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Abstract: Wnt/β-catenin signaling plays a critical role in bone formation and regeneration. Dentin and cementum share many 
similarities with bone in their biochemical compositions and biomechanical properties. Whether Wnt/β-catenin signaling is 
involved in the dento-alveolar complex formation is unknown. To understand the roles of Wnt/β-catenin signaling in the dento-
alveolar complex formation, we generated conditional β-catenin activation mice through intercross of Catnb+/lox(ex3) mice with 
Col1a1-cre mice. In mutant mice, tooth formation and eruption was disturbed. Lower incisors and molars did not erupt. Bone 
for mation was increased in the mandible but tooth formation was severely disturbed. Hypomineralized dentin was deposited 
in the crown but roots of molars were extremely short and distorted. In the odontoblasts of mutant molars, expression of dentin 
matrix proteins was obviously downregulated following the activation of β-catenin whereas that of mineralization inhibitor was 
increased. Cementum and periodontal ligament were hypoplastic but periodontal space was narrow due to increased alveolar 
bone formation. While cementum matrix proteins were decreased, bone matrix proteins were increased in the cementum and 
alveolar bone of mutant mice. These results indicate that local activation of β-catenin in the osteoblasts and odontoblasts leads 
to aberrant dento-alveolar complex formation. Therefore, appropriate inhibition of Wnt/β-catenin signaling is important for the 
dento-alveolar complex formation.
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including the Wnt/β-catenin pathway, the Wnt/Ca2+ pathway, 
and the Wnt/polarity pathway [2]. Among those, the Wnt/
β-catenin pathway has been intensely studied. Wnt proteins 
bind to the frizzled (Frz) transmembrane receptors and the 
low-density lipoprotein receptor related protein (LRP5/6) 
co-receptors located on the cell surface to form a receptor 
trimeric complex, resulting in the inhibition of glycogen 
synthase kinase-3β (GSK-3β). β-catenin, one of the targets 
of GSK-3β, acts as a transcriptional co-activator of the T-cell 
factor (Tcf) and lymphoid enhancer factor (Lef) protein. In 
the absence of Wnt signaling, β-catenin is a part of cytosolic 
protein complex that consists of axin, adenomatous polyposis 
coli, and GSK-3β. GSK phosphorylates β-catenin and leads to 

Introduction

Wnt signaling plays essential roles in morphogenesis and 
cellular differentiation of many tissues during development 
[1]. Wnt proteins transduce multiple signaling cascades 
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its ubiquitination and degradation. However, the binding of 
Wnt protein to its receptors results in inhibition of GSK and 
cytosolic accumulation of β-catenin, which is translocated to 
the nucleus where it interacts with members of the Tcf/Lef 
family of transcription factors, resulting in complexes that 
bind to specific response sequences on the promoters of Wnt 
downstream target genes.

Genetic studies have shown that Wnt/β-catenin signaling 
plays a critical role in skeletal development and homeostasis 
[3, 4]. Loss of function mutations of the LRP5 leads to low 
bone mass accompanied by fractures causing osteoporosis 
pse u doglioma syndrome in humans and in animal models 
[5, 6]. LRP5 gain-of-function mutations in humans result in a 
high bone mass syndrome [7, 8]. In the gene targeted animal 
models, deletion of β-catenin from differentiated osteoblasts 
leads to osteopenia, while its stabilization in differentiated 
osteoblasts leads to high bone mass and failure of tooth 
eruption [3]. Dento-alveolar complex shares many similarities 
with bone. However, role of Wnt/β-catenin signaling during 
its formation has not been reported. 

During tooth development, Wnt/β-catenin signaling plays 
multiple roles in various stages of tooth morphogenesis [9]. 
Numerous reports have shown that Wnt/β-catenin signaling 
is required both in the epithelium and mesenchyme for the 
mediation of epithelial-mesenchymal interaction during 
tooth morphogenesis. Inactivation of β-catenin in the dental 
epithelium or mesenchyme leads to arrest of tooth germs 
at bud stage [10, 11]. In contrast, activation of β-catenin 
in the dental epithelium causes multiple tooth generation 
[10, 12]. Activation of β-catenin in the dental mesenchyme 
leads to premature differentiation of dental pulp cells and 
produces dentin-like matrix throughout the dental pulp 
com partment [11]. On the basis of these findings, it is 
thought that Wnt/β-catenin signaling may also participate 
in cellular differentiation and matrix formation during 
tooth formation. Furthermore, Kim et al. [13] recently has 
found that constitutive stabilization of β-catenin in the 
dental mesenchyme leads to excessive dentin and cementum 
formation. The results suggest that local modulation of 
Wnt/β-catenin signaling plays critical roles in the cellular 
differentiation and matrix production during dento-alveolar 
complex formation. However, it remains unclear whether 
Wnt/β-catenin signaling is involved in the dento-alveolar 
complex formation. To understand the roles of Wnt/β-catenin 
signaling in the dento-alveolar complex formation, we 
generated and analyzed the conditional β-catenin activation 

mice under the control of Col1a1 promoter. Our data suggest 
that appropriate inhibition of Wnt/β-catenin signaling is 
important for the formation of dento-alveolar complex during 
tooth development.

 
Materials and Methods

Mouse strains and genotyping
All experimental procedures were approved by the Animal 

Welfare Committee of the Chonbuk National University. 
For stabilization of β-catenin in the dento-alveolar complex, 
Catnb+/lox(ex3) mice [14] were crossed to Col1a1-cre [15] 
mice. Genotypes of the mice were determined as previously 
described [14, 15]. 

Tissue preparation and histology
For histological analysis, jaws were dissected and fixed in 

4% paraformaldehyde at 4°C overnight. After rinsing with 
0.01 M phosphate buffered saline (PBS), the specimens were 
decalcified in 10% EDTA/PBS for 2-4 weeks, then dehydrated, 
embedded in paraffin, and sectioned at a thickness of 7 μm. 
Slides were stained with hematoxylin and eosin (H&E).

 
Immunohistochemistry

Immunohistochemistry was performed using Histostain 
Plus Rabbit Primary (DAB) kit (Zymed Laboratories, San 
Francisco, CA, USA) and goat ImmunoCruz staining system 
(Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) fol-
lowing each manufacturer’s instructions. The sagittal sections 
were treated with 3% hydrogen peroxide, and incubated with 
rabbit polyclonal antibodies against β-catenin (1 : 200, Thermo 
Scientific, Fremont, CA, USA), dentin sialophosphoprotein 
(Dspp; 1 : 400, kindly provided by Dr. Larry Fisher), biglycan 
(Bgn; 1 : 800, Dr. Larry Fisher), dentin matrix protein-1 
(Dmp1; 1 : 500, Takara Bio Inc., Shiga, Japan), phosphate 
regulating endopeptidase homologue on the X chromosome 
(Phex; 1 : 50, Sigma-Aldrich, St. Louis, MO, USA), tissue-
nonspecific alkaline phosphatase (Tnap; 1 : 50, Protein Tech 
Group, Inc., Chicago, IL, USA), bone sialoprotein (Bsp; 1 : 
1,200, Abcam, Cambridge, MA, USA), osteopontin (Opn; 1 : 
500, Abcam) and goat polyclonal fibroblast growth factor-23 
(Fgf23; 1 : 200, Santa Cruz Biotechnology) antibody. 

Soft X-ray and micro-computerized tomographic 
analysis

Dissected mandibles from 4-week-old Col1a1-cre:Catnb+/lox(ex3)
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(MT) and wild type (WT) mice were examined on a soft 
X-ray system (SOFTEX CSM-2, Softex Co. Ltd., Kanagawa, 
Japan). After then, the mandibles were scanned in a desktop 
scanner (1076 Skyscan Micro-CT, Skyscan, Kontich, Belgium) 
and analyzed with CTscan software (Skyscan). 

Body weights measurement and statistical analysis
Body weights of mice were measured at 3- and 4 weeks-

old age. All statistical analyses were done using GraphPad 
Prism software (GraphPad Software, Inc., La Jolla, CA, USA). 
Statistical differences were determined by Student’s t-test and 
null hypotheses of no difference were rejected if P-values were 
less than 0.05. 

Results

Tissue-specific activation of β-catenin in the dento-
alveolar complex

In the mandible of mouse at P8, β-catenin was localized 
in the ameloblasts, odontoblasts, and osteoblasts (Fig. 1A). 
β-galactosidase activities were also observed in the odon-
toblasts and osteoblasts of the Col1a1-cre:R26R double trans-
genic mouse at P8 (Fig. 1B). This confirmed that targeting of 
β-catenin with Col1a1-cre was effective in the formation of 
dento-alveolar complex. At 4 week-old, height of MT mice 
was shorter than that of WT mice (Fig. 1C). Body weight 
was also decreased in the MT mice compared to the WT 
littermates (Fig. 1D). The mean body weight was 7.77±0.61 
g (n=9) and 3.58±1.44 g (n=9) in the WT and MT mice at 3 
week-old, respectively. The decrease of body weight was more 

Fig. 1. Targeted activation of βcatenin in the dentoalveolar complex. (A) In immunohistochemistry, βcatenin is localized in the Am, Od, and 
Ob of developing mouse dentoalveolar complex at P8. (B) βgalactosidase activities are also found in the Od and Ob of Col1a1cre:R26R double 
transgenic mouse dentoalveolar complex at P8. (C) Col1a1cre:Catnb+/lox(ex3) mutant mice exhibit severe growth retardation with short height and 
small body weights. (D) Differences in body weights between WT and MT mice are appeared in 3 weeks after birth and are clearer in the mice at 4 
weeksold. (E) Genotype analysis of mutant mice after intercross with Col1a1cre and Catnb+/lox(ex3) mice. (FI) Gross appearance of incisors in WT 
and MT mice at 4 weeksold. Both of upper and lower incisors are normally erupted in WT mice, whereas upper incisors are erupted but lower 
incisors (white arrow) are not erupted in MT mice. ( J, K) Molars of lower jaw (white arrowheads) are not erupted into oral cavity in MT mice 
in contrast to normally erupted in WT mice. Am, ameloblasts; Od, odontoblasts; Ob, osteoblasts; WT, wild type; MT, mutant. *P<0.05. Scale 
bar=200 μm (A, B). 
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evident in the 4 week-old MT mice (Fig. 1D). The mean body 
weight was 13.55±1.42 g (n=9) and 3.73±0.72 g (n=9) in the 
WT and MT mice at 4 weeks-old, respectively. The decrease 
of body weight was statistically significant (P<0.05). In geno-
typing with tail DNA, bands of 720 bps and 600 bps were 
amplified for cre sequences and deleted allele for β-catenin 
exon 3 loci (Fig. 1E). In stereoscopic observation of incisors, 
both of upper and lower incisors were normally erupted in 
the WT mice. In the MT mice, upper incisors were erupted 
but lower incisors were not erupted (Fig. 1F-I). Mandibular 
molars were normally erupted into the oral cavity in WT mice 
but those of MT mice were not erupted as the same as lower 
incisors (Fig. 1J, K).

Disturbance of tooth formation and eruption failure in 
Col1a1-cre:Catnb+/lox(ex3) mice

In microradiographic examination, general dimensions 
of craniofacial skeleton in MT mice were smaller than those 
in WT littermates (Fig. 2A, B). Mandible of MT mice was 
severely retarded in growth and mal-occluded. In micro-
tomographic view of mid-sagittal sections of mandible, 
incisors were shorter and smaller than those of WT mice (Fig. 
2C, D). In the molars of MT mice, root formation was severely 
impaired while those of WT mice were normally formed (Fig. 
2E, F). In H&E stained sections, deposition of bone matrix 

was remarkably increased in the mandible, but was poorly 
mineralized in the MT mice (Fig. 2G, H). In the MT mice, 
molars with short roots were formed but were not erupted 
into the oral cavity. Overall dentin was poorly mineralized. 
In the consecutive sections of MT mice, β-catenin expression 
was increased in the odontoblasts and osteoblasts (Fig. 2I, J). 

Defects of the dentin mineralization in Col1a1-cre: 
Catnb+/lox(ex3) mice

Immunohistochemistry revealed that β-catenin was 
localized in the differentiated odontoblasts and pulp cells of 
the mandibular first molar of WT mice, which is restrictedly 
increased in the odontoblasts of MT mice (Fig. 3A, B). Phex 
was localized in the differentiated odontoblasts of WT mice, 
but was clearly absent in the odontoblasts of MT mice except 
some cells included in dentin matrix (Fig. 3C, D). Dspp was 
extensively localized in the dentin matrix and odontoblasts of 
WT mice. But it was obviously decreased in the odontoblasts 
and predentin except thin mineralized dentin layer of MT 
mice (Fig. 3E, F). A mineralization inhibitor, Fgf23 was not 
localized in the odontoblasts as well as dentin matrix of WT 
mice. Interestingly, Fgf23 was extensively localized in the 
predentin layer of MT mice (Fig. 3G, H). Bgn was exclusively 
localized in the thin predentin layer in WT mice, but was 
significantly decreased in the MT mice (Fig. 3I, J). Dmp1 was 

Fig. 2. Disturbances in tooth formation and eruption failure of molars in Col1a1cre:Catnb+/lox(ex3) mice. (A, B) In microradiography, general 
dimensions of craniofacial skeleton in MT mice are smaller than those in WT littermates. Particularly, mandible of MT is severely retarded and 
resulted in malocclusion. (C, D) In the midsagittal view, mandibular incisor is shorter and smaller than that of WT mice. (E, F) Molars of MT 
mice are impacted within mandible and root formation is impaired while those of WT mice are normally formed and erupted into the oral cavity. 
(G, H) In H&Estained sagittal sections of the mandibles, bone deposition is remarkably increased and molars are not erupted in the MT mice. (I, 
J) In MT mice, βcatenin expression is upregulated in the odontoblasts and osteoblasts. MT, mutant; WT, wild type; H&E, hematoxylin and eosin. 
Scale bar=100 μm (GJ). 
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localized in the junction area between dentin and predentin 
both of WT and MT mice. These results suggest that activa-
tion of β-catenin in the odontoblasts may disturb the diffe-
rentiation of odontoblasts and mineralization of dentin matrix.

Root deformities and increased alveolar bone mass of 
Col1a1-cre:Catnb+/lox(ex3) mice

As described previously, molar roots were short and perio-
dontium was defectively formed in the MT mice. In contrast 

Fig. 3. Mineralization defects in dentin of Col1a1cre:Catnb+/lox(ex3) mice. (A, B) Immunohistochemistry reveal that βcatenin is localized in the Od 
and pulp cells of mandibular first molar of WT mice, which is restrictedly increased in the odontoblasts of MT mice. (C, D) Phex is localized in the 
odontoblasts of WT mice, but which is clearly reduced in the odontoblasts of MT mice. (E, F) In WT mice, Dspp is localized in the dentin as well 
as odontoblasts, but it is obviously decreased in the predentin and odontoblasts of MT mice. Dspp remains only in thin mineralized dentin of MT 
mice. (G, H) Localization of Fgf23 is not found in the dentin and odontoblasts of WT mice but which is clearly observed in the predentin of MT 
mice. (IL) Bgn and Dmp1 are mainly localized in the predentin and a part of dentin in WT mice, which also decreased in the predentin of MT 
mice. Od, odontoblasts; WT, wild type; MT, mutant; Phex, phosphate regulating endopeptidase homologue on the X chromosome; Dspp, dentin 
sialophosphoprotein; Fgf23, fibroblast growth factor23; Bgn, biglycan; Dmp1, dentin matrix protein1. Scale bar=100 μm (AL).
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to WT mice, root dentin was thin and hypo mineralized in the 
MT mice. In addition, periodontal space was narrower due 
to excessively formed alveolar bone in the MT mice (Fig. 4A, 
B). In the root dentin of MT mice, Dspp was decreased in the 
dentin (Fig. 4C, D). In the WT mice, Bsp, Dmp1 and Fgf23 

are specifically localized in the matrix of acellular cementum 
and alveolar bone, which was decreased in the MT mice (Fig. 
4E-J). Opn was localized in the cementum and periodontal 
ligaments of WT mice, but it was also decreased in the 
cemen tum and periodontal ligaments of MT mice. From 

Fig. 4. Deformities in the roots and periodontium of Col1a1cre:Catnb+/lox(ex3) mice. (A, B) In contrast to WT mice, RD is thin and hypomi
neralized in MT mice. In addition, PS is narrower due to excessive formation of alveolar bone in MT mice. (C, D) In the RD of MT mice, Dspp 
is decreased in the dentin. (EJ) In WT mice, Bsp, Dmp1 and Fgf23 are specifically localized in the matrix of acellular cementum (arrows) and 
alveolar bone, which is decreased in the MT mice. (K, L) Osteopontin is localized in the cementum and periodontal ligaments of WT mice. It is also 
decreased in the cementum and periodontal ligaments of MT mice. WT, wild type; RD, root dentin; H&E, hematoxylin and eosin; MT, mutant; PS, 
periodontal space; Dspp, dentin sialophosphoprotein; Bsp, bone sialoprotein; Dmp1, dentin matrix protein1; Fgf23, fibroblast growth factor23; 
Opn, osteopontin. Scale bar=50 μm (AL).
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these results, it is suggested that activation of β-catenin in the 
osteoblasts and cells of periodontium may cause to increase 
bone formation and root deformities. 

In the mandible of MT mice, trabecular spaces were re-
duced following increase of bone formation (Fig. 5A, B). Bsp 
immunoreactivity was increased whereas Tnap was decreased 

in the MT mice (Fig. 5C-F). Phex was strongly expressed in 
the bone matrix of WT mice but it was nearly absent in the 
MT mice (Fig. 5G, H). In the mandible of WT mice, Bgn was 
weakly expressed around osteoblasts. Increased Bgn immu-
no reactivities were observed around the osteoblasts and 
osteocytes in the MT mice (Fig. 5I, J). In addition, Dmp1 

Fig. 5. Molecular changes related with increased bone mass in the mandibles of Col1a1cre:Catnb+/lox(ex3) mice. (A, B) In the mandible of MT mice, 
bone mass is increased but number of osteoblasts are decreased to compare with those of WT mice. (CF) Bsp expression is slightly increased with 
increase of bone mass, but Tnap is clearly decreased in the MT. (GJ) Bgn is significantly increased in the mandible of MT mice, while Phex is 
almost disappeared in MT mice. (K, L) Increased expression of Dmp1 is also observed in MT mice. WT, wild type; H&E, hamatoxylin and eosin; 
MT, mutant; Bsp, bone sialoprotein; Tnap, tissuenonspecific alkaline phosphatase; Bgn, biglycan; Phex, phosphate regulating endopeptidase 
homologue on the X chromosome; Dmp1, dentin matrix protein1. Scale bar=50 μm (AL).
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immunoreactivity was increased in the MT mice (Fig. 5K, L).

Discussion

It is well known that Wnt/β-catenin signaling plays criti-
cal roles in the skeletal development. Although having bio-
chemical similarities with bone, the roles of Wnt/β-catenin 
signaling in dento-alveolar complex formation are unclear. 
Here we provide in vivo evidence that Col1a1-cre mediated 
activation of β-catenin leads to disturbance in tooth eruption 
and aberrant dento-alveolar complex formation. 

Wnt/β-catenin signaling plays important roles in bone for-
mation and maintenance. Gain- or loss-of function mutation 
of β-catenin in osteoblasts resulted in osteopetrosis and oste-
oporosis, respectively [3]. The complementary regulation 
of bone formation is principally controlled by the function 
of osteoclasts. In present data, Col1a1-cre:Catnb+/lox(ex3) 

mice showed disturbances in tooth eruption together with 
increase of alveolar bone mass. These findings indicate that 
persistent activation of β-catenin in the osteoblasts may cause 
dysfunction in osteoclasts and result in disturbance of tooth 
eruption. In fact, several animal models having dysfunction 
of osteoclasts showed tooth eruption failure together with 
osteopetrotic bone formation [16-20]. Therefore, it is 
suggested that osteoclast mediated bone resorption may be 
essential for potential eruption pathway of developing tooth. 

In contrast to well-known function in bone formation, 
it remains unknown whether Wnt/β-catenin signaling is 
involved in the dento-alveolar complex formation. Dentin, 
a major component of tooth, is formed by odontoblasts 
differentiated from dental mesenchymal cells. It has been well 
known that dentin is similar with bone in its biochemical 
composition. However, little is known of the roles of Wnt/
β-catenin signaling in dentin formation. In our data, Col1a1-
cre:Catnb+/lox(ex3) mice showed aberrant dentin formation in 
tooth. In mutant molars, odontoblasts were not fully dif-
fe rentiated but prematurely differentiated following conti-
nuous activation of β-catenin. This finding is consistent 
with previous report that Osr2Ires-cre mediated activation 
of β-catenin in the dental mesenchyme leads to premature 
differentiation of dental pulp cells [11]. In mutant mice, 
Phex positive odon toblasts were scarcely found and Dspp 
was significantly down-regulated in the dentin matrix. In 
addition, Bgn, a pro teoglycan in unmineralized dentin matrix, 
and an Fgf23, an inhibitor of mineralization, was dramatically 
upregulated in the predentin. These findings indicate that 

prematurely differentiated odontoblasts secrete organic 
dentin matrix but with severely impaired mineralization. 
From these results, it is suggested that activation of β-catenin 
in the odontoblasts leads to disturb the differentiation of 
odontoblasts and mineralization of dentin matrix. Therefore, 
Wnt/β-catenin signaling may positively regulate matrix 
production but negatively regulate mineralization during 
dentinogenesis.

We also demonstrate that Col1a1-cre:Catnb+/lox(ex3) mice 
exhibit abnormalities in dento-alveolar complex in clu-
ding root deformities, cementum hypoplasia and nar ro-
wing of periodontal spaces. Numerous growth factors and 
transcription factors such as Shh, BMP and Msx, are ex ten-
sively expressed in the dental epithelium and mesen chyme 
during root formation [21, 22]. However, little is known 
about the molecular mechanisms underlying root formation. 
To date, several studies reported that molecular regulation is 
necessary for the root elongation in the dental mesenchyme. 
Nfic, a CTF binding transcription factor, was well known to 
regulate odontoblast differentiation during root formation. 
The Nfic knockout mice showed short molar roots [23]. In 
addition, it has been reported that Smad4 and Ptc1 is also 
associated with the root elongation [22, 24]. Ablation of 
these genes leads to short roots in molars together with bone 
defects. This implies that a common molecular mechanism 
may be present in the regulation of bone and tooth root 
formation. There are other possibilities in the disturbances 
of root formation in Col1a1-cre:Catnb+/lox(ex3) mice. Increased 
bone mass may disturb the root elongation of molars into 
alveolar bone during root formation. It is interesting that 
several animal models related to dysfunction of osteoclasts 
also showed short roots in molars [16-20].

Cementum also shares many similarities with bone in 
its biochemical compositions. The accumulating in vitro re-
ports suggest that activation of Wnt signaling is required for 
the regeneration of periodontal tissue [25]. Recently, it has 
been shown that constitutive stabilization of β-catenin in the 
dental mesenchyme leads to excessive cementum formation 
[13]. Activation of Wnt/β-catenin signaling may stimulate 
cementoblast differentiation and cementum formation. In 
contrast, cementum formation was severely disturbed in the 
Col1a1-cre:Catnb+/lox(ex3) mice. This phenotypic discrepancy bet -
ween two different β-catenin activation mutant lines may be 
related with root formation. In the Col1a1-cre:Catnb+/lox(ex3) mice, 
molar root formation was severely disturbed. Root defects 
may affect differentiation of cementoblast and cementum 
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formation. 
Our results demonstrate that local activation of β-catenin 

in the dental mesenchyme leads to aberrant dento-alveolar 
complex formation in vivo. Thus our results indicate that 
temporospatial regulation of Wnt/β-catenin signaling plays 
critical roles in cell differentiation, matrix formation and 
mineralization during dento-alveolar complex formation. 
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