misses
the optimal neuroplasticity period of brain development in the
first 3 years of life and potentially undermines the effectiveness of
early interventions. As such, reproducible approaches that serve
as neonatal prognostic tools are needed to fill the gap in our
knowledge about the early prediction of cognitive deficit in very
preterm infants.

The human brain is a highly interconnected network with
coordinated information transfer among individual brain regions
(Sporns et al., 2005). Advanced non-invasive neuroimaging
MRI techniques have been applied to construct such network
representation of the brain, referred to as the brain connectome
(Bullmore and Sporns, 2009). Theoretically, a brain connectome
is a graph, where vertices represent a set of brain regions of
interest (ROIs) and edges represent brain connectivity between
ROIs. This brain connectome perspective shifted traditional
research that focuses on isolated ROIs toward research on a
systematic mechanism incorporating the whole brain. Brain
connectome data have very high dimensionality and are
intrinsically complex, creating difficulties in designing feature
extraction methods and building analysis models. Deep learning
has shown great promise in deciphering complex and high
dimensional data (e.g., images, signals, and videos) to achieve
superior performance in numerous fields, including computer
vision, speech recognition, and natural language processing
(LeCun et al., 2015). Indeed, numerous studies have applied
deep learning approaches to brain connectome for various
neurological disorders (Wee et al., 2012; Barkhof et al., 2014; He
et al., 2018; Heinsfeld et al., 2018; Li et al., 2018; Sen et al., 2018;
Chen et al., 2019).

Brain connectome plays an important role in understanding
human cognitive functions (Nagy et al., 2004; Park and Friston,
2013; Petersen and Sporns, 2015). Recent research demonstrated
that deep learning models were capable of predicting later
cognitive deficits for neonates using brain structural connectome
that was constructed by diffusion tensor imaging (DTI) data
(Kawahara et al., 2017; Girault et al., 2019). One method
to apply deep learning models to brain connectome data is
to ignore the topology of the connectome and reshape the
adjacency matrix into a vector of features as input (Munsell
et al., 2015; Girault et al., 2019). However, the spatial locality
(i.e., 2D grid regions of an adjacency matrix) and topological
locality information (i.e., rows/columns of an adjacency matrix)
in the brain connectome are not utilized, thereby resulting in
information loss and potentially compromising the performance
of prediction models. Another approach is to apply specialized

topological row and column filters on the adjacency matrix of the
brain structural connectome to learn the topological relationship
between edges (Kawahara et al., 2017). This approach, however,
only emphasizes topological locality and discards the spatial
locality information (e.g., physically nearby brain ROIs and
associated edges) that are intrinsic to any brain ROI parcellation.
Since the brain structural connectome is a modular graph
that contains clusters of vertices and edges, its adjacency
matrix contains hierarchically segregated modules (Park and
Friston, 2013). Those topological filters may extract redundant
information within connectome modules and may not be efficient
for capturing spatial locality. In this work, we consider the
adjacency matrix of brain structural connectome as a 2D image
and propose to apply established deep convolutional neural
networks (CNNs) to learn the spatial and topological information
of the brain connectome.

Although deep CNN models have shown promising results
on image classification, those models usually require large
datasets for model training. In the studies of very preterm
infants, available annotated neuroimaging datasets with clinical
and outcome information are usually limited and expensive to
enlarge, preventing deep CNN to be directly utilized. Transfer
learning (TL) may serve as a potential solution to this challenge.
Briefly, TL reuses a pre-trained model designed for one task as
a starting point for another related task (Bengio, 2012; Samala
et al., 2016, 2018; Shin et al., 2016; Azizi et al., 2017; Kooi et al.,
2017; Zheng et al., 2018; Bizzego et al., 2019). Raina et al. (2007)
proposed a self-taught learning framework that takes unlabeled
images to improve the classification performance of their target
classification task. Cheng et al. (2019) transferred image features
learned from the early stages of Alzheimer’s disease (AD) to
improve the prediction of AD diagnosis. Gao et al. (2019)
reused pre-trained models based on a large-scale natural image
dataset and re-trained a deep learning model for classification of
brain activity heatmaps derived from task-based functional MRI
data. Recently, we applied the TL technique to a deep neural
network (DNN) model for cognitive deficit prediction using
brain functional connectome data (He et al., 2018). The DNN
model was pre-trained using a large number of brain connectome
data in an unsupervised fashion and then fine-tuned with brain
connectome data from very preterm infants.

In this study, we proposed a TL-enhanced deep CNN (TL-
CNN) model for early prediction of cognitive deficit at 2 years
of age in very preterm infants using brain structural connectome
derived from at term DTI data. Specifically, the proposed model
contains two modules, a very deep CNN (which was trained
with supervision using ∼1.2 million images from the ImageNet
database) (Deng et al., 2009) and a “shallow” CNN. With the
fixed weighted pre-trained very deep CNN, we only need to train
and fine-tune the “shallow” CNN using available very preterm
infants’ brain connectome data and associated risks of cognitive
deficit. For individual very preterm infants, we constructed brain
structural connectome using mean fractional anisotropy from
their DTI data collected at term-equivalent age. The proposed
model is able to evaluate at term whether or not a very preterm
infant will have a high risk to develop later cognitive deficits as
well as to predict this infant’s cognitive assessment [standardized
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Bayley Scales of Infant and Toddler Development, Third Edition
(Bayley III) cognitive score] at 2 years of age.

MATERIALS AND METHODS

Subjects
The study includes a cohort of 110 very preterm infants, born
at 31 weeks gestational age or less from four academic and
non-academic centers in Columbus, Ohio, including Nationwide
Children’s Hospital (NCH), Ohio State University Medical
Center, Riverside Hospital, and Mount Carmel St. Ann’s Hospital.
Infants were enrolled between December 2014 and April 2016. All
subjects with any congenital or chromosomal anomalies affecting
the central nervous system were excluded. Infants with cyanotic
congenital heart disease were also excluded. The study was
approved by the Institutional Review Board of NCH. Approval at
the other hospitals was obtained through reciprocity agreements
that were in place with NCH. Written informed consent was
obtained from parents or legal guardians of all infants.

MRI and Cognitive Outcome Acquisition
Very preterm infants in the cohort were scanned on a 3T
scanner (Skyra; Siemens Healthcare) at NCH using a 32-channel
phased-array head coil. The imaging was performed after the
infant was fed and in natural sleep without sedation. Natus
Mini Muffs (Natus Medical Inc., Scan Carlos, CA, United States)
and InstaPuffy Silicone Earplugs (E.A.R Inc., Boulder, CO,
United States) were employed for MRI noise reduction. DTI
was acquired with echo-planar imaging using the following
parameters (b800/b2000): repetition time = 6972/5073 ms; echo
time = 88 ms; field of view = 160 mm × 160 mm; in-plane
resolution = 2 mm × 2 mm; number of slices = 76; slice
thickness = 1 mm; 64 non-colinear diffusion-weighted directions;
for all images, one volume has no diffusion sensitization;
sensitivity encoding factor equates to 2. High-resolution T2-
weighted anatomical images were acquired with rapid spin-echo
sequence: TR/TE = 7.3/3.4 ms, flip angle = 11◦, voxel dimensions
1.0 mm× 1.0 mm× 1.0 mm, scan time = 2:47 min.

All preterm infants received (Bayley-III) test at 2 years
corrected age while blinded to DTI data. The Bayley-III cognitive
scores are on a scale of 40–160, with a mean of 100 and a standard
deviation of 15.

DTI Data Preprocessing
DTI data were preprocessed using FMRIB’s Diffusion Toolbox
(in the FMRIB Software Library, FSL, Oxford, United Kingdom)
following our previously established pipeline (Yuan et al.,
2015). Specifically, head motion and eddy current artifacts were
mitigated by aligning all diffusion images to the b0 image
via an affine transformation. Diffusion tensor reconstruction
and brain fiber tracking were performed in the subject’s native
space using Diffusion Toolkit/TrackVis (Hess et al., 2006; Wang
et al., 2007). Diffusion tensor calculation was based on a
linear least-square fitting algorithm, and brain fiber tracking
was based on a deterministic tracking algorithm (Wang et al.,
2007). The fiber tracking uses an angular threshold of 35◦.

The fiber length threshold was set to 5 mm. The obtained
fractional anisotropy maps were harmonized using a batch-
effect correction algorithm ComBat (Fortin et al., 2017). We
use a neonatal Automated Anatomical Labeling (AAL) brain
atlas proposed by Shi et al. (2011). For each subject, the
high-resolution T2-weighted images were first registered to
the b0 image in the subject’s native space and then to the
neonatal template space to obtain a transformation matrix. Next,
the inverse transformation matrix was used to transform the
parcellated ROIs from the template space back to the subject’s
native space (b0).

Whole-Brain Structural Connectome
Construction
A brain connectome is a graph G = (A, �), where vertices
� represent a set of ROIs, and A is an adjacency matrix of
edges that represent brain connectivity between a pair of ROIs.
Ninety ROIs were defined based on a neonatal automated labeling
atlas (Shi et al., 2011). The weights of structural connectivity
between each pair of ROIs were calculated as the mean FA of all
voxels along the WM tract constructed between the two ROIs,
resulting in a 90 × 90 symmetric adjacency matrix. This was
performed using the UCLA Multimodal Connectivity Package
(Bassett et al., 2011).

Overview of TL-Enhanced Deep CNN
The proposed model contains two modules, a very deep CNN
(which was trained with supervision using ∼1.2 million images
from the ImageNet database) (Deng et al., 2009) and a “shallow”
CNN. In Figure 1, we display a two-stage model training
procedure in the top two blocks and picture a clinical application
in the bottom block, where the proposed model can aid clinicians
in the prediction of cognitive deficit using brain structural
connectome data. The model training procedure contains two
stages: (1) pre-training in the source domain and (2) fine-tuning
in the target domain. Specifically, in stage 1, we first pre-trained
a deep CNN to learn the basic transferrable image representation
(e.g., edges, shapes, etc.) using a large number of color images and
associated image labels (source domain). In stage 2, we reused the
pre-trained model from stage 1 and fine-tuned the model in the
target domain with brain structural connectome and associated
cognition deficit outcomes.

Pre-training in the Source Domain
In the source domain, we trained the proposed model to learn
transferrable image representation (e.g., edges, shape, and blobs)
from diverse objects (e.g., animals, vehicles, human, and natural
environments). We defined the task in the source domain
as an image classification task. Adjacency matrices of brain
connectome are different from those semantic images (dogs,
cats, etc.); however, the low-level imaging features (for example
straight and curved lines that construct images) are universal
to most image analysis tasks. Therefore, the idea behind TL
is to treat the pre-trained model as a feature extractor to
extract low-level imaging features from the adjacency matrix of
a given structural connectome. In this study, we started with
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FIGURE 1 | Schematic diagram of the proposed transfer learning-enhanced deep CNN (TL-CNN) model to predict cognitive deficits at 2 years corrected age using
brain structural connectome data obtained at term in very preterm infants. The top two blocks demonstrate a two-stage model training procedure, and the bottom
block illustrates a potential clinical computer-aided diagnosis application after model training.

the VGG-Nets (Simonyan and Zisserman, 2014) to develop our
deep CNN model. VGG-Nets are a set of very deep CNN that
were initially proposed by Visual Geometry Group in ImageNet
Large Scale Visual Recognition Competition (ILSVRC) 2014.
They have been applied to other image analysis applications
(Choi et al., 2017; Zhen et al., 2017; Wang et al., 2018). We
adopted the architecture of VGG19, one of VGG-Nets models
for our study. Briefly, VGG19 is a very deep CNN that consists
of 19 trainable layers, including 16 convolutional layers and
3 fully connected (FC) layers designed for classifying 1000
object categories. For each convolutional layer, the VGG19
uses small convolutional filters (3 × 3) along with a rectified
linear unit activation function. We obtained a VGG19 model
that was pre-trained using ∼1.2 million color images from
the ImageNet database. We then dissembled the model and
reserved the weights of the convolutional and pooling layers
(Figure 1, blue box).

Fine-Tuning in the Target Domain
The task in the target domain is to predict the cognitive outcome
at 2 years corrected age using brain structural connectome
obtained at term-equivalent age. Since the deep CNN in the
source domain was pre-trained to recognize transferrable image

representation, it would automatically extract image features
from the brain structural connectome. The fine-tuning in the
target domain is essential to discover discriminative features
among generic features and link them to the target task (i.e.,
cognitive development). We connected a “shallow” CNN (i.e.,
2 convolutional layers and 2 FC layers) to the pre-trained fixed
weighted deep CNN from the first stage. Finally, an output layer
was attached for classification or regression tasks (Figure 1,
green box). We used brain structural connectome and follow-up
cognitive outcomes to fine-tune the deep CNN model. Given N
training samples (x1, x2, . . . , xi, . . . , xN−1, xN) from the target
cohort as well as their labels (y1, y2, . . . , yi, . . . , yN−1, yN),
where xi is the i-th input sample (i.e., brain structural
connectome) and yi is the corresponding label, we defined the
cross-entropy loss function as:

J(W, b) = −
1
N

N∑
i=1

yi log
(
p(xi)

)
+
(
1− yi

)
log

(
1− p(xi)

)
where p(xi) is the predicted probability of xi, W is the weight
matrix, and b denotes the bias of the model. In addition to
the dichotomized prediction (i.e., classification), we also trained
our model to perform continuous cognitive score prediction
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(i.e., regression). We applied a linear unit at the end of the
model and optimized a weighted mean absolute error (MAE) loss
function as follows:

L(W, b) =
1
N

N∑
i=1

∣∣(yi − ŷi (W, b)
)∣∣

where ŷi (W, b) is the output of the linear unit of the model,
i.e., the predicted score. Similar to the previous cross-entropy
loss function, b represents the bias, and W is the weight of the
model. The proposed model was optimized using Adam (Kingma
and Ba, 2014), a backpropagation gradient descent algorithm.
Adam computes adaptive learning rates for weight updating
based on the average of recent magnitudes of the gradients,
improving computational efficiency. The initial learning rate is
set to 0.001. We applied 50 epochs to train the TL-CNN model.
The detailed architecture of the TL-CNN model is elaborated in
Supplementary Figure 1.

Alternative Model Comparison
Linear/Logistic Regression Model
In the linear regression model, we applied mean squared
error as the loss function to minimize the residual sum of
error between the true score and the score predicted by
the linear approximation. For the logistic regression (LR)
model, we adopted cross-entropy as the cost function. We
used L2 regularization as the penalty term, and we grid
searched the regularization parameters with empirical values
(10−3, 10−2, . . . , 101).

Support Vector Machine
We tested the support vector machine (SVM) model with three
different kernels: linear, polynomial, and radial basis function
(RBF), where the SVM with linear kernel achieved the best
prediction performance. Specifically, for all SVM models, we
used L2 regularization as the penalty. We grid searched the
regularization parameters with empirical values (10−3, 10−2,. . .,
101) and the soft margin parameter C with empirical values (2−3,
2−2,. . ., 23) to optimize the prediction performance. For the
polynomial and RBF SVM model, we set the scale gamma kernel
coefficient as 1.

Deep Neural Network
The DNN model has an input layer, two FC layers with 256
and 64 neurons, and an output layer. The rectifier linear unit as
activation function was used in each neuron. We attached a batch
normalization layer and a dropout layer after each FC layer. In
the output layer, we used a SoftMax classifier for classification
and a linear classifier for regression. The DNN was trained in
a supervised fashion and tested using the labeled subjects from
the target domain.

TL-DNN
The TL-DNN model has the same structure as the DNN
model. Instead of training from scratch, we pre-trained the TL-
DNN model in an unsupervised fashion using 257 full-termed
neonatal subjects from the source domain. Then, we fine-tuned

the TL-DNN with supervision using the labeled subjects from
the target domain.

Convolutional Neural Network
The CNN model has two convolutional layers, where each has
256 neurons with a 3 × 3 convolutional filter, and two FC layers,
where each layer contains 256 and 64 neurons. A rectified linear
unit was used as an activation function. A batch normalization
and a dropout layer are attached after each FC layer. We applied
a SoftMax classifier for the classification task and linear function
for the regression task. The architecture design of this model
represents a standard “shallow” CNN model without TL strategy.
The CNN model was trained and tested using the subjects from
the target domain.

Data Augmentation
The number of very preterm infants in the study cohort is
relatively small and imbalanced (i.e., only a small portion of the
cohort are at high risk for cognitive deficit). We utilized the
synthetic minority over-sampling technique (SMOTE) (Chawla
et al., 2002) to balance and augment the training set. Specifically,
the training subjects were divided into five bins according to
their scores (<70, 70–80, 80–90, 90–100, and >100). Given a
bin, a sample was randomly chosen. Then, k nearest neighbors
for the selected sample were searched. We set k = 5 in this work.
A synthetic sample xsyn is calculated using the randomly selected
sample and its associated neighbors x1, x2, x3, x4, x5, x6 by: xsyn =
w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6, where w1, w2, w3,
w4, w5, and w6 are random numbers and w1 + w2 + w3 + w4 +

w5 + w6 = 1. Similarly, the label ysyn for xsyn was calculated in the
same way. The synthetic sample was placed in the given bin. This
process is repeated until the number of training subjects reaches
10 times of the original training dataset.

Model Validation
To evaluate our proposed model, we utilized fivefold cross-
validation for both classification and regression tasks. Specifically,
we randomly divided the dataset into five portions. While
one portion was used for testing, the remaining four portions
were used as training data (70% for model training and
30% for model validation). This process was repeated five
times until all portions of the dataset were treated as testing
data. We evaluated the performance of risk prediction using
accuracy, sensitivity, specificity, and the area under the receiver
operating characteristic curve (AUC) across the five iterations.
For cognitive score regression, we used Pearson’s correlation
coefficient, MAE, and standard deviation of absolute error (STD
of AE). The fivefold cross-validation experiment was repeated 50
times to reduce the variability and the 95% confidence interval
was reported. All the experiments are performed on a Windows
10 workstation with Intel Xeon Silver 4116 CPU @ 2.10 GHz,
128 GB RAM, and dual GTX 1080ti GPUs.

Most Discriminative Features Detection
In addition to the prediction of cognitive deficit, we seek to
identify which brain regions contributed most to discriminate
cognitive deficit. We used gradient-weighted class activation
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mapping (Grad-CAM) to highlight discriminative edges in the
brain structural connectome map (Selvaraju et al., 2017). The
Grad-CAM produces a coarse localization map highlighting
predictive regions in the adjacency matrix by using gradient
information of the last convolutional layer of the TL-CNN.

RESULTS

Subjects
After excluding the data with large motion artifacts, we had a total
of 80 very preterm infants out of 110 subjects in the final analysis.
The 80 subjects had a mean (SD) gestational age at birth of 28.0
(2.4) weeks and postmenstrual age at the scan of 40.4 (0.6) weeks.
There are 41 (51.3%) male subjects. The mean (SD) birth weight
of the cohort was 1091.5 (385.3) g. We considered the infants with
Bayley III cognitive scores <90 as a high-risk group (31 subjects)
and with Bayley III cognitive scores ≥90 as a low-risk group
(49 subjects) to develop later moderate/severe cognitive deficits
(Spencer-Smith et al., 2015).

Performance on Risk Stratification of
Cognitive Deficits
We compared the proposed TL-CNN model with LR, linear
SVM, and TL-DNN in the identification of very preterm infants
at high-risk for moderate/severe cognitive deficits (Table 1).
The receiver operating characteristic curves of various machine
learning models are displayed in Figure 2. Our proposed TL-
CNN model achieved the best prediction performance among the
compared models, with 74.5% on the balanced accuracy, 78.7%
on specificity, 70.2% on sensitivity, and 0.75 on AUC. The CNN
model achieved the lowest balanced accuracy of 67.3%, while
DNN had the lowest AUC of 0.59. We also noted that the linear
SVM model had better AUC than both DNN and CNN.

Without the TL strategy, the CNN model achieved better
accuracy and AUC than DNN. A similar trend was observed
on CNN and DNN models with the TL strategy. The TL-DNN
achieved 71.6% on the balanced accuracy, 76.8% on specificity,
66.4% on sensitivity, and 0.72 on AUC. The proposed TL-CNN
model significantly improved the cognitive deficit prediction
over the TL-DNN model by 2.9% in accuracy (p = 0.005) and
3.0% in AUC (p = 0.008). This demonstrated the advantage
of treating brain structural connectome as images instead of
vectorized weights.

Transfer learning-enhanced models (i.e., TL-DNN and TL-
CNN) had significantly better prediction performance than
the models without TL (i.e., DNN and CNN). TL strategy
significantly improved prediction accuracy and AUC of CNN
by 7.2% (p < 0.001) and 11.6% (p < 0.001). Similarly, TL-
DNN increased prediction accuracy and AUC of DNN by 2.9%
(p = 0.002) and 3.5% (p < 0.001). These results illustrated the
effectiveness of the TL approach in deep learning models on the
prediction of cognitive deficit.

Performance on the Prediction of
Cognitive Scores
In the regression task, the proposed TL-CNN model had the
highest Pearson’s correlation coefficient (r = 0.47, p < 0.001)
between the predicted and actual cognitive scores compared to
linear regression (r = 0.29, p < 0.001), support vector regression
(SVR) (r = 0.32, p < 0.001), and TL-DNN (r = 0.37, p < 0.001)
models (Table 2). TL-CNN had the lowest mean STD of AE of 9.5.

Discriminative Brain Structural
Connectome
To reveal which brain regions contributed to the prediction of
cognitive deficits, we identified the predictive brain structural
connections using the Grad-CAM method (Selvaraju et al.,
2017). Table 3 displays the top 15 predictive brain structural
connections. We further demonstrated the identified brain
connections in a circos plot (Figure 3). The top three
discriminative structural connections are located within frontal
lobes, limbic lobes, and the subcortical structure. We also plotted
those discriminative connections on a brain atlas region using
BrainNet Viewer (Xia et al., 2013; Supplementary Figure 2).

DISCUSSION

Early diagnosis and prediction of cognitive deficit for very
preterm infants remain very challenging yet critical for early
intervention. In this study, we proposed a TL-CNN model using
brain structural connectome at term-equivalent age to predict
future cognitive outcomes (i.e., standardized Bayley III cognitive
scores). The TL-CNN model achieved promising performance
in both risk classification and score regression tasks. For risk
prediction of cognitive deficit, TL-CNN achieved a balanced

TABLE 1 | Performance of various machine learning models in utilizing the structural connectome at term-equivalent age to predict cognitive deficits at 2 years corrected
age in very preterm infants.

Models Balanced accuracy (%) Specificity (%) Sensitivity (%) AUC

LR 68.3 (67.5, 72.0) 72.3 (71.2, 73.8) 64.4 (62.4, 66.5) 0.65 (0.63, 0.67)

SVM 70.5 (67.7, 71.7) 76.9 (74.8, 78.9) 64.0 (61.8, 66.1) 0.69 (0.67, 0.71)

DNN 68.7 (65.7, 69.5) 75.0 (72.9, 77.1) 62.5 (60.4, 64.5) 0.59 (0.57, 0.61)

CNN 67.3 (66.2, 70.2) 73.7 (71.7, 75.6) 61.0 (59.1, 62.9) 0.64 (0.62, 0.73)

TL-DNN 71.6 (70.7, 73.1) 76.8 (75.8, 77.9) 66.4 (65.0, 67.7) 0.72 (0.70, 0.74)

TL-CNN 74.5 (73.4, 76.0) 78.7 (77.2, 79.8) 70.2 (68.5, 70.7) 0.75 (0.74, 0.76)

Data in brackets are 95% confidence intervals. LR, logistic regression; SVM, support vector machine; TL-DNN, transfer learning enhanced deep neural network; TL-CNN,
transfer learning enhanced convolutional neural network; AUC, area under the receiver operating characteristic curve.
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FIGURE 2 | Receiver operating characteristic (ROC) curves of different
prediction models using structural brain connectome at term-equivalent age in
predicting cognitive deficits at 2 years corrected age in very preterm infants.
The proposed TL-CNN model achieved the best area under the ROC curve
among compared machine learning models. SVM, support vector machine;
DNN, deep neural network; CNN, convolutional neural network; TL-DNN,
transfer learning enhanced deep neural network; TL-CNN, transfer
learning-enhanced convolutional neural network.

accuracy of 74.5% and an AUC of 0.75. For regression of
cognitive scores, the TL-CNN model had the best Pearson’s
correlation coefficient among multiple machine learning models.
These results demonstrated the feasibility and advantages of
a deep learning model that may facilitate the early diagnosis
and classification of cognitive deficit for very preterm infants at
term-equivalent age.

The proposed TL-CNN model outperformed several peer
machine learning models by using both spatial and topological
locality information embedded in the adjacency matrix of
the brain structural connectome. For those traditional and
fully connected neuron-based DNN, the brain connectome is
flattened to a vector (He et al., 2018; Chen et al., 2019). This
approach discards important spatial and topological locality
information from the connectome. By treating the brain
structural connectome as 2D images, convolutional filters in
CNN can inherently learn the spatial information. In this
study, we adopted a neonatal AAL brain atlas (Shi et al.,
2011). The regions in this atlas are numbered through 1–90
and spatially nearby regions have adjacent numbers. In the
adjacency matrix of structural connectome, the location of the
brain regions follows the original ordering of 1–90; therefore,
brain regions near each other in the structural connectome
are typically near each other in Euclidean/brain space. In this
way, convolutional filters of CNN are able to learn spatial
connectivity information of those “clustered” nearby regions.
Meanwhile, those 2D grid convolutional filters move in both
row and column directions across the whole adjacency matrix
in a single convolutional layer. After a series of consecutive
layers, the deep CNN model can integrate the topological locality

information gradually. Thus, we believe that applying the deep
CNN model on the adjacency matrix provides unique insight to
learn latent spatial and topological locality embedded in the brain
structural connectome. The significantly improved prediction
performance by the proposed TL-CNN supports the rationale of
our study design.

We applied CNN to learn the spatial and topological
information of the structural connectome. In this study, we
constructed the structural connectome based on a neonatal
AAL brain atlas (Shi et al., 2011). The regions in this atlas
are numbered through 1–90 and spatially nearby regions have
adjacent numbers. Specifically, the neonatal AAL atlas arranged
90 brain regions into the following sections: frontal lobe (region:
1–28, 69–70), occipital lobe (region: 43–54), parietal lobe (region:
61–68), central structures (region: 55–60), and temporal lobe
(region: 37–42, 71–90). Therefore, though not strictly speaking,
brain regions near each other in the structural connectome are
typically near each other in Euclidean/brain space. As CNN’s
convolutional filters move across rows and columns of the
structural connectome adjacency matrix in a moving-windows
manner, the model was able to learn topological connectivity
information. We tested the prediction performance with five
different permuted connectome matrices. The TL-CNN achieved
an accuracy of 68.8% (95% CI, 66.9, 70.7), and an AUC of
0.65 (95% CI, 0.63, 0.67), which was slightly lower than the
performance of using original structure connectome matrix. This
indicates that the order of the ROIs in the structural connectome
matrix has an impact on the outcome prediction performance.

Transfer learning technique is essential for studies of very
preterm infants using deep learning models. The big data
revolution has boosted recent advances in deep learning
techniques. Without large training samples, it is very difficult
to train a complex deep learning model from scratch. Indeed,
the linear SVM demonstrated better performance than deep
learning models without the TL strategy in our study. Deep
learning models trained with a small number of samples tend to
be overfitted. Those relatively simple machine learning models
(e.g., SVM) may achieve better performance. Unfortunately,
the availability of annotated large brain imaging datasets with
clinical and outcome information from very preterm infants is
usually very limited, preventing the application of deep learning
models in this research domain. The CNN model is a complex
network consisting of millions of trainable weights that requires
a large amount of data to update the weights when training
the model. The TL technique addressed this issue by applying
knowledge learned from a large dataset in the source domain
to a new target task with limited data to improve performance
and model robustness. In the present study, we transferred the
knowledge (i.e., optimized weights) from a pre-trained model
to the prediction/regression tasks in the target domain and
then fine-tuned the model using brain structural connectome
to optimize the performance of risk prediction/score regression.
The increased performance supports our hypothesis regarding
the effectiveness of the TL strategy.

The data balance and augmentation technique also improved
the model training. Our dataset was imbalanced with a small
number of subjects having low Bayley III cognitive scores. The
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TABLE 2 | Performance of various machine learning models in utilizing the structural connectome at term-equivalent age to predict Bayley-III cognitive scores at 2 years
corrected age in very preterm infants.

Models r p MAE STD of AE

Linear regression 0.29 (0.27, 0.31) <0.0001 20.1 (17.6, 22.6) 12.0 (10.7, 13.3)

SVR 0.32 (0.31, 0.34) <0.0001 18.2 (15.1, 20.9) 11.4 (9.4, 13.4)

TL-DNN 0.37 (0.35, 0.39) <0.0001 22.5 (20.0, 24.9) 11.2 (9.5, 13.0)

TL-CNN 0.47 (0.45, 0.49) <0.0001 16.2 (13.8, 18.5) 9.5 (7.8, 11.2)

Data in brackets are 95% confidence intervals. r, correlation between true and predicted Bayley-III cognitive scores; p, p-value (false discovery rate corrected) of one-
sample t-test of r; MAE, mean absolute error; STD of AE, standard deviation of absolute error; SVR, support vector regression; TL-DNN, transfer learning enhanced deep
neural network; TL-CNN, transfer learning enhanced convolutional neural network.

TABLE 3 | Top 15 discriminative brain structural connections for prediction of cognitive deficits.

Brain region A Abbreviation Brain region B Abbreviation r

Top discriminative features

Precentral gyrus left PreCG-L Putamen left PUT-L 0.39

Superior occipital gyrus left SOG-L Superior occipital gyrus right SOG-R 0.37

Hippocampus left HIP-L Middle occipital gyrus left MOG-L 0.34

Postcentral gyrus right PoCG-R Putamen right PUT-R 0.33

Hippocampus right HIP-R Postcentral gyrus right PoCG-R 0.33

Hippocampus left HIP-L Superior parietal gyrus left SPG-L 0.33

Orbitofrontal cortex (superior) left ORBsup-L Orbitofrontal cortex (medial) right ORBmed-R 0.29

Putamen left PUT-L Hippocampus left HIP-L 0.28

Postcentral gyrus left PoCG-L Putamen left PUT-L 0.27

Putamen right PUT-R Hippocampus right HIP-R −0.25

Postcentral gyrus left PoCG-L Hippocampus left HIP-L 0.25

Hippocampus right HIP-R Thalamus right THA-R 0.21

Cuneus left CUN-L Precuneus right PCUN-R −0.21

Cuneus left CUN-L Superior occipital gyrus right SOG-R 0.20

Superior frontal gyrus (dorsal) right SFGdor-R Hippocampus right HIP-R 0.19

r, correlation between brain connectome weights and true Bayley-III cognitive scores.

imbalanced dataset may result in a model that is more likely to
predict a high-risk subject into the majority low-risk group. Thus,
we applied the data balance and augmentation technique before
training any model in this work.

Identification of discriminative brain regions not only
improves our understanding of the neurodevelopment of very
preterm infants but also enhances the integrity of trained
deep learning models. We applied the Grad-CAM method
to rank the importance of individual links. Multiple brain
regions such as postcentral gyrus, thalamus, and superior
occipital gyrus were identified by our TL-CNN model to
be predictive to cognitive deficits. These regions were also
found to be predictive in our previous study using functional
connectome on an independent cohort (He et al., 2018). In
addition, postcentral gyrus, thalamus, and superior occipital
gyrus were also reported in prior independent studies (Corbetta,
1998; Ouhaz et al., 2018), indicating their association with
brain cognitive function. These somatosensory regions are
thought to be part of the mirror system, which plays an
important role in imitating, understanding, and learning for
brain cognitive development (Acharya and Shukla, 2012).
Furthermore, the identified most predictive regions have been
associated with emotional regulation and memory (limbic

lobe) (Catani et al., 2013), visual processing (occipital lobe)
(Pöppel et al., 1978), and sensory, visual, and language
information processing (parietal lobe) (Wolpert et al.,
1998). Additionally, subcortical gray matter regions that
play an important role in motion preparation and execution
were also ranked highly by the proposed TL-CNN model
(Chang et al., 2018).

We further performed a correlation analysis between the top
15 discriminative structural connectome connections and the
cognitive outcomes at 2 years corrected age (Table 3). Briefly,
the majority of brain connectome connections have a positive
correlation with the cognitive scores. The increased connectivity
strength of these connections would indicate a lower risk of
cognitive deficits in very preterm infants at 2 years corrected age.
This trend is consistent with our previous study (He and Parikh,
2016). In contrast, two brain connectome connections (Putamen
right–Hippocampus right and Cuneus left–Precuneus right) are
negatively correlated with cognitive scores, indicating that the
increased connectivity strength of these two connections suggests
a higher risk of cognitive deficits in very preterm infants at 2 years
corrected age. Further investigation is required to unveil the
underlying pathological mechanism of these brain connectome
connections on brain cognitive functions.
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FIGURE 3 | Top 15 discriminative brain structural connections identified by TL-CNN, a circos plot. The top three discriminative structural connections are located
within frontal lobes, limbic lobes, and the subcortical structure.

There are several limitations to this study. First, we only
internally validated our data in our cohort of very preterm
infants. External datasets from independent studies or other
research groups are necessary to externally validate the proposed
TL-CNN models. Second, we only used brain structural
connectome data for the outcome prediction. The integration
of brain functional connectome and/or clinical data in our
model is likely to improve prediction performance. Third, we
constructed brain structural connectome based on an AAL brain
atlas without cerebellum regions (Shi et al., 2011). However,
the cerebellum regions have been conventionally recognized
to have an impact on motor function and recently have been
proven to associate with cognitive function (Schmahmann,
2019). The inclusion of the cerebellum regions when we

construct the structural connectome may further enhance the
prediction performance.

CONCLUSION

In summary, this study proposed a deep learning model TL-
CNN for early prediction of cognitive deficit in very preterm
infants at 2 years corrected age using brain structural connectome
derived from DTI obtained at term-equivalent age. The
proposed model achieved improved performance by integrating
multiple technique advances, including the convolution of
CNN on adjacency matrix, TL strategy, and data balance and
augmentation approach. The results suggest that deep learning
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models may facilitate early prediction of later neurodevelopmental
outcomes in very preterm infants at term-equivalent age.
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