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Abstract

A novel radiological research field pursuing comprehensive quantitative image, namely 
“Radiomics,” gained traction along with the advancement of computational technology and arti-
ficial intelligence. This novel concept for analyzing medical images brought extensive interest to 
the neuro-oncology and neuroradiology research community to build a diagnostic workflow to 
detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few prom-
ising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) 
mutation in gliomas, it has become clear that an ample amount of effort is still needed to render 
this technology clinically applicable. At the same time, many significant insights were discovered 
through this research project, some of which could be “reverse engineered” to improve conven-
tional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the 
recent advancements and encountering issues of radiomics, how we can apply the knowledge 
provided by radiomics to standard clinical images, and further expected technological advances 
in the realm of radiomics and glioma.
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Introduction

A novel radiological research field pursuing quan-
titative comprehensive image analysis started to 
gain traction along with the advancement of compu-
tational technology and artificial intelligence. The 
concept of “quantitative comprehensive image 
analysis” is meant to analyze radiological images 
with the least qualitative assessment processes and 
retrieve as many image features as possible. The 
term “radiomics” was submitted to the research 
community, which was thought to best describe this 

novel concept for radiological analysis. “Radiomics” 
first appeared in the review article by Lambin et 
al. and Kumar et al. in 2012, in which they clearly 
state that “Radiomics focuses on improvements of 
image analysis, using an automated high-throughput 
extraction of large amounts (200+) of quantitative 
features of medical images.”1,2) Since then, radiomics 
has been applied mainly to cancer imaging studies 
spanning from lung cancers, gliomas, and to others. 
Although glioma is an uncommonly encountered 
malignant disease, the discovery of isocitrate 
dehydrogenase (IDH) mutation and its predictive 
and prognostic value on glioma treatment drove the 
research community to explore imaging surrogates 
that manifest the genetic state of gliomas.

Furthermore, it has become more apparent than 
ever that glioma’s biological behavior is heavily 
modified by isocitrate dehydrogenase (IDH) and 
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TERT promoter mutation status, 1p19q co-deletion 
status, and MGMT promoter methylation status. The 
neuroradiological research community bet their hope 
on radiomics to build a diagnostic framework that 
enables to provide genetic status of gliomas to 
clinicians in the frontline of medicine to choose 
the most appropriate treatment strategy for each 
patient in line with the concept of personalized 
medicine. Glioma is the second leading malignant 
disease following lung cancer that radiomics have 
challenged. The number of publications as of early 
2020 was 303 for lung cancer, 215 for glioma, and 
157 for breast cancer (Fig. 1A). It is also noted that 
the number of publications is increasing each year. 
More than 20 research results are published annu-
ally on radiomics and prediction of IDH mutation 
status of gliomas (Fig. 1B). Although extensive 
research has been published for the last 5 years 

regarding radiomics on predicting the genetic status 
of gliomas, no technology that suits clinical appli-
cation has yet been proposed.

In this review paper, the authors will first discuss 
the recent advancements and encountering issues 
of radiomics on predicting IDH mutation status of 
gliomas. Secondly, the authors will discuss how we 
can apply the knowledge provided by radiomics to 
standard clinical images and clinicians in the front-
line, mainly focusing on the T2-FLAIR mismatch 
sign. Finally, the authors will discuss further expected 
technological advancements in the realm of radio-
mics and glioma.

Radiomics for Predicting IDH Mutation 
Status of Gliomas

Prediction of IDH mutation status of glioma using 
MRI was first attempted via magnetic resonance 
spectroscopy (MRS).3–5) 2-hydroxyglutarate (2HG), 
an oncometabolite product of the mutated IDH 
gene,6) was targeted for detection by MRS. If one 
can detect elevated tissue concentration of 2HG 
using MRS, this would indicate that the tumor 
harbors IDH mutation. Although some reports shed 
hope that this concept holds a promising future for 
MRI-based genetic diagnosis of gliomas,7–9) the tech-
nology has not yet been commercialized. Several 
possible causes are hindering the clinical application 
of this technique. One would be the difficulty of 
accurately measuring the tissue concentration of 
2HG. The chemical structure of 2HG is similar to 
that of glutamate and glutamic acid (Fig. 2A), making 
it challenging to reduce the potential signal contam-
ination of these two molecules on 2HG (Fig. 2B). 
Some reports raised concern on the false positive 
detection of 2HG in IDH wild-type gliomas.7,10)

The radiomic approach was another research 
avenue pursuing the prediction of IDH mutation 
using MRI. As of the end of April 2021, one can 
find 67 publications by searching PubMed using 
the keyword “IDH AND (radiomics OR radioge-
nomics)” (https://pubmed.ncbi.nlm.nih.gov/?term=
IDH+AND+%28radiomics+OR+radiogenomics%29&). 
We consider 37 reports to be relevant to the topic 
of IDH mutation status prediction in glioma.11–47) 
Either by manual or automated segmentation of the 
tumor on MRI, various imaging features are extracted 
from different MR sequences. Some reports, including 
ours, restricted the analyzed images to conventional 
structural MRI, and others widened to use advanced 
imaging such as diffusion- and perfusion-weighted 
images. The type of tool used for image analysis is 
also different among reports. The most conservative 
method will be to analyze images based on predefined 

Fig. 1  Number of publications regarding radiomics. (A) 
Publication searched on February 1, 2020, by PubMed 
regarding each cancer type with the term “radiomics 
OR radiogenomics” is shown. (B) The number of annual 
publications searched on PubMed using the search term 
“IDH AND (radiomics OR radiogenomics)” is displayed. 
We searched on October 1, 2020. 
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radiomics, which are well described in the past 
literature.36–38,41–47) Other challenging research tested 
the hypothesis that convolutional neural network 
(CNN)-based image analysis will improve the diag-
nostic accuracy of IDH mutation status for 
gliomas.25,28,34,36,39,40,42–44,48–80) For this type of analysis, 
machine learning is heavily incorporated within 
the process of image analysis. A recent meta-analysis 
revealed that the pooled sensitivity and specificity 
for predicting IDH mutation in training datasets 
were 0.88 and 0.86, and 0.83 and 0.85 in the vali-
dation datasets.12) Considering that image analysis 
based on conventional radiomics can achieve similar 
diagnostic accuracy, the value of incorporating 
machine learning is still controversial and should 
be understood with caution. Our previous research 
also raised this issue by comparing diagnostic accu-
racy between analysis done with conventional 
radiomics and machine learning using the same raw 
dataset.28,38) The result clearly showed that mere 

incorporation of machine learning into the image 
analysis pipeline would not dramatically improve 
diagnostic accuracy, and more ingenuity is required 
for this means.

Another issue that must be acknowledged with 
the machine learning-based and non-based radiomic 
approach is the need to standardize images acquired 
from different institutions and MR vendors. Struc-
tural MRI is a qualitative imaging modality; thus, 
it does not provide quantitative information within 
the image, a feature fundamentally different from 
CT. As radiomics is defined as improvements of 
image analysis, using an automated high-throughput 
extraction of large amounts (200+) of “quantitative” 
features of medical images,1,2) it is necessary to 
convert qualitative images into quantitative images 
employing image standardization technique. Although 
several methods were proposed,38,40,53,81) one cannot 
ignore that the required process will limit the 
amount and quality of the information retrieved 

Fig. 2  (A) The chemical structures of glutamine, glutamate, and 2HG are shown. Note that these three molecules 
resemble their chemical structures. (B) MR spectroscopies of glutamine, glutamate, and 2HG are shown. We 
analyzed solutions containing 1 nM of each molecule under an 11.7 T MRI (Bruker, Ettlingen, Germany). 
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from the images. Furthermore, each research achieve-
ment is based on in-house software and algorithms, 
making it difficult to generalize their findings to 
real-world clinics. A recent publication further 
highlights the importance of solving this issue. The 
study’s authors revealed that the diagnostic accuracy 
of an algorithm trained with an in-house database 
deteriorates when it is applied to an external dataset. 
The area under the receiver operating characteristics 
curve (AUROC) dropped from 0.96 to 0.84 when 
the in-house database trained algorithm was applied 
to The Cancer Imaging Archive (TCIA) dataset.21)

The Discovery of the T2-FLAIR 
Mismatch Sign in Gliomas with IDH 

Mutation

Along with researchers striving to build diagnostic 
algorithms to predict IDH mutation status in gliomas, 
the neuro-radiological community searched for 
qualitative radiological features specific to IDH 
mutation that can be easily incorporated into the 
real-world clinical workflow. It has long been known 
that there is a tight correlation between 1p19q 
codeletion and calcification detected on MRI.82–84) 
This feature is not sensitive but has been considered 
significant to identify 1p19q codeletion when the 
imaging abnormality was suspected to be a glioma. 
Similar to this approach, researchers investigated 
TCIA and discovered a radiological feature specific 
for IDH mutation, namely the “T2-FLAIR mismatch 
sign.”85) Their findings were further validated by 
European researchers strengthening its clinical 
value.86) When we compare the results from radio-
mics based researches and the discovery of the 
T2-FLAIR mismatch sign, we can observe a correla-
tion between the two. One of the advantages of 
non-machine learning-based radiomics analysis is 
that it enables us to identify essential imaging 
features necessary to build the algorithm. The raw 
data shows that T2-weighted image was the critical 
imaging feature to construct a diagnostic algorithm 
for detecting IDH mutation.38)

The T2-FLAIR mismatch sign refers to regions 
described on MRI presenting high signal intensity 
on T2-weighted image but low on FLAIR (Fig. 3). 
The presence of the T2-FLAIR mismatch is indic-
ative of an IDH mutant astrocytoma, and IDH wild-
type tumors or 1p19q codeleted tumor usually do 
not present this imaging feature.85,86) The tumor will 
usually harbor a high signal intensity rim on both 
T2-weighted image and FLAIR. The definition of 
the T2-FLAIR mismatch sign proposed in the orig-
inal article is a complete or near-complete hyper-
intense signal on T2-weighted image and relatively 

hypointense signal on FLAIR except for hyperintense 
peripheral rim.85) The original report of the T2-FLAIR 
mismatch sign reported that 15 out of 125 (12%) 
subjects from the TCIA dataset presented the 
T2-FLAIR mismatch sign, all of which were astro-
cytoma with IDH mutation. The authors further 
validated their finding using a different dataset and 
reported a 100% specificity but 22%–46% sensi-
tivity of the T2-FLAIR mismatch sign to detect 
astrocytoma with IDH mutation. They noted that 
interobserver reliability was substantial but not 
perfect (κ = 0.728–0.747).85) The validation of the 
T2-FLAIR mismatch sign performed by the European 
multicenter study reported a similar result with 
the original article with 100% specificity and 50% 
sensitivity of the T2-FLAIR mismatch sign for 
identifying astrocytoma with IDH mutation.86) 
However, the T2-FLAIR mismatch sign interpreta-
tion could vary between investigators, and interob-
server variability is always an issue when applying 
qualitative image features, which radiomics strove 
to solve. The authors of the original article referred 
to this issue in their review article.87) For example, 
a validation study from Juratli et al. reported a 
much higher presence (73%) of the T2-FLAIR 
mismatch sign within astrocytoma with IDH muta-
tion.88) Personal communication between the authors 
of the original article and the authors of this specific 
article found that Juratli et al. adopted a more 
“relaxed” diagnostic criteria of the T2-FLAIR 
mismatch sign. The relatively low sensitivity of 
the T2-FLAIR mismatch sign could be caused by 
various unknown factors, including biological 
differences of the tumor among different patients 
and untuned image acquisition parameters.87) For 
example, our raw data deriving from radiomic 
analysis indicated that the image feature of FLAIR 
significantly differed between institutions (Fig. 4).28,38,89) 
Extensive variability of FLAIR could be problematic 
when detecting a qualitative imaging feature such 
as the T2-FLAIR mismatch sign. This observation 
motivated us to “reverse engineer” our findings 
from radiomic research to conventional neuroim-
aging, such as the T2-FLAIR mismatch sign.

Quantitative Analysis of the T2-FLAIR 
Mismatch Sign and Reverse Engineering 

it to Conventional Neuroimaging

We first performed a quantitative analysis of the 
T2-FLAIR mismatch sign. This analysis was possible 
as glioma patients were routinely examined with 
quantitative MRI at Osaka International Cancer 
Institute from 2017 to 2018. We noted that astro-
cytomas with IDH mutation harbored tumor tissues 
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with extensively long T1- and T2-relaxation time 
(longer than 3000 and 300 msec, respectively). These 
tissues were the leading cause of the T2-FLAIR 
mismatch sign. On the other hand, IDH wild-type 
tumors harbored tumor tissues with short T1- and 
T2-relaxation time (shorter than 2500 and 200 msec, 
respectively). 1p19q codeleted oligodendroglial 

tumors had tissues with longer T1- and T2-relaxation 
time than IDH wild-type tumors but did not reach 
a point comparable to IDH mutated astrocytoma.90)

Image characteristics of the FLAIR sequence rely 
on the parameter called “inversion time.” Inversion 
time defines the tissue where the recovered signal 
will be suppressed as a function of the T1-relaxation 

Fig. 3  We present a typical example that exhibits the T2-FLAIR mismatch sign. This is a 28-year-old male with 
an IDH-mutated astrocytoma arising at the left middle frontal gyrus. The T2-hyperintense region turns hypointense 
on FLAIR with a hyperintense rim surrounding the lesion. 

Fig. 4  This figure elucidates the diversity of images between different institutions. The mean z-scores of each 
radiomic feature deriving from either T2-weighted image or FLAIR are presented. Radiomic features calculated 
from FLAIR tended to differ between institutions. 
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time. In stroke imaging, the FLAIR sequence is 
tuned to suppress signals deriving from the cere-
brospinal fluid (CSF). CSF mainly consists of water, 
and as water’s T1-relaxation time is 4000 msec 
under 3T, FLAIR for stroke imaging targets to 
suppress tissues that exhibit T1-relaxation time 
longer than 4000 msec. However, suppressing tissues 
with T1-relaxation time longer than 4000 msec 
could be under suppressing signals if one wants to 
efficiently detect the T2-FLAIR mismatch sign in 
gliomas, as the cut-off between IDH-mutant astro-
cytoma and other types of glioma is 3000 msec in 
T1-relaxation time. We tested this hypothesis by 
investigating the image acquisition parameters of 
the TCIA dataset and found that differences in 
inversion time played a critical role in the presence 
or absence of the T2-FLAIR mismatch sign for 
astrocytoma with IDH mutation.91) AUROC increased 
from 0.63 to 0.87 if the inversion time was correctly 
adjusted for FLAIR acquisition aiming at glioma 
imaging (Fig. 5).91)

The Current State of Radiomics and 
Future Perspectives of Image-based 

Molecular Diagnosis of Gliomas

Recent investigations on radiomics clarified that 
quantitative analysis of qualitative images poses a 
significant limitation in pursuing higher diagnostic 
accuracy for molecular imaging of gliomas. The example 
mentioned above where the image characteristics of 
FLAIR is significantly different between different 
institution highlights the problem of quantitative 
analysis using qualitative images. Although the future 
of radiomics seems to be rather pessimistic for molec-
ular imaging of gliomas, the research community is 
expanding the use of radiomics to provide information 
on the microenvironments of the tumor tissue. Many 
reports attempt to distinguish between radiation 
necrosis and tumor recurrence or between brain 
tumor-related cerebral edema and non-enhancing tumor 
tissue.92–94) Radiomics enables the detection of subtle 
changes in texture which are challenging for human 
observation. Thus, radiomics may significantly contribute 
to these unmet clinical needs in the near future.

On the other hand, the expected breakthrough 
of radiomics relies on quantitative structural MR 
imaging advancement. Direct measurement and 
imaging of the T1- and T2-relaxation time of the 
entire brain are technically possible within a 
clinically acceptable scan time. However, suppose 
one wants to collect all the data required for 
presurgical planning, such as three-dimensional 
contrast-enhanced MRI for the navigation system 
and diffusion tensor imaging for evaluating white 
matter fiber-tracts. In that case, there will be no 
reasonable scan time to preserve to perform quan-
titative MR imaging for glioma patients. A novel 
technology that enables rapid acquisition of the 
tissue’s T1- and T2-relaxation time has been 
reported.95) This technology would allow us to 
perform a more direct and object radiomic analysis 
without sacrificing scan time.96) This type of tech-
nology could truly fulfill for the first time the 
original concept of radiomics proposed in 2012, 
stating improvements of image analysis, using an 
automated high-throughput extraction of large 
amounts of quantitative features of medical images.1,2) 
Findings deriving from quantitative MRI technology 
could re-reverse the science of neuroradiology once 
again from improving qualitative imaging to identifying 
quantitative molecular diagnosis of gliomas.97)
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