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ABSTRACT

Short-read sequencing enables assessment of ge-
netic and biochemical traits of individual genomic
regions, such as the location of genetic variation,
protein binding and chemical modifications. Every
region in a genome assembly has a property called
‘mappability’, which measures the extent to which
it can be uniquely mapped by sequence reads. In
regions of lower mappability, estimates of genomic
and epigenomic characteristics from sequencing
assays are less reliable. These regions have in-
creased susceptibility to spurious mapping from
reads from other regions of the genome with se-
quencing errors or unexpected genetic variation.
Bisulfite sequencing approaches used to identify
DNA methylation exacerbate these problems by in-
troducing large numbers of reads that map to multi-
ple regions. Both to correct assumptions of unifor-
mity in downstream analysis and to identify regions
where the analysis is less reliable, it is necessary to
know the mappability of both ordinary and bisulfite-
converted genomes. We introduce the Umap soft-
ware for identifying uniquely mappable regions of
any genome. Its Bismap extension identifies map-
pability of the bisulfite-converted genome. A Umap
and Bismap track hub for human genome assem-
blies GRCh37/hg19 and GRCh38/hg38, and mouse
assemblies GRCm37/mm9 and GRCm38/mm10 is
available at https://bismap.hoffmanlab.org for use
with genome browsers.

INTRODUCTION

High-throughput sequencing enables low-cost collection of
high numbers of sequencing reads but these reads are of-
ten short. Short-read sequencing limits the fraction of the
genome that we can unambiguously sequence by aligning
the reads to the reference genome (Figure 1B). Still, we can
identify much of the regulatory regions of the genome, such
as transcription factor binding sites, histone modifications
and other important regulatory regions. However, reads
that are ambiguously mapped produce a false positive sig-
nal that misleads analysis. Some regions of the genome with
low complexity including repeat elements are not uniquely
mappable at a given read length. Other regions overlap few
uniquely mappable reads, and consequently the mappability
is low. To map the regions with low mappability, a high se-
quencing depth is required to assure that sequencing reads
completely overlap with few uniquely mappable reads in
that region. If sequencing depth is low and genomic varia-
tion or sequencing error is high, the signal from a low map-
pability region is biased by reads falsely mapped to that re-
gion.

Most short-read alignment algorithms determine if any
read maps to one or more regions in the genome. How-
ever, one must consider this in context of the surrounding
regions, even if a read maps uniquely. A single nucleotide
change might change a read from uniquely mappable to not.
A uniquely mappable read that aligns to a region with low
mappability has a higher chance of not mapping uniquely
due to genetic variation or sequencing error.

In bisulfite sequencing, this problem increases. Bisul-
fite treatment reduces unmethylated cytosine to uracil (se-
quenced as T), while 5-methylcytosine remains intact (se-
quenced as C). Bisulfite treatment significantly increases the
number of repeated short sequences in the genome. Many
regions uniquely mappable in an unmodified genome no
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Figure 1. Mappability of the genome by Umap. (A) The Umap workflow identifies all unique k-mers of a genome given a read length of k. (B) Mappability
of the human genome and methylome for read lengths between 24 and 100. (C) All of the uniquely mappable reads in two regions with high and low
multi-read mappability are shown. In Case 1 (blue), all possible reads covering the region are uniquely mappable. In Case 2 (magenta), only two reads out
of 10 are uniquely mappable.

longer uniquely map after bisulfite conversion. Incorrect
mapping of bisulfite sequencing reads creates a false methy-
lation signal that can bias downstream analysis and inter-
pretation. When confounding factors such as read length,
sequencing depth, or mutation rate differ among cases, this
bias becomes even more evident.

In an unmodified human genome, 18.7% of the 24-mers
do not map uniquely (Figure 1B). This quantity increases
to 33.5% for a bisulfite-converted genome (Figure 1B). In
certain cases, the difference between a uniquely mappable
and a non-uniquely mappable read can be only 1 nt. Se-
quencer base-calling errors and genetic variation often af-

fect alignment, but we cannot comprehensively account
for them. These biases further exacerbate alignment when
the read length is shorter, emphasizing the importance of
considering genomic mappability in any analysis involv-
ing short-read sequencing. While previous tools such as the
GEM-mappability software (1) identify mappability of the
genome, no existing software solves the methylome mappa-
bility problem. In addition, existing tools prove difficult to
use or lack available source code. To solve this problem, we
developed the Umap software, with a bisulfite-mappability
extension called Bismap.
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MATERIALS AND METHODS

Single- and multi-read mappability

Umap identifies the uniquely mappable reads of any
genome for a range of sequencing read lengths. The Bismap
extension of Umap produces uniquely mappable reads of a
bisulfite-converted genome. Both Umap and Bismap pro-
duce an integer vector for each chromosome that defines
the mappability for any region and can be converted to
a browser extensible data (BED) file. One way to assess
mappability of a genomic region is by the ‘single-read
mappability’––the fraction of that region that overlaps with
at least one uniquely mappable k-mer. For a single base pair,
the single-read mappability is 1 (the base pair overlaps at
least one uniquely mappable k-mer) or 0 (the base pair does
not). Regardless of whether the base pair lies at the begin-
ning, middle or end of a uniquely mappable k-mer, any over-
lap is sufficient to make the single-read mappability 1.

Analysis of sequencing data involves inferences about
a base’s genetic or regulatory state from observations of
all reads overlapping that base. Therefore, we must con-
sider the mappability of all reads overlapping a posi-
tion or region, when estimating how many mapped reads
we might expect. Single-read mappability assumes that
uniquely mappable reads are uniformly distributed in the
genome, while in reality we observe frequent localized en-
richment of uniquely mappable reads.

A region can have 100% single-read mappability, but a
below-average number of uniquely mappable reads that can
overlap that region (Figure 1C). For example, a 1-kbp re-
gion with 100% single-read mappability can be mappable
due to a minimum of 10 unique non-overlapping 100-mers
or a maximum of 1000 − 1 + 100 = 1099 unique maximally
overlapping 100-mers. Therefore, we define the ‘multi-read
mappability’––the probability that a randomly selected k-
mer in a given region is uniquely mappable. For the genomic
region Gi:j starting at i and ending at j, there are j − i + k dif-
ferent k-mers that overlap with Gi:j. The multi-read mappa-
bility of Gi:j is the fraction of those k-mers that are uniquely
mappable (Figure 1C). Similarly, for any base pair in the
genome, multi-read mappability is the number of unique k-
mers overlapping that base pair divided by k.

Mappability of the unmodified genome

Umap uses three steps to identify the mappability of a
genome for a given read length k (Figure 1A). First, it gener-
ates all possible k-mers of the genome. Second, it maps these
unique k-mers to the genome with Bowtie (2) version 1.1.0.
Third, Umap marks the start position of each k-mer that
aligns to only one region in the genome. Umap repeats these
steps for a range of different k-mers and stores the data of
each chromosome in a binary vector X with the same length
as the chromosome’s sequence. For read length k, Xi = 1
means that the sequence starting at Xi and ending at Xi + k
is uniquely mappable on the + strand. Since we align to both
strands of the genome, the reverse complement of this same
sequence starting at Xi + k in the − strand is also uniquely
mappable. Xi = 0 means that the sequence starting at Xi
and ending at Xi + k can be mapped to at least two different
regions in the genome.

Eventually, Umap merges data of several read lengths to
make a compact integer vector for each chromosome (Fig-
ure 1A, step 3). In this vector, non-zero values at position
Xi indicate the smallest k-mer that positions Xi to Xi + K is
uniquely mappable with, where K is the largest k-mer in the
range. For example, Xi = 24 means that the region Xi to
Xi + 24 is uniquely mappable. This also means that any read
longer than 24 nt that starts at Xi is also uniquely mappable.

Umap translates these integer vectors into six-column
BED files for the whole genome (Figure 1A, step 4). Ad-
ditionally, Umap can calculate single-read mappability and
multi-read mappability for specified regions in any input
BED file.

Although Bowtie can align with mismatches, here we do
not use this capability. By defining mappability with exact
matches only, we provide baseline identification of regions
that are not uniquely mappable no matter how high the se-
quencing coverage is. Nonetheless, the Umap software al-
lows users to change alignment options, including mismatch
parameters.

Mappability of the bisulfite-converted genome

To identify the single-read mappability of a bisulfite-
converted genome, we create two altered genome sequences
(Figure 2). In the first sequence, we convert all cytosines to
thymine (C→T). In the other sequence, we convert all gua-
nines to adenine (G→A). Our approach follows those of Bis-
mark (3) and BWA-meth (https://arxiv.org/abs/1401.1129).
We convert the genome sequence this way because bisulfite
treatment converts unmethylated cytosine to uracil, which
is read as thymine. Similarly the guanine that is base-pairing
with the unmethylated cytosine in the − strand converts
to adenine. These two conversions, however, never occur at
the same time on the same read. We identify the uniquely
mappable regions of these two genomes separately and then
combine the data to represent the single-read mappability of
the + and − strands in the bisulfite-converted genome. For
an unmodified genome, however, the mappability of the +
and − strand is identical by definition.

Bismap requires special handling of reverse complemen-
tation of C→T or G→A converted genomes. Conversion
of C→T on the sequence 5′-AATTCCGG-3′ produces 5′-
AATTTTGG -3′. In the Bowtie index, the reverse comple-
ment of the latter would be 5′-CCAAAATT-3′. For the
purpose of identifying the mappability of the bisulfite-
converted genome, however, we expect the reverse comple-
ment to be derived from the original converted sequence,
yielding 5′-CCGGAATT-3′, and then after C→T conversion,
5′-TTGGAATT-3′. Both + and − strands undergo bisulfite
treatment simultaneously, and there is no DNA replication
to create new reverse complements after bisulfite treatment.
To handle this issue, Bismap creates its own reverse comple-
mented chromosomes and suppresses Bowtie’s usual reverse
complement mapping.

Umap and Bismap each take ∼200 core-h on a 2.6 GHz
Intel Xeon CPU E5-2650 v2 processor and <500 MB of
memory to run for some read length in GRCh38. This is a
massively parallelizable task, so on a computing cluster with
400 cores, the task takes only 30 min of wall-clock time.

https://arxiv.org/abs/1401.1129
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Figure 2. Mappability of the methylome by Bismap. Bismap identifies uniquely mappable k-mers of a bisulfite-converted genome. It simulates the same
changes that may occur in bisulfite treatment on the + strand (C→T) and − strand (G→A). To account for sequence of the − strand, we generate an extra
set of reverse-complemented chromosomes and then simulate bisulfite conversion on these chromosomes. We do not simulate reverse complementation
after bisulfite conversion, because the experimental protocol does not involve post-conversion DNA amplification. We then align k-mers by disabling
complement search and combine the resulting data to quantify the mappability of a bisulfite-converted genome.

ENCODE ChIP-seq experiments

We downloaded ENCODE (4) chromatin immuno
precipitation-sequencing (ChIP-seq) FASTQ files
from the ENCODE Data Coordination Center
(https://www.encodeproject.org) and aligned them to
GRCh38 using Bowtie 2 (5). We switched to Bowtie 2 for
this analysis because it supports gapped alignment, which
we did not need for mappability calculations.

We used Samtools (6) to remove duplicated sequences
and those with a mapping quality of <10. This assures
that the probability of correct mapping to the genome for
any read is >0.9. Pooling replicates from the same ex-
periment, we used MACS (7) version 2 with the options
‘- -nomodel - -q-value 0.001’ to identify ChIP-seq
peaks. At last, Umap measured single-read mappability and
multi-read mappability within the peaks.

Table 1. CpG annotations

Annotation Definition

CpG island As annotated by UCSC Genome Browser
CpG shore 2-kbp area surrounding CpG islands
CpG shelf 2-kbp area surrounding CpG shores
CpG resort Collection of islands, shores and shelves

CpG islands

We downloaded CpG islands for GRCh38 from the
University of California Santa Cruz (UCSC) Genome
Browser (9) (http://hgdownload.soe.ucsc.edu/goldenPath/
hg38/database/cpgIslandExt.txt.gz). We then annotated
CpG features around the CpG islands following published
definitions (8,10) (Table 1). Then, we used Umap and
Bismap to measure mappability across these annotations.

https://www.encodeproject.org
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpgIslandExt.txt.gz
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Whole-genome bisulfite sequencing analysis

First, we obtained datasets of whole-genome bisulfite se-
quencing of murine mammary tissues (11) from the Se-
quence Read Archive (accession numbers: SRR1946823,
SRR1946824, SRR1946819 and SRR1946820). Second,
we trimmed Illumina TruSeq adapters from FASTQ files
with Trim Galore (https://www.bioinformatics.babraham.
ac.uk/projects/trim galore). Third, for each experiment,
we break down sequencing reads to produce two differ-
ent FASTQ files with read lengths of 50 and 100 bp.
For example, if the read length of an experiment is
182 bp and we want to generate a FASTQ file with
read length of 50 bp, we would only use the first 50 bp
and discard the rest. We aligned these modified FASTQ
files with BWA-meth (https://arxiv.org/abs/1401.1129) to
the GRCm38 genome. We removed duplicate reads or
those with a mapping quality <10. We extracted CpG-
context methylation using PileOMeth (https://github.com/
dpryan79/MethylDackel). We use BSmooth (12) (version
0.4.2) for identifying differentially methylated regions. At
last, we used Bismap to measure mappability of differ-
entially methylated regions with at least four CpG dinu-
cleotides.

Other methylation assays

DiseaseMeth (13), a human methylation database, pro-
vides access to 17 024 methylation datasets from 88
different human diseases. These data are a collection
of experiments using various platforms, including 2728
assays using the Illumina Infinium HumanMethyla-
tion27 (27K) BeadChip and 9795 assays using the
Illumina Infinium HumanMethylation450 (450K)
BeadChip. To identify which 50-bp probe sequences
of the 27K (https://support.illumina.com/downloads/
humanmethylation27 product support files.html) and
450K arrays (https://support.illumina.com/downloads/
infinium humanmethylation450 product files.html) do not
map uniquely to the GRCh37 genome, we measured single-
read mappability with Umap. To identify which probes do
not map uniquely after bisulfite conversion, we measured
single-read and multi-read mappability with Bismap. In
addition, we examined whether the exact 50-mer probe
sequence mapped uniquely.

DiseaseMeth also contains 71 experimental datasets
using reduced representation bisulfite sequencing
(RRBS) (14). For CpG dinucleotides captured in RRBS
experiments and annotated by DiseaseMeth, we examined
the multi-read mappability for read lengths of 24, 36, 50
and 100 bp.

Umap and Bismap track hub

We used read lengths of 24, 36, 50 and 100 bp to generate
mappability tracks for unmodified and bisulfite-converted
genomes of human (GRCh37 and GRCh38) and mouse
(GRCm37 and GRCm38). For these genomes, we store
single-read mappability (regions that overlap with k-mers
that map uniquely) in bigBed format and per-base multi-
read mappability in bigWig format as a track hub that
can be loaded in the UCSC (9) or Ensembl (15) genome

browsers. The UCSC Genome Browser GRCh38/hg38
mapping and sequencing track hub has Umap and
Bismap tracks by default (https://genome.ucsc.edu/cgi-bin/
hgTrackUi?db=hg38&g=mappability). The track hub con-
tains one supertrack for Umap and one supertrack for
Bismap. Umap software calculates single-read and multi-
read mappability for any BED file as well. The track hub
and software are available at https://bismap.hoffmanlab.
org.

RESULTS

Mappability of ENCODE ChIP-seq peaks

ChIP-seq identifies proteins present in chromatin at partic-
ular loci and often involves short-read sequencing. The EN-
CODE Project (4) has performed around 1200 ChIP-seq as-
says on ∼200 chromatin-binding factors in more than 60
different human cell types. To show how mappability af-
fects downstream analysis of experiments such as ChIP-seq,
we quantified the mappability of narrow peaks identified
in ENCODE ChIP-seq experiments. Among 1193 experi-
ments, most peaks map uniquely. For some experiments,
however, a high number of peaks overlap with non-uniquely
mappable regions. Most of these experiments correspond
to ChIP-seq of histone modifications with read lengths
from 24 to 36 bp. There are two ENCODE NRF1 ChIP-
seq experiments in K562 with 36 bp (ENCSR000EHH)
and 100 bp (ENCSR494TDU and ENCSR998AJK) read
lengths. For ENCSR000EHH among the 3994 peaks called
by MACS2, 219 extend into a region that is not uniquely
mappable. Although the ChIP-seq signal is completely
within a uniquely mappable region, MACS2 identifies a
much broader peak than is warranted (Figure 3C).

Mappability of CpG islands

CpG islands substantially overlap transcription start sites
and differentially methylated regions (8). Because CpG is-
lands have a high number of CpGs, they are highly affected
by bisulfite conversion. Thus, we investigated CpG islands
and the neighboring CpG shores and CpG shelves.

Even with a relatively long read length of 100 bp,
3 059/167 694 CpG annotations have zero uniquely map-
pable bases, as calculated by Bismap. For shorter read
lengths, even more of the bisulfite-converted genome lacks
unique mapping. For a read length of 100 bp, 26 510
CpG annotations are not uniquely mappable with Bismap.
This represents 15.8% of all CpG annotations. The average
single-read mappability of CpG annotations that are not
uniquely mappable is 68.8%.

CpG islands and regions around them are often not
uniquely mappable, to a lesser extent, in an unmodified
genome. For example, the average single-read mappability
of 15 776 CpG annotations that are not uniquely map-
pable in the unmodified genome is 60% with a read length
of 100 bp. This is substantially lower than the average
single-read mappability of the genome (92%). Also, there
are 631 CpG islands that have some overlap with uniquely
mappable regions of the unmodified genome, but are not
uniquely mappable in the bisulfite-converted genome.

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://arxiv.org/abs/1401.1129
https://github.com/dpryan79/MethylDackel
https://support.illumina.com/downloads/humanmethylation27_product_support_files.html
https://support.illumina.com/downloads/infinium_humanmethylation450_product_files.html
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=mappability
https://bismap.hoffmanlab.org
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Figure 3. Mappability of ChIP-seq peaks in 1193 ENCODE datasets. (A) Single-read mappability and (B) multi-read mappability for narrow peaks
identified in ENCODE ChIP-seq datasets. (C) An NRF1 narrow peak identified by MACS (purple) that is not uniquely mappable in the experiment with
read length of 36 bp. The red bar in peaks indicates the summit. Signal tracks (gray) show two different replicates of this ChIP-seq experiment in K562
chronic myeloid leukemia cells (ENCODE accessions ENCSR000EHH and ENCSR494TDU, with read lengths of 36 and 100 bp, respectively). Umap
tracks show single-read and multi-read mappability for two different read lengths of 36 and 100 bp.

The difference in genomic mappability and CpG island
annotation mappability is even more extensive for shorter
read lengths. For example, for a read length of 24 bp,
more than 96.84% of CpG island annotations are not
uniquely mappable, but the percent of the genome that is
not uniquely mappable is only 30% (Figure 4).

Mappability of differentially methylated regions

Many studies measure differences in methylation associ-
ated with a disease phenotype. These studies test whether
each CpG’s methylation status correlates with the pheno-
type. Collective difference of CpG dinucleotides in a given
region, however, may provide higher statistical power in as-
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Figure 4. Mappability of the CpG island annotations. (A) Single-read mappability and (B) multi-read mappability of CpG islands, CpG shores, CpG
shelves and CpG resorts for a variety of read lengths. For comparison, asterisks indicate the average mappability of the whole genome at each read length.
(C) A CpG island that is not uniquely mappable with a read length of 100 bp by Umap and Bismap. In Bismap single-read mappability tracks, chevrons
pointing right indicate mappability of the + strand and chevrons pointing left indicate mappability of − strand. Multi-read mappability is calculated based
on reads that are uniquely mappable on both + strand and − strand.
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sessing the association of methylation profile with disease
states (16). Cluster of CpG dinucleotides are also a more
predictive feature of disease states than differences in indi-
vidual CpGs (16). BSmooth (12) is one of the tools that
identifies differentially methylated regions by estimating a
smoothed methylation profile.

We compared differences in CpG methylation of basal
and luminal alveolar murine mammary tissues (11) using
BSmooth (12). Out of a total of 383 119, CpG dinucleotides
sequenced with a read length of 50 bp (see ‘Materials and
Methods’ section), 306 of them are not uniquely mappable.
For a read length of 100 bp, out of a total of 3 648 877
CpG dinucleotides, 411 are not uniquely mappable. For the
same experimental setup, BSmooth identified 636 differen-
tially methylated regions for a read length of 50 bp and
17 435 regions for a read length of 100 bp. For a read length
of 100 bp, five differentially methylated regions were not
uniquely mappable (single-read mappability <100%), while
for a read length of 50 bp, 53 differentially methylated re-
gions were not uniquely mappable (Figure 5). This is a proof
of principle that differential methylation analysis can iden-
tify false signals that are not even uniquely mappable.

DiseaseMeth (13) catalogs publicly available methylome
datasets, including 12 073 using array technologies. The
cost-efficiency of these approaches has driven wide adop-
tion. Many of these datasets, however, include probes with
low mappability in the bisulfite-converted genome. The
widely used Illumina Infinium methylation arrays use 50-
bp probes capturing certain CpG dinucleotides. Out of
the 27 578 probes in the Illumina Infinium HumanMethy-
lation27 (27K) BeadChip, 377 do not map uniquely to
GRCh37 and 115 do not map uniquely after bisulfite con-
version. Additionally, 304 uniquely mappable probes have
low multi-read mappability, meaning that single nucleotide
polymorphisms or mutations can make the sequence un-
mappable or even result in probe multi-mapping (Fig-
ure 6A). Similarly, out of 485 512 probes in the Illumina
Infinium HumanMethylation450 (450K) BeadChip, 84 are
not uniquely mappable to GRCh37, 4146 are not uniquely
mappable after bisulfite conversion, and another 12 744
uniquely mappable probes have low multi-read mappabil-
ity (Figure 6B).

In addition, many publicly available RRBS datasets ex-
ist. In RRBS, only DNA fragments between 40 and 220 bp
are selected. The majority of selected fragments, however,
are ∼50 bp (17). Even with a read length of 100 bp, 408 384
(1.18%) of CpG dinucleotides in RRBS experiments of Dis-
easeMeth database did not map uniquely (Figure 6C).

Limitations of paired-end sequencing

Paired-end sequencing links short reads to longer DNA
fragments, increasing the frequency of unique mapping.
To examine how paired-end sequencing might affect the
need for mappability information, we examined an EN-
CODE whole genome bisulfite sequencing dataset with
150 bp paired-end reads (ENCFF721VIZ). Only 12.5%
of sequenced fragments in that dataset were longer than
300 bp. Only 0.018% of fragments are longer than 400 bp
(Figure 7A).

Because more than 99.9% of fragments in the paired-end
sequencing dataset were 400 bp or shorter, we sought to
identify genomic regions that cannot be uniquely mapped
with 400-mers. A 400-bp fragment with reads from 150 bp
ends may not provide all the information of a single 400-
bp read. Here, we will assume that it does for a conserva-
tive estimate of which genomic regions map uniquely with
paired-end reads.

We downloaded NCBI RefSeq gene annotations (18)
using the UCSC Table Browser (19) (Homo sapiens anno-
tation release 105, primary table: ncbiRefSeq, last updated:
29 November 2016). Out of 153 726 RefSeq gene anno-
tations, 4521 overlap with genomic regions not uniquely
mappable with 400-mers. Of these 4521 annotations, 3090
are not curated (XM and XR RefSeq IDs) while 1431
are manually curated (NM and NR RefSeq IDs). These
regions overlapped thousands of annotated untranslated
regions, introns and exons (Figure 7B). We downloaded hu-
man pseudogenes (GENCODE Release 27 GRCh38.p10,
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode human/
release 27/gencode.v27.2wayconspseudos.gtf.gz) and
found that 210 of 9002 predicted pseudogenes do not map
uniquely with 400 bp k-mers.

We downloaded the RepeatMasker (RepeatMasker
Open-4.0, http://www.repeatmasker.org) annotation of
repeat elements (primary table: rmsk, last updated: 10
January 2014) using the UCSC Table Browser. Only 48 260
of the 5 524 462 repeat elements did not map uniquely with
400 bp k-mers.

In the whole human genome, 44 525 regions did not map
uniquely with 400 bp k-mers. Most of these regions (42 969)
overlap RepeatMasker repeat elements. These include dif-
ferent types of repeat elements, mostly short- and long-
interspersed nuclear elements (30.57% SINEs and 22.37%
LINEs). Some of the non-unique regions overlapped non-
messenger RNA (0.31% overlap either of transfer RNA,
ribosomal RNA, small nuclear RNA, small conditional
RNA or signal recognition particle RNA) or retrotrans-
posons (0.06%, Figure 7C).

Comparison of Umap and GEM-mappability

We compared Umap with the existing GEM-mappability
software (1). GEM-mappability’s default parameters allow
a 4% mismatch rate and require a minimum 80% match for
a read to align. This means if a k-mer has pairwise align-
ment to a genomic region ≥96% but <100%, GEM maps
it uniquely but Umap does not. Also, if a read maps to
several genomic regions when allowing for 4% mismatch,
GEM may report lower mappability of all those regions
than Umap, if those regions map uniquely without mis-
matches. Each genomic position’s GEM-mappability score
depends on how many times a k-mer starting at that posi-
tion maps to the genome. GEM does not account for unique
mapping that includes that position but starts upstream,
unlike Umap’s single- and multi-read mappability scores.
Therefore, we expect mappability scores for some genomic
regions to differ between GEM and Umap.

To compare GEM and Umap mappability scores, we re-
peatedly selected 2400 random regions (100 regions from
each chromosome) of fixed lengths. We did this for five dif-

ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_27/gencode.v27.2wayconspseudos.gtf.gz
http://www.repeatmasker.org


PAGE 9 OF 13 Nucleic Acids Research, 2018, Vol. 46, No. 20 e120

A B

C

Figure 5. Mappability of differentially methylated regions of mice mammary basal and luminal alveolar tissues. (A) Single-read and (B) multi-read map-
pability of differentially methylated regions. (C) A differentially methylated region identified with 50-nt sequencing reads that are not uniquely mappable
(purple). None of the sequencing reads that overlap this differentially methylated region uniquely map to the bisulfite-converted genome, although they all
map uniquely to the unmodified genome.

ferent region lengths (10, 100, 1000, 10 000 and 100 000),
four different k-mer sizes (24, 36, 50 and 100), creating
5 × 4 = 20 comparison groups overall (Figure 8). Across
all comparison groups, the minimum concordance correla-
tion coefficient (20) between Umap multi-read mappabil-
ity and GEM-mappability was 0.903 and the mean con-
cordance correlation coefficient was 0.965. For single-read
mappability, the minimum concordance correlation coeffi-
cient with GEM-mappability was 0.866 and the mean con-
cordance correlation coefficient was 0.949.

Usually, the complete length of small regions mapped
uniquely. For example, 86% of randomly selected 10-
bp regions had both Umap single-read mappability and
GEM-mappability scores of 1. In the remaining 10-bp re-
gions, the Umap and GEM-mappability scores often dis-
agreed. Umap single-read mappability was less than GEM-
mappability in 5% of 10-bp regions, while Umap single-read

mappability exceeded GEM-mappability in 1% of these re-
gions.

For longer regions, the proportion of regions with the
maximum score for either Umap or GEM dropped. Usu-
ally, Umap single-read mappability was higher than GEM-
mappability, while Umap multi-read mappability was usu-
ally lower than GEM-mappability. In the regions with high-
est mappability, however, Umap multi-read mappability
exceeds GEM-mappability. This happens because GEM-
mappability only considers the uniqueness of a k-mer start-
ing at a position, rather than also considering overlapping
k-mers, like Umap.
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Figure 6. Mappability of targeted methylation assays. Multi-read mappability of probes in (A) the Illumina Infinium HumanMethylation27 (27K) Bead-
Chip and (B) the Illumina Infinium HumanMethylation450 (450K) BeadChip. (C) Multi-read mappability of CpG dinucleotides found in DiseaseMeth
RRBS datasets.

DISCUSSION

The importance of considering mappability in analysis

In several examples, we showed how mappability must be
considered in analysis of sequencing data. One needs to ex-
amine, however, the extent of genomic variation that affects
mappability calculations. Genetic variants specific to each
sample make it impossible to know the exact mappability.
We introduced a measure called multi-read mappability for
addressing this issue. Genomic regions with higher multi-
read mappability are less prone to be biased by genetic vari-
ants and sequencing errors.

In ENCODE ChIP-seq experiments using short-read
lengths, we found many examples where signal was within
a uniquely mappable region but peaks identified by peak
caller had substantial overlap with non-uniquely mappable
regions. More than 50% of ChIP-seq data in the ENCODE
Data Coordination Center use reads shorter than 36 bp.
Consortia such as ENCODE and Roadmap have spent hun-
dreds of millions of dollars to perform these experiments,
which they will not repeat any time soon. This shows the
importance of using the mappability information to analyze
sequencing data, especially when the read length is short. In
fact, we initially developed Umap as part of the ENCODE
uniform analysis pipeline (4) to avoid such problems.

In Bismap, we convert all cytosines to thymines in the
forward strand, and all guanines to adenines on reverse
strand, just as alignment algorithms such as Bismark (3)
or BWA-meth (https://arxiv.org/abs/1401.1129) do. In prac-
tice, chemical resistance or sample-specific genetic varia-
tion may retard bisulfite conversion. This makes it im-
possible to estimate the exact mappability for a bisulfite-
converted sample. When performing bisulfite sequencing on
different mouse strains, using the same reference genome
for each introduces massive bias in bisulfite sequencing
data analysis (https://doi.org/10.1101/076844). Ideally, one
would align data from each strain to a reference genome
specific to that strain. When one lacks a strain-specific ref-
erence genome, Bismap at least allows us to quantify how
and where genetic variation affects reliability of bisulfite

sequencing results. While Bismap assumes complete bisul-
fite conversion, Umap assumes none. By comparing the re-
sults of the two methods, we can understand the range of
bisulfite-conversion effects on mappability.

While paired-end sequencing with lengths >100 bp has
become more common, most publicly available datasets
such as ENCODE have used shorter reads. Out of 3483
ENCODE ChIP-seq experiments, 3033 use single-ended se-
quencing, and 2228 have read lengths of 36 bp or shorter.
Out of the 142 ENCODE RRBS datasets, 140 (98.6%) have
a read length of 36 bp or shorter. In addition, commonly
used array technologies such as the 450K array uses 50-bp
probes and multi-read mappability of some of the probes is
low. This allows multi-mapping due to genetic variation and
decreases data quality in these regions as it has been noted
before (21). Although only a small fraction of all probes do
not map uniquely (1.8% in the 27K array and 0.87% in the
450K array), one must still use caution when interpreting
methylation signal––or the lack thereof––in these regions.
In fact, multi-mapping probes have lead to false discovery
of autosomal sex-associated DNA methylation in at least
one study (22).

In our analysis of whole genome bisulfite sequencing data
of mouse mammary tissue, 0.08% of CpG dinucleotides
were not uniquely mappable with 50-bp reads. We removed
reads with a mapping quality <10 and only counted CpG
dinucleotides that had a minimum coverage of three reads
in all of the four different whole genome bisulfite sequenc-
ing datasets. Given this stringent filtering, the chance of ob-
serving any non-uniquely mappable read is 10−12, which is
much less than our observation (0.1%). Most sequencing
reads corresponding to these CpGs map uniquely to the un-
modified genome, but not the bisulfite-converted genome.
Such CpG dinucleotides must be excluded from analysis.
RRBS usually involves filtering fragments to only include
those that are 40 –220 bp, and most RRBS reads are 50 bp
or less (17). This causes a major issue for mapping of these
reads.

In paired-end sequencing, short regions from both ends
of a longer fragment are sequenced. This provides a long

https://arxiv.org/abs/1401.1129
https://doi.org/10.1101/076844
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Figure 7. Limitations of paired-end sequencing. (A) Empirical cumulative distribution function of the length of a region mapped by paired-end reads
in an experiment with 150 bp paired-end sequencing (ENCFF721VIZ). The plotted curve shows the proportion of regions (y-axis) that are shorter than
some length (x-axis). This shows that 87.5% of mapped fragments are smaller than 300 bp. (B) Number of transcript components not uniquely mappable
with 400-mers. (C) Number of RepeatMasker repeat elements not uniquely mappable with 400-mers. LTR, long terminal repeat; RC, rolling circle; rRNA,
ribosomal RNA; scRNA, small conditional RNA; snRNA, small nuclear RNA; srpRNA, signal recognition particle RNA; tRNA, transfer RNA.

read more likely to map uniquely to the genome. The length
of these fragments varies considerably in size. One can still
use Umap or Bismap to identify the mappability for a range
of k-mers that represent the variation in fragment length
of any given sequencing library. In a typical whole genome
bisulfite sequencing assay with 150 bp paired-end reads,
87.5% of mapped reads cover <300 bp of the genome (Fig-
ure 7A). Even with a read length of 400 bp, k-mers overlap-
ping 4521 of 153 276 RefSeq gene annotations (18) do not
map uniquely.

In RNA-seq, gap alignment algorithms account for splic-
ing. Different software and user defined parameters handle
multi-mapping reads differently that can be a source of er-
ror. Some software does not remove multi-mapping reads.
For example, Mortazavi et al. (23) assign multi-mapping
reads in proportion to coverage of transcripts according to
uniquely mappable reads, and Robert and Watson (24) rec-
ommend assigning multi-mapped reads to a group of genes
instead of removing them. Other methods distribute reads
among transcripts by modeling strand, mapped position,
distribution of insert sizes (25) and transcript length (26) or
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Figure 8. Bland–Altman density plots comparing Umap and GEM-mappability scores. For several read lengths (10, 100, 1000, 10 000 and 100 000) and
k-mer sizes (24, 36, 50 and 100), we randomly selected 2400 regions (100 regions from each chromosome) and compared GEM-mappability with (A) Umap
multi-read mappability and (B) Umap single-read mappability.

pseudo-alignment of k-mers in a read to transcripts (27).
Patro et al. (28) also account for sample-specific G+C-
content and positional bias. These approaches accurately
recover a significant portion of the data. In addition to using
the above-mentioned features of sequencing reads, model-
ing local mappability of all possible matches to a sequenc-
ing read may improve accuracy of the current methods in
transcript quantification.

Other methods for mappability

GEM-mappability (1) quantifies the number of times each
k-mer is mapped to the genome by allowing for mismatches
(default 4%). If a k-mer is not uniquely mappable, but
overlaps with other uniquely mappable k-mers, sequencing
reads can map to that region and provide useful informa-
tion about that genomic position. In addition to represent-
ing base-level mappability information, Umap single-read
and multi-read mappability scores rely on unique mappa-
bility of downstream and upstream k-mers as well. Never-
theless, the mean concordance correlation coefficient (20)
between GEM and Umap mappability is 0.949 (single-read)
or 0.965 (multi-read) (Figure 8).

Bias Elimination Algorithm for Deep Sequencing
(BEADS) (29) also defines a mappability measure that is
obtained by identifying uniquely mappable 35-mers of the
genome. Based on the assumption that each read identifies
a longer 200-mer, BEADS extends uniquely mappable
35-mers to 200 bp and calculates the fraction of reads that
span a given genomic position. BEADS uses a cut-off of
25% mappability to filter signals that might bias a study.
Extending the 35-mer mappability to 200 bp, however,
defines the exact mappability for neither 35-mers nor
200-mers.

PeakSeq (30) uses an algorithm similar to Umap and
identifies the single-read mappability in 1-kbp windows of
the genome. PeakSeq filters out ChIP-seq signals with low
mappability in each window by comparing it to a simulated
background of reads with Poisson distribution.

Model-based one and two Sample Analysis and infer-
ence for ChIP-Seq Data (MOSAiCS) (31) uses a mappabil-
ity measure similar to multi-read mappability for prepro-
cessing of data. While Umap’s multi-read mappability cal-
culates the percent of uniquely mappable k-mers that span
each nucleotide, MOSAiCS calculates the percent of ex-
tended uniquely mappable k-mers for calculating its mappa-
bility score. In comparison to other mappability measures,
Umap’s multi-read mappability has the advantages of speci-
ficity to an exact read length and efficient calculation for any
read length.

DATA AVAILABILITY

The UCSC Genome Browser GRCh38/hg38 mapping
and sequencing track hub has Umap and Bismap
tracks by default (https://genome.ucsc.edu/cgi-bin/
hgTrackUi?db=hg38&g=mappability). We have de-
posited in Zenodo the current version of our soft-
ware (https://doi.org/10.5281/zenodo.800648) and
the mappability data used in this project (https:
//doi.org/10.5281/zenodo.800645). In addition, the soft-
ware (https://bitbucket.org/hoffmanlab/umap) is freely
available under the GNU General Public License, version
3 (GPLv3).

https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=mappability
https://doi.org/10.5281/zenodo.800648
https://doi.org/10.5281/zenodo.800645
https://bitbucket.org/hoffmanlab/umap
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