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Abstract

We monitored the survival of human pathogenic bacteria [Escherichia coli (ATCC),

extended-spectrum β-lactamase-producing E. coli (Clinical isolate), New Delhi metallo-β-

lactamase-producing E. coli (clinical isolate), Staphylococcus aureus (ATCC)] on dry materi-

als (vinyl chloride, aluminum, plastic, stainless steel) at distinct temperatures (room temper-

ature or 15˚C–37˚C). These bacteria favored a lower temperature for their prolonged

survival on the dry fomites, regardless of the material type. Interestingly, when mixed with S.

aureus, E. coli survived for a longer time at a lower temperature. Cardiolipin, which can pro-

mote the survival of S. aureus in harsh environments, had no effect on maintaining the sur-

vival of E. coli. Although the trends remained unchanged, adjusting the humidity from 40%

to 60% affected the survival of bacteria on dry surfaces. Scanning electron microscopic

analysis revealed no morphological differences in these bacteria immediately before or after

one day of dry conditions. In addition, ATP assessment, a method used to visualize high-

touch surfaces in hospitals, was not effective at monitoring bacterial dynamics. A special-

ized handrail device fitted with a heater, which was maintained at normal human body core

temperature, successfully prohibited the prolonged survival of bacteria [Enterococcus fae-

calis (ATCC), E. coli (ATCC), Pseudomonas aeruginosa (ATCC), S. aureus (ATCC), Acine-

tobacter baumannii (clinical isolate), and Serratia marcescens (clinical isolate)], with the

exception of spore-forming Bacillus subtilis (from our laboratory collection) and the yeast-

like fungus Candida albicans (from our laboratory collection)] on dry surfaces. Taken

together, we concluded that the tested bacteria favor lower temperatures for their survival in

dry environments. Therefore, the thermal control of dry fomites has the potential to control

bacterial survival on high-touch surfaces in hospitals.
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Introduction

Strategies to ensure greater control of hospital-acquired infections are urgently needed.

Microbe-contaminated dry surfaces in hospitals that are frequently touched by hands, termed

‘high-touch’ surfaces, such as handrails, doorknobs, lockers, and the table surfaces of inpa-

tients, present a high risk in terms of the spread of nosocomial infections [1–3]. It is well

recognized that improved hand hygiene and cleaning of surfaces are critically important in

controlling hospital-acquired infections [4–6]. While improved cleaning practices have led to

a decrease in the transmission of hospital-acquired infections [7–9], in general, hospital clean-

liness is still not sufficient to control infections [10–12]. This is confirmed by the fact that out-

breaks of hospital-acquired infections still occur worldwide [13–15]. It is therefore possible

that there are other unknown factors responsible for bacterial survival, particularly on dry sur-

faces, in hospitals.

We previously monitored hospital cleanliness on the surfaces of 752 sites in nurse and

patient areas in three hospitals located in the central area of Sapporo, Japan, and revealed the

presence of a wide range of organic contamination, including microbial contamination, that

could be spread via hand touching [16–18]. Considerable variability in bacterial detection was

noted, even for the same surfaces, indicating that the ongoing cleanliness of dry surfaces in

hospitals is insufficient [16–18]. Furthermore, accumulating evidence indicates that various

human pathogenic bacteria (such as Pseudomonas, Acinetobacter, Enterococcus, Staphylococ-
cus, and Enterobacteriaceae), including multidrug-resistant bacteria, can survive for prolonged

periods on dry surfaces [19–25]. The reason for the variability in bacterial detection remains

unclear, but changing physiological factors such as environmental temperature may affect bac-

terial survival. Whether thermal control can regulate bacterial survival in dry environments

remains unknown.

In this study, we monitored the survival of human pathogenic bacteria [Escherichia coli
ATCC, extended-spectrum β-lactamase (ESBL)-producing E. coli, New Delhi metallo-β-lacta-

mase (NDM)-producing E. coli, and Staphylococcus aureus ATCC] on dry materials (vinyl

chloride, aluminum, plastic, stainless steel) over a range of temperatures (room temperature

to 37˚C). We found that bacteria favor lower temperatures for survival in dry environments.

Furthermore, we propose that fomites warmed to human body core temperature may help to

control bacterial survival in dry environments, and that such a strategy may prohibit the emer-

gence of human pathogenic bacteria in hospital environments, eventually reducing the need

for antibiotics as well as disinfectants.

Materials and methods

Bacterial strains

The bacterial strains used in this study were as follows: E. coli ATCC 25922, ESBL-producing

E. coli, NDM-producing E. coli [26], and S. aureus ATCC 29213. All of the bacteria were main-

tained on LB agar plates (Nakalai Tesque Inc., Kyoto, Japan) with or without appropriate anti-

biotics at 37˚C. Both the antimicrobial-resistant E. coli strains were isolated at Hokkaido

University Hospital. The reference strains were purchased from the American Type Culture

Collection (ATCC, Manassas, VA, USA). E. coli DH5α carrying GFP-expressing plasmid

(pBBR122 encoding gfp) was also used for this study [27]. E. coli DH5α was maintained on LB

agar with chloramphenicol (10 μg per ml) to maintain the plasmid. Pseudomonas aeruginosa
ATCC29213 and Enterococcus faecalis ATCC29212 were also purchased from the ATCC. Aci-
netobacter baumannii and Serattia marcescens were isolated from Hokkaido University Hospi-

tal. Bacillus subtilis and the yeast-like fungus Candida albicans from our laboratory collection
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were also used for this study. All bacterial strains (except for E. faecalis) and the yeast-like fun-

gus were maintained on LB agar and PDA agar, respectively. Because of requiring more nutri-

ents, E. faecalis was maintained on BHI agar.

Assessment of bacterial dynamics on vinyl chloride

S. aureus ATCC 29213 and E. coli ATCC 25922 were separately adjusted in PBS at approxi-

mately 107 CFU per ml, and were either mixed or maintained separately in LB broth. Then,

20 μl of each solution (5.0 × 105 CFU/spot) was spotted onto vinyl chloride material (3 × 3 cm)

that is used commercially for flooring and roofing (thanks to TOLI Corporation, Osaka, Japan

and TAJIMA ROOFING, Tokyo, Japan). The bacterial solution was left to dry and then incu-

bated at room temperature (~20˚C) or in an incubator (30˚C and 37˚C) for up to 11 days. In

some experiments, the bacterial suspensions were dried onto the material with cardiolipin (1

or 100 μM). After incubation, the dried spots were wiped with cotton swabs, and suspended in

PBS. The bacteria were enumerated by spreading onto Mannitol salt agar (for culturing of S.

aureus) and MacConkey agar (for culturing of E. coli), and bacterial numbers were expressed

as CFUs per spot. The spots of bacteria on the dry material were also visualized by SEM obser-

vations (see below). The amounts of ATP in each spot were monitored by a Clean-Trace

Luminometer 3M (Saint Paul, MN, USA), and the values were expressed as bioluminescence

relative light units (RLUs), according to a previously described protocol [17].

Assessment of bacterial dynamics on the other dry fomites (aluminum,

plastic, stainless steel)

The survival of S. aureus ATCC 29213 and E. coli ATCC 25922 was also tested on other materi-

als (10 × 10 cm; aluminum, plastic, stainless steel) at a range of temperatures (15˚C, 30˚C,

37˚C) for up to 11 days. Bacterial numbers were evaluated as stated above. Some experiments

on plastic were adjusted to a constant humidity of 40%–60% by placing a 100-mL beaker filled

with water into the incubator. However, unfortunately, we were unable to maintain a uniform

humidity in this way. The humidity of the incubator without the beaker was less than 20%.

Humidity was measured with a general hygrometer.

Dynamics of multidrug-resistant E. coli on dry fomite (vinyl chloride)

The dynamics of both ESBL- and NDM-producing E. coli strains with or without S. aureus
ATCC 29213 on vinyl chloride material were also assessed. The bacteria were dried and then

incubated at distinct temperatures (15˚C, 30˚C, 37˚C) for up to 11 days. Bacterial numbers

were evaluated as stated above.

Scanning electron microscopic (SEM) analysis

According to a previously reported method [17], the vinyl chloride material (1 × 1 cm) spotted

with bacteria was washed with saline, fixed with 2.5% (v/v) glutaraldehyde in phosphate-buff-

ered saline (pH 7.4) for 2 h at room temperature, then treated with 2% (w/v) osmium tetroxide

for 1 h at 4˚C. The samples were then dehydrated in ethanol, freeze-dried, and coated with

osmium using a plasma osmium coater, for analysis using a scanning electron microscope

(Hitachi S-4800; Hitachi, Tokyo, Japan).

Bacterial dynamics on the heated handrail device

A stainless steel handrail pipe (diameter, 13 mm; thickness, 2 mm) equipped with a heater

wire in the center of pipe to control the dry surface at body core temperature was constructed
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using an acrylic-processing assembly kit from FabCloud (Tokyo, Japan). Bacterial dynamics

on this surface were assessed as follows. In brief, the GFP-expressing E. coli DH5α were spot-

ted at regular intervals (1 cm) onto the handrail device with or without the heater at approxi-

mately 106 CFU per spot (10 μl per spot). The handrail device (with or without heat control)

was then incubated at room temperature for one day. The dried spots were wiped with cotton

swabs, and suspended into PBS. The number of bacteria was evaluated by the GFP signals after

spotting onto LB or MacConkey agar plates containing chloramphenicol, and was expressed as

CFUs per spot. In addition, the surface temperature on the handrail pipe was monitored using

a hand-held infrared sensor (CT-2000D; Custom Co., Ltd., Tokyo, Japan) and a high-resolu-

tion infrared sensor (InfReC R300; NEC Avio Infrared Technologies Co., Ltd., Tokyo, Japan)

installed with appropriate software (InfReC Analyzer NS9500; NEC Avio Infrared Technolo-

gies Co., Ltd.). We also assessed whether the heated handrail device could work for the illumi-

nation of the other bacteria (S. aureus, P. aeruginosa, E. faecalis, A. baumannii, S. marcescens
and B. subtilis) and the yeast-like fungus (C. albicans). As mentioned above, the survival of

bacteria (P. aeruginosa, A. baumannii, and B. subtilis) and the yeast-like fungus after drying on

the device was monitored on LB agar and PDA agar, respectively. The survival of S. aureus and

S. marcescens was also monitored on Mannitol salt agar and MacConkey agar, respectively.

Meanwhile, because of requiring more nutrients, E. faecalis was monitored on BHI agar.

Statistical analysis

Multiple comparisons of the data were assessed by Bonferroni/Dunn analysis. A p value of

<0.05 was considered statistically significant. All calculations were conducted using Excel for

Mac (2011) with Statcel3C.

Results

Representative human pathogenic bacteria favor lower temperatures for

their survival under dry conditions

To assess the survival of representative human pathogens under dry conditions, we monitored

changes in bacterial numbers [E. coli (ATCC 25922), S. aureus (ATCC 29213), or a mixture of

these bacteria (because it is possible that they are found together on ‘high-touch’ surfaces)] on

vinyl chloride, a widely used material in everyday items, at distinct temperatures [room tem-

perature (around 20˚C), 30˚C, 37˚C] for 11 days. Bacterial numbers were assessed using the

following indicators: the number of colony-forming units (CFUs), the amount of ATP, and

morphological changes (as determined by SEM analysis) (Fig 1A). Immediately (within 20

min) after drying, the CFU numbers of E. coli, but not S. aureus, showed a two-log reduction;

however, both bacteria, either singularly or in a mixture, survived and retained the potential to

be spread (Fig 1B). The number of CFUs decreased dramatically over time for both bacteria on

dry surfaces, but this trend was amplified by an increase in temperature (Fig 1C). Interestingly,

the presence of S. aureus appeared to enhance the survival of E. coli in the bacterial mixture

compared with E. coli alone (Fig 1C, See ‘†’). SEM observations revealed that the morphologi-

cal changes in both bacteria, singularly or in a mixture, one day after drying was minimal, sup-

porting the CFU assay results and indicating survival of both bacteria (Fig 2). ATP assessment

revealed no significant differences for either bacteria with varying temperature (S1 Fig). Also,

cardiolipin, an agent that aids the survival of S. aureus in dry environments [28, 29], did not

support the survival of E. coli after drying, suggesting the presence of another mechanism inde-

pendent of cardiolipin (S2 Fig). In addition, although the trend observed with altered tempera-

ture did not change, humidity control (40–60%) had the opposite effect on the survival of
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Fig 1. Representative human pathogenic bacteria favor lower temperatures for their survival on vinyl chloride

surfaces. A. Experimental protocol. Bacterial survival was monitored for mixed or single bacteria on vinyl chloride at

distinct temperatures [RT (around 20˚C), 30˚C, 37˚C] for 11 days by a CFU assay (CFU), ATP assessment (ATP) and

morphological changes (SEM). Ec, E. coli (ATCC 25922). Sa, S. aureus (ATCC 29213). B. Bacterial numbers

immediately (within 20 min) after drying. Ec, E. coli (ATCC 25922). Sa, S. aureus (ATCC 29213). C. Changes in

bacterial numbers at distinct temperatures [RT (around 20˚C), 30˚C, 37˚C] over 11 days, as determined by a CFU

assay. Ec, E. coli (ATCC 25922). Sa, S. aureus (ATCC 29213). �, p<0.05 vs. the values at room temperature. ��, p<0.05

vs. 30˚C. †, p<0.05 between the bars.

https://doi.org/10.1371/journal.pone.0226952.g001
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microorganisms on dry surfaces (S3 Fig). Specifically, while the humidity control weakened

the thermal effect on the survival of S. aureus on dry environments, a synergistic effect of inhi-

bition on the survival of E. coli was observed. Thus, our findings showed that these bacteria

favor a lower temperature for their survival in dry environments, and humidity has a lesser

effect.

Differences in the surface material had no effect on bacterial survival

(including multidrug-resistant bacteria) in dry environments over a range

of temperatures

Next, to confirm whether the effect of temperature on bacterial survival on dry surfaces is uni-

versal regardless of the material surface, we monitored changes in bacterial numbers [E. coli

Fig 2. Representative SEM images showing bacterial morphologies on vinyl chloride surfaces. E. coli alone (A, D,

G). S. aureus alone (B, E, H). Mixture of E. coli with S. aureus (C, F, I). Scale bars in panels, 1 μm (D, G), 2 μm (F, H, I)

and 3 μm (A, B, C, E). RT, room temperature.

https://doi.org/10.1371/journal.pone.0226952.g002
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(ATCC 25922), S. aureus (ATCC 29213), or a mixture] on a range of common materials (vinyl

chloride, aluminum, plastic, stainless steel) at distinct temperatures (15˚C, 30˚C, 37˚C) for 11

days, by assessing the CFU numbers (Fig 3A). Immediately (approximately 1 h) after drying,

no differences in bacterial numbers were detected between the different materials (Fig 3B).

Fig 3. Representative human pathogenic bacteria favor lower temperatures for their survival on other surfaces

(aluminum, plastic, stainless steel). A. Experimental protocol. Bacterial survival was monitored for mixed or single

bacteria on other surfaces (aluminum, plastic, stainless steel) at distinct temperature (15˚C, 30˚C, 37˚C) for 11 days by

a CFU assay (CFU). Ec, E. coli (ATCC 25922). Sa, S. aureus (ATCC 29213). B. Bacterial numbers immediately (within

20 min) after drying. Ec, E. coli (ATCC 25922). Sa, S. aureus (ATCC 29213). C. Changes in bacterial numbers at

distinct temperatures (15˚C, 30˚C, 37˚C) over 11 days, as determined by a CFU assay. Ec, E. coli (ATCC 25922). Sa, S.

aureus (ATCC 29213). �, p<0.05 vs. the values at room temperature. ��, p<0.05 vs. 30˚C.

https://doi.org/10.1371/journal.pone.0226952.g003
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Although the CFU numbers of both bacteria dramatically reduced over subsequent days on

the dry surfaces, this temperature-dependent trend was unaffected by the type of material sur-

face (Fig 3C). Thus, the material itself (vinyl chloride, aluminum, plastic, stainless steel) had no

effect on the diminishing bacterial numbers under dry conditions. We also assessed whether

the same trend was seen for multidrug-resistant human pathogenic bacteria using ESBL- and

NDM-producing E. coli isolated from Hokkaido University Hospital. The CFU assay con-

firmed increased survival of multidrug-resistant bacteria at lower temperature, as well as

increased survival in the presence of S. aureus (Fig 4). Taken together, we conclude that bacte-

ria favoring a lower temperature for their survival in dry environments is a universal phenom-

enon, which is unaffected by the surface material or bacterial type. Importantly, our data

highlighted the potential for controlling the survival of bacteria on high-touch dry surfaces by

warming dry fomites to human body core temperature.

Handrail device warmed to human body core temperature prohibited the

prolonged survival of E. coli on this dry surface

To test this possibility, we constructed a stainless steel handrail pipe (diameter, 13 mm; thick-

ness, 2 mm) equipped with a heater wire in the center of the pipe to control the dry surface to

body core temperature (S4A Fig). Assessment with a hand-held infrared sensor showed that

the surface temperature on the handrail pipe was controlled to almost body core temperature,

although the temperature on the device surface varied from the end to the center of the pipe

(range: 30˚C–40˚C) (S4B Fig). A heatmap generated with the high-resolution infrared sensor

showed that in contrast to the stainless steel pipe without the heater, the surface temperature

on the heated pipe was maintained at body core temperature (Fig 5A), indicating that it is an

effective tool to monitor the influence of temperature on bacterial survival on a dry surface.

We monitored the survival of GFP-expressing E. coli (DH5α) spotted onto the handrail surface

at regular intervals (1 cm) compared with the GFP signals at equivalent spots on an LB agar

plate, and assessed CFU numbers. GFP signals were dramatically decreased on the heated

handrail compared with the unheated handrail even 6 h after drying, and the signals were vir-

tually undetectable one day after drying (Fig 5B). Consistent with this, the CFU numbers on

the heated handrail were significantly reduced compared with those on the unheated handrail

(Fig 5C). In addition, we assessed whether the warming handrail could work on other bacteria.

The results indicated that the prolonged survival of bacteria (E. faecalis, S. aureus, P. aerugi-
nosa, A. baumannii, and S. marcescens) as well as E. coli, was significantly prohibited, although

no effective elimination of the spore-forming bacterium (B. subtilis) was detected (Fig 6). We

also confirmed that the yeast-like fungus (C. albicans) failed to survive immediately (within 6

h) after drying on the device (S5 Fig). Taken together, we concluded that the handrail device

warmed to human body core temperature prohibited the prolonged survival of some bacteria

and a yeast-like fungus responsible for nosocomial infections on a dry surface.

Discussion

Currently, in the US, an estimated 2 million hospital-acquired infections are reported annu-

ally, associated with $5 billion of additional healthcare costs. The control of nosocomial infec-

tions is therefore a priority for healthcare providers worldwide [30]. Here, we showed, for the

first time, that a lower temperature is favored for the survival of both E. coli and S. aureus on

dry fomites. We also demonstrated that a handrail device warmed to human body core tem-

perature could prohibit the prolonged survival of several pathogens responsible for nosocomial

infection (E. coli, S. aureus, E. faecalis, P. aeruginosa, A. baumannii and S. marcescens) and a

yeast-like fungus (C. albicans) on this dry surface. Innovations such as the development of

Thermal control of dry fomites and bacterial survival
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Fig 4. Representative multidrug-resistant bacteria also favor lower temperatures for their survival on plastic

surfaces. A. Experimental protocol. Bacterial survival was monitored for mixed or single bacteria on plastic surfaces at

distinct temperatures (15˚C, 30˚C, 37˚C) for 11 days by a CFU assay (CFU). Ec (ESBL), ESBL-producing E. coli. Ec

(NDM), NDM-producing E. coli. Sa, S. aureus (ATCC 29213). B. Bacterial numbers immediately (within 20 min) after

drying. Ec (ESBL), ESBL-producing E. coli. Ec (NDM), NDM-producing E. coli. Sa, S. aureus (ATCC 29213). C.

Changes in bacterial numbers at distinct temperatures (15˚C, 30˚C, 37˚C) over 11 days, as determined by a CFU assay.

Ec (ESBL), ESBL-producing E. coli. Ec (NDM), NDM-producing E. coli. Sa, S. aureus (ATCC 29213). �, p<0.05 vs. the

values at room temperature. †, p<0.05 between the bars.

https://doi.org/10.1371/journal.pone.0226952.g004
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heated fomites, for example, heated handrails or doorknobs, may prevent the survival of bacte-

ria responsible for nosocomial infections on dry hospital environments, without the need for

disinfectants.

It is well established that decreasing environmental temperature has a significant impact on

the survival of pathogens in soil or water, sometimes leading to bacterial persistence [31–33],

but whether temperature influences bacterial survival on artificial materials, such as dry

fomites in hospitals, remained unknown. Other factors such as UV radiation, humidity, the

presence of organic materials, and surface type are known to be associated with the ability of

Fig 5. Handrail device warmed to human body core temperature prohibited the prolonged survival of GFP-

expressing E. coli on a stainless steel surface. A. Heatmaps of the handrail device with or without a heater. The

heatmaps were constructed using a high-resolution infrared sensor (InfReC R300) installed with appropriate software

(InfReC Analyzer NS9500). B. Representative images showing decreasing GFP-signals for the bacteria collected from

the stainless steel surface warmed by the heater. Numbers show the sampling positions on the pipe. Heater (-), handrail

device without heater. Heater (+), handrail device with heater. C. Comparison of the bacterial CFU numbers on the

stainless steel device with and without the heater. Black and white bars show the CFU values for the device with and

without the heater. �, p<0.05 between the bars.

https://doi.org/10.1371/journal.pone.0226952.g005
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bacteria responsible for hospital-acquired infections to survive on dry surfaces [34–36]; how-

ever, temperature is a factor that can be easily and accurately controlled. Furthermore, a tem-

perature of 37˚C, which is the core body temperature, is a comfortable temperature that is not

harmful to the touch [37]. For these reasons, we selected temperature as a critical factor to

study its effects (in particular, body core temperature) on bacterial dynamics and survival on

dry fomites.

Fig 6. Handrail device warmed to human body core temperature prohibited the prolonged survival of other

bacteria without spore formation on a stainless steel surface. The other bacteria (E. faecalis, S. aureus, P. aeruginosa,

A. baumannii, S. marcescens and B. subtilis) were used for this study (see the Materials and methods). Images obtained

at 24 h after drying correspond to representative bacterial images showing the effect of thermal control on survival of

each of the bacteria on the handrail device. Numbers (1–10) indicate bacterial spots. Graphs (right) show a comparison

of the bacterial CFU numbers on the stainless steel device with [Heater(+)] and without the heater [Heater(-)]. Black

and white bars show the CFU values for the device with and without the heater. �, p<0.05 between the bars. NS, no

significant difference.

https://doi.org/10.1371/journal.pone.0226952.g006
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The numbers of CFUs of both bacteria (E. coli and S. aureus), regardless of whether or not

they carried multidrug-resistant genes, were dramatically reduced during the days after drying,

and this decrease in bacterial numbers was significantly promoted by increased temperature.

Because water evaporation from bacterial cells can be accelerated on dry fomites at high tem-

perature, we speculate that it is difficult for bacteria to maintain metabolic activity under such

conditions; thus, their viability decreases. We found that Gram-positive S. aureus could survive

longer than Gram-negative E. coli, potentially indicating that cell wall thickness plays a role in

prolonging the survival of S. aureus on dry fomites. At lower temperature, E. coli survived for a

few days whereas S. aureus survived for over 10 days. Although the survival period for these

bacteria is limited, particularly for E. coli, it is still sufficient time for these bacteria to transfer

from person to person via high-touch surfaces.

Because of its ease of monitoring, ATP bioluminescence has been employed as a visual indi-

cator of general organic contamination of high-touch surfaces in hospitals [38–42]. However,

our assessment of ATP showed that, in contrast to the CFU assay, no significant differences in

ATP were associated with changes in temperature. Evidence from our previous studies sug-

gests that ATP may be physically stable at a range of temperatures [16, 17]. Furthermore, ATP

derived not only from bacteria but also from other sources such as fungi or dead cells may

accumulate on high-touch surfaces. Taken together, we concluded that ATP is an unreliable

measure for monitoring pathogenic bacteria on high-touch surfaces in hospitals.

Interestingly, the presence of S. aureus in the bacterial mixture promoted the survival of E.

coli compared with E. coli alone. By contrast, cardiolipin, which is an effective factor promot-

ing S. aureus survival in dry environments [28, 29], had no effect on supporting the survival of

E. coli after drying, suggesting the presence of another mechanism independent of cardiolipin.

Although this mechanism remains unknown, coexistence with cocci, which have a smaller sur-

face area than bacilli and therefore retain water more effectively, may aid the survival of bacilli

on dry surfaces. High-touch dry surfaces are invariably contaminated with S. aureus because

this organism is a ubiquitous inhabitant of the human body, and it is therefore crucial to

understand its dynamics on dry surfaces. Cardiolipin is a membrane component that enhances

stress tolerance, thereby maintaining bacterial viability [43–45], and several studies have

shown that cardiolipin is involved in biofilm formation [46, 47]. We therefore assessed

whether the presence of cardiolipin affected the survival of E. coli on dry surfaces, but no

impact was detected indicating that other factors may be involved.

Although bacterial numbers dramatically reduced each day on dry surfaces, the degree of

this reduction varied slightly between experiments and the degree to which S. aureus promoted

the survival of E. coli also varied between experiments. This indicated that there may be factors

other than temperature that regulate bacterial survival on dry fomites. Humidity, which can

block water evaporation, has also been reported to have an impact on bacterial survival [34–

36, 48, 49]. Our experiments showed that constant humidity (40%–60%) affected the survival

of bacteria on dry surfaces. Whereas, after prolonged incubation without humidity control

(less than 20% humidity) (See Fig 1C), variation in bacterial numbers appeared to be increased,

suggesting that low humidity can favor the survival of small numbers of bacteria on dry mate-

rials. However, because of the difficulties in controlling humidity, we did not accurately adjust

humidity in our experiments. Therefore, further studies are needed in which humidity, as well

as temperature, are more precisely controlled.

As expected, we confirmed that the warming handrail adjusted to body core temperature

prohibited the prolonged survival of several nosocomial-related pathogens including E. coli, S.

aureus, E. faecalis, P. aeruginosa, A. baumannii, S. marcescens and C. albicans. The heated

handrail device used in this study was constructed using an acrylic board processing equip-

ment kit (see Materials and methods), which cost 5,680 yen (JPY) (approximately $60).
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Because this device was cheap and simple to construct, involving a stainless steel handrail pipe

(diameter, 13 mm; thickness, 2 mm) equipped with a heater wire in the center of the pipe to

control the dry surface at body core temperature, we believe that this technology may be appli-

cable for the development of heated handrails for use in hospitals to control hospital-acquired

infections. One limitation of this device was that the temperature varied from the end to the

center of the pipe (range: 30˚C-40˚C), meaning that the temperature on the device surface was

not constant, as indicated by the differences in bacterial numbers spotted onto the agar plates

from each of the samples collected from the handrail. Further improvements in the design of

this device are therefore needed prior to practical use.

In conclusion, we demonstrated that human pathogens (E. coli, S. aureus, E. faecalis, P. aer-
uginosa, A. baumannii, S. marcescens and C. albicans), responsible for nosocomial infections.

favor a lower temperature for their survival in dry environments. Based on this finding, we

proposed a novel and simple strategy involving the warming of high-touch fomites in hospitals

to body core temperature, to control the survival of human pathogenic bacteria responsible for

nosocomial infections. However, this study had several limitations. As mentioned above,

humidity, which can also influence bacterial survival, was not accurately controlled throughout

our experiments [34–36, 48, 49], and also the range of human pathogens used for this study

were limited. Further studies are needed to clarify the effect of humidity on bacterial survival

under dry conditions and to confirm the reproducibility of our findings in other bacteria. Fur-

ther innovations are also needed to develop handrails or doorknobs with a uniform surface

temperature equivalent to that of the core human body temperature before practical applica-

tion in hospital environments.

Supporting information

S1 Fig. ATP assessment of the bacterial spots on the vinyl chloride material showed that

there were no significant differences corresponding to incubation times or temperature.

The amount of ATP was determined using a Clean-Trace Luminometer (3M, USA), and the

values were expressed as relative light units (RLUs), according to a previously described proto-

col [17]. Ec, E. coli ATCC 25922. Sa, S. aureus ATCC 29213. RT, room temperature.

(PDF)

S2 Fig. Cardiolipin had no effect on E. coli survival after drying. Black and dashed bars

show the CFU numbers of E. coli and S. aureus, respectively. A. Bacterial numbers immediately

(within 20 min) after drying. Ec, E. coli (ATCC 25922). Sa, S. aureus (ATCC 29213). B.

Changes in bacterial numbers at distinct temperatures (15˚C, 30˚C, 37˚C) over 11 days incu-

bation, as analyzed by a CFU assay. Ec, E. coli (ATCC 25922). Multiple comparisons of the

data were assessed by Bonferroni/Dunn analysis. Asterisk indicates a statistically significant

difference compared with the value at 15˚C. �, p<0.05. There was no statistically significant

difference between the values at 30˚C, regardless of the presence of cardiolipin. †, p<0.05. Ec,

E. coli ATCC 25922. Sa, S. aureus ATCC 29213.

(PDF)

S3 Fig. Effect of humidity on the survival of bacteria (E. coli and S. aureus) on dry environ-

ments (plastic). Changes in bacterial numbers at distinct temperatures (15˚C, 30˚C, 37˚C)

with or without humidity control over 7 days, as determined by a CFU assay. Upper panel. Ec,

E. coli (ATCC 25922). Lower panel. Sa, S. aureus (ATCC 29213). �, p<0.05 vs. the values with-

out humidity control. See the Materials and methods.

(PDF)
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S4 Fig. Surface temperature on the handrail pipe with or without the heater. A. Structure

of the handrail pipe with the heater. The stainless steel handrail pipe (diameter, 13 mm; thick-

ness, 2 mm) was equipped with a heater wire at the center of the pipe to control the dry surface

at body core temperature. B. Comparison of the surface temperature of the handrails with and

without heaters. Temperatures were monitored by a hand-held infrared sensor (CT-2000D).

Each of the values is shown as an average with the standard deviation. Black and white circles

are shown as the values with and without heaters, respectively.

(PDF)

S5 Fig. Handrail device warmed to human body core temperature prohibited the pro-

longed survival of yeast-like fungus (C. albicans). Images show the effect of thermal control

on the survival of C. albicans on the handrail device 6 and 24 h after drying with [Heater (+)]

or without thermal control [Heater (−)]. Numbers (no. 1–10) show the yeast-like fungus spots

on the PDA agar.

(PDF)
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