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Mucosal melanoma (MM) is a rare melanoma subtype that originates from melanocytes
within sun-protected mucous membranes. Compared with cutaneous melanoma (CM),
MM has worse prognosis and lacks effective treatment options. Moreover, the
endogenous or exogenous risk factors that influence mucosal melanocyte
transformation, as well as the identity of MM precursor lesions, are ambiguous.
Consequently, there remains a lack of molecular markers that can be used for early
diagnosis, and therefore better management, of MM. In this review, we first summarize the
main functions of mucosal melanocytes. Then, using oral mucosal melanoma (OMM) as a
model, we discuss the distinct pathologic stages from benign mucosal melanocytes to
metastatic MM, mapping the possible evolutionary trajectories that correspond to MM
initiation and progression. We highlight key areas of ambiguity during the genetic evolution
of MM from its benign lesions, and the resolution of which could aid in the discovery of new
biomarkers for MM detection and diagnosis. We outline the key pathways that are altered
in MM, including the MAPK pathway, the PI3K/AKT pathway, cell cycle regulation,
telomere maintenance, and the RNA maturation process, and discuss targeted therapy
strategies for MM currently in use or under investigation.

Keywords: mucosal melanoma, mucosal melanocytes, melanocytic lesions, mutations, signaling dependency,
targeted therapy
INTRODUCTION

Melanoma develops due to the unchecked proliferation of melanocytes, which are responsible for
the production of pigment. About 90% of melanoma cases are cutaneous melanoma (CM) mainly
induced by exposure to ultraviolet (UV) light (1). Non-cutaneous subtypes include uveal melanoma
(UM) and mucosal melanoma (MM). MM is a rare type of melanoma that presents on mucosal
surfaces of cavities within the body, including the oral, nasal, anorectal, genitourinary, and
vulvovaginal region (2). Although MM makes up approximately 1% of all cases of melanoma, it
is one of the most aggressive subtypes, and thus exhibits a worse prognosis compared with the
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common CM (3, 4). Based on a retrospective study, the 5-year
survival rate of MM, considering all stages at the time of
diagnosis, is 10-20% when compared to 93% for CM (4–6).

There are several possible reasons for this worse prognosis in
MM: 1) Both the biology of mucosal melanocytes as well as the risk
factors that are related to MM incidence are poorly understood.
Exposure to UV is a well-established risk factor for CM but the
mutagens that contribute to the development of MM remain
unknown. According to epidemiological studies, smoking, ill-
fitting dentures, and ingested/inhaled carcinogens such as tobacco
and formaldehyde are regarded as potential causative factors for oral
and sinonasal mucosal melanoma (2, 7), while chronic
inflammatory disease, viral infections as well as chemical irritants
are thought to be implicated in vulvar mucosal melanoma and
human immunodeficiency virus (HIV) is associated with anorectal
mucosal melanoma (2). However, the contributions and
mechanisms of the aforementioned factors to MM initiation or
progression are not clearly defined. 2) The evolution of MM from
precursor lesions is poorly understood. CM is associated with
different types of precursor lesions, including benign melanocytic
nevi commonly associated with the BRAF V600E mutation and
dysplastic nevi associated NRAS alterations and TERT promoter
mutations (8). CM can evolve from these benign lesions following
additional mutations that drive tumor invasion and metastasis such
as loss of CDKN2A, PTEN, or TP53 (9). Characterization of the
morphology and molecular landscape of precursors compared to
early melanoma has provided candidate molecular biomarkers for
early diagnosis in CM (10–13). However, although several forms of
mucosal melanocytic benign lesions are reported, there is still a lack
of defined MM precursor lesions, leading to a weak understanding
of the evolutionary trajectory of MM despite molecular profiles
unveiled by recent whole-genome sequencing data (14–16). 3) MM
has more diverse mutation patterns with fewer targetable mutations
compared to CM. According to the most frequent and mutually
exclusive mutations, CM is mainly classified into 4 genomic
subtypes: BRAF(52%), RAS(31%), NF1(14%), and a small portion
of triple wild-type (17, 18). Hence, co-targeting BRAF and MEK
have been proved to achieve a significant response rate for BRAF
V600 mutated CM patients in clinical management (19, 20). In
contrast, MM has more diverse mutation patterns, with less than
20% of BRAFV600E mutations (16), followed by the majority of
mutations that are scattered and difficult to target, including NRAS,
NF1, KIT, SF3B1, and SPRED1 (21).

Our goals in conducting this review were to: 1) Summarize the
types of mucosal melanocytic benign lesions, aiming to find possible
genetic and pathological evolutional patterns from benign mucosal
melanocytes lesions to malignant tumors; 2) Discuss the main driver
mutations and pathways in MM; and 3) Outline the options of
targeted treatment for MM in clinical use or under clinical trials.
BIOLOGICAL FUNCTIONS OF
MELANOCYTES

Melanocytes are neural crest-derived cells that migrate to specific
anatomic locations - including skin, eyes, leptomeninges, and
Frontiers in Oncology | www.frontiersin.org 2
mucous membrane - during development. Cutaneous
melanocytes have two final destinations: hair follicles and the
basal cell layer of epithelium where they conduct their main
biological function of melanin production (22, 23). Melanin is a
natural pigment in skin that absorbs UV radiation and scavenges
cytotoxic free radicals generated from sunlight exposure (23, 24).
Synthesized melanin is secreted to the nearby keratinocytes
under solar stimulation and protects the genome of
keratinocytes from sun damage (25).

In addition to residing in the skin, melanocytes also dwell in
many sun-shielded mucosal tissues like respiratory (oral, nasal,
pharynx, larynx, and upper esophagus), intestinal, urogenital,
and rectal tracts (2, 24, 26–28). As melanocytes located in
mucous membranes are not usually directly exposed to
sunlight, it is unlikely that photoprotection is the primary and
definitive function of mucosal melanocytes. It was hypothesized
that melanocytes localized to mucosal tissues due to errors of
migration from the neural crest during embryogenesis (6, 26),
but recent evidence suggests that mucosal melanocytes might
have biological functions besides pigment production.
Specifically, since mucosa plays an important role in the innate
immune defense system, it is speculated that mucosal
melanocytes are also equipped with immunogenic functions
(23, 29).

It is reported that melanin has strong toxin binding properties
that can neutralize toxins produced by bacteria (30). Meanwhile,
aromatic precursors, including quinone and semiquinone
intermediates generated during the melanization cascade, can
disrupt the lipid bilayer of cell membranes of microorganisms and
mediate an anti-bacterial effect (31, 32). The strong binding
capacity of melanin is probably due to its specific graphite-like
lamellar structure in which four to eight monomers are covalently
bound to form a porphyrin-like system (33). As a result, melanin
is able to interact with aromatic metabolites or compositions of
microorganisms through hydrogen bonds or p-p interactions (34,
35). Another explanation for the anti-bacterial properties of
melanin and its intermediates is that they contain high levels of
redox-active catechol groups, which can produce reactive oxygen
species under light and water stimulation (36). However, since the
mucosal melanocytes are in a dark environment with marginal
melanin production, it remains unknown whether the pigment
levels in mucosal regions are sufficient for antimicrobial effects.

In addition to the anti-bacterial properties of melanin,
melanocytes can also participate in the intrinsic and acquired
immune system. On the one hand, melanocytes can participate
in innate immunity since they are found to express Toll-like
receptors, indicating melanocytes can recognize pathogen-
associated molecular patterns present in microbes (37, 38).
Once being recognized, bacteria and fungi can be engulfed by
melanocytes – a phenomenon that has been observed under the
microscope - before undergoing possible degradation pathways
by lysosome hydrolytic enzymes contained in melanosomes (39,
40). On the other hand, melanocytes may be a component of
acquired immunity. Melanocytes have been reported to express
MHC class II loaded with mycobacterial peptides (41),
suggesting that melanocytes may function as antigen-
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presenting cells and subsequently activate CD4+ T cells
proliferation (42). Although the phagocytotic functions of
melanocytes have been observed, the activation of T cells
through antigen presented by melanocytes, for instance, should
be further verified by investigating the expression of CD86,
CD80, or other markers of antigen-presenting cells on the
surface of melanocytes. Since melanocytes have the capacity to
produce a variety of cytokines, including interleukins and
interferons which may be involved in the regulation of the
activity of neighboring immune cells under stimulations
of exogenous nucleic acids (43–47), the hypothesis that
melanocytes activate T cells through secreting specific
cytokines, instead of acting as antigen-presenting cells,
must also be tested. These collective observations suggest
melanocytes likely participate to some extent in the immune
defense of the body, but their precise immunological roles in
the innate or adaptive immune system need to be dissected
in further studies.
MUCOSAL MELANOCYTIC
BENIGN LESIONS

Studies in the pathologic evolution of CM have shown that
invasive melanomas can evolve from a variety of benign and
intermediate pathological stages including benign nevus,
dysplastic nevus, and malignant tumor in situ (8, 9).
Melanocytic nevi are benign lesions requiring no further
treatment, while atypical melanocytic hyperplasia or atypical
nevi are regarded as either indeterminant or premalignant
lesions that warrant careful clinical management and long-
term follow-up for patients. In contrast, there is no clear
definition and characterization of precursor lesions of MM
despite the fact that multiple mucosal melanocytic benign
lesions are observed and documented in the clinic (Figures
1A, B). Using OMM as the most well-studied example, Table 1
summarizes several benign pigmented lesions including
macule, nevus, and melanocanthoma with their specific
pathological characteristics.

Melanotic Macule of the Oral Mucosa
Melanotic macules are one of the most common melanocytic
lesions (48, 49) and lentigo simplex is the term used to describe a
group of small and round macules (50). The color of macules
varies from gray to brown to black. The diversity of pigmentation
is thought to be associated with the ratio of eumelanin and
pheomelanin (23, 24). Macules are usually regarded as benign
lesions since the causative factor of macules is melanin deposition
and no Ki-67 positive melanocytes are observed (51, 52). Hence,
the diameter of the pigmented lesions is usually less than 1 cm, and
their morphology is flat, solitary, and well-circumscribed
(Figure 1A). From histological examinations, the basal cell layer
of benign macules is exhibited with uniform melanin
accumulation without an increase in the density of melanocytes
or the presence of nevus (Figures 1E, F). These lesions are
asymptomatic and no malignant transformation is reported at
this stage. The most frequently observed site for macules in the
Frontiers in Oncology | www.frontiersin.org 3
oral cavity is the vermillion border of the lip at the rate of 30%
followed by the gingiva and alveolar ridge (23%), and the buccal
(16%) or labial mucosa (9%) (24). Interestingly, the hard palate,
which is one of the most common locations for OMM has less
chance for macule occurrence (7%) (24). Although there is no
evidence that melanotic macules are directly associated with the
eventual diagnosis of MM in oral mucosa, some published case
reports have recorded the transformation of benign macules to
malignant OMM after years of diagnosis (53–55), suggesting the
malignant potential of some macular lesions to be considered as
precursor lesions. As Ki-67 staining is not routinely requested in
the diagnosis of melanotic macules, it is unclear what percentage
of lesions contain proliferating melanocytes and may possess
malignancy potentiality.

Oral Mucosal Nevus
Oral nevi are much less common than their counterparts on the
skin and their prevalence is about 0.1% in the general population
(24). Subepithelial lesions are the most common oral mucosal
nevi (55%), followed by blue nevi in submucosal–mucosal
junction (Figures 1I, J) (36%), and junctional nevi are the least
frequent ones (3%) (7, 56). According to the histologic location
of melanocytes, oral nevi can be divided into three categories:
junctional nevi (Figures 1K, L) at the tip of the widened and
elongated epithelial spikes; compound nevi arranged in nests and
belts in the lamina propria; and subepithelial nevi (Figures 1B,
G, H) entirely in the subepithelial connective tissue. The
formation of nevi in oral mucosa results from the proliferation
of melanocytes along with the epithelial basal cell layer, but most
are relatively small with a mean diameter of 0.5cm. Similar to
macules, nevi harbor clear borders. However, instead of being
flat, more than 50% of nevi are elevated pigmented lesions. In
addition, about 15% of oral nevi are non-pigmented and the
mechanism behind the lack of pigmentation remains unclear
(24). From the histopathological point of view, the appearance of
nevus cells along epithelial spikes is polygonal and epithelioid.
Typical nevus cells have uniformly round or oval nuclei and
contain sparse, uniform, and small melanin granules in the
cytoplasm. As for nevus cells in the deeper subepithelial tissue,
they become smaller with less cytoplasm and dense and deeply
stained nucleus-like lymphocytes.

Although there is a lack of case reports unequivocally
documenting the transformation of benign nevi to malignant
tumors in the oral cavity, the risk of malignancy in some oral
nevi cannot be excluded. The deficiency of case reports is
partially due to the rare individuals with congenital or
acquired nevi and short follow-up periods of objects (57). A
clinicopathologic analysis shows that five out of seven OMM
patients have junctional nevi, therefore some clinicians
recommend a complete excisional biopsy to rule out early
OMM for individuals with junctional nevi (58). In addition,
nowadays the classification of nevi is mainly based on their
histologic positions and lacks criteria based on the degree of
malignancy. Only the appearance of dysplastic nevi is considered
as an increased risk of melanoma (59–61). Dysplastic nevi are
usually larger than normal nevi with macular or popular
components and ill-defined borders (62). The current
July 2021 | Volume 11 | Article 702287
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diagnosis of dysplastic nevi mainly depends on their
architectural disorder rather than specific biomarkers, which
heavily relies on the experience of pathologists and causes a
relatively high rate of misdiagnosis. Hence, more refined
diagnostic criteria and more sensitive biomarkers are needed
clinically to find potential precancerous nevi.

Melanoacanthoma
Melanoacanthoma is a rare form of benign melanotic lesion
characterized by benign proliferation of both keratinocytes and
Frontiers in Oncology | www.frontiersin.org 4
melanocytes (24, 63). Microscopic examination can detect the
hyperplastic keratinocytes, while positive immunostainings of
HMB-45 and S-100 prove the presence of melanocytes abnormal
accumulation (64). Compared with macule and nevus, this
benign entity is much rarer but may mimic OMM due to its
rapid increase in size with diameters of several centimeters being
reached in just a few weeks. The lesion is usually flat or slightly
raised and most commonly occurs on the buccal mucosa.
Histopathologic examination shows many dendritic
melanocytes and processes containing melanin in all strata of
FIGURE 1 | Mucosal melanocytic benign lesions and malignant OMM. Benign hyperpigmented lesions (A, B) and malignant OMM in situ (C, D). Benign macule in
gingiva (A) and its HE staining pictures (E, F). Benign intramucosal nevus on the hard palate (B) and its HE staining pictures (G, H). HE staining of blue nevus (I, J).
HE staining of junctional nevus (K, L). Lentigo maligma melanoma on mandibular gingiva (C) and its HE staining figures (M, N). Ulcerated malignant MM on the hard
palate (D) and its HE staining pictures (O, P).
TABLE 1 | Comparison of benign lesions and malignant oral mucosal melanoma.

Macule Nevi Melanoacanthoma OMM

Prevalence in
melanocytic
lesions

62% (48, 49) 15% (48, 49) 0.8% (48, 49) 0.7% (48, 49)

Color Gray to brown to
black

Brown, bluish-gray
or black,
15% non-pigmented

Brown or black Variable

Size (mean
diameter)

<1 cm 0.5cm Several centimeters 4 cm

Shape Flat, solitary
& well-circumscribed

Well-demarcated but elevated Flat or slightly raised Asymmetric with irregular outline

Commonly
occurred site

Lip & gingiva Palate Buccal mucosa Hard palate & maxillary gingiva

Causative factor Melanin deposition Proliferation of melanocytes Proliferation of keratinocytes &
melanocytes

Uncontrolled growth of melanocytes

Histopathologic
features

Melanin
accumulation without
an increase in
melanocytes.

Polygonal & epithelioid nevus
cells in the superficial. Cytoplasm
transparent to light stained.

Many dendritic melanocytes,
processes containing melanin &
melanophagocytes in all strata of
epithelium.

Large, vesicular nucleus & prominent nucleoli.
Aggregated into sheets or alveolar groups.
Neurotropic or desmoplastic configurations.
July 2021 | Volume 11 | Article 702287
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epithelium. Besides, melanophagocytes, mild lymphocyte
infiltration, as well as vasodilation are seen in the lamina
proporia. Similar to other benign lesions, once the
melanoacanthoma is diagnosed, the site is usually just
monitored, as these lesions are highly likely to regress within 2
to 6 months af ter biopsy (65, 66) . However , i f a
melanoacanthoma enlarges in a very short period of time, it
may indicate a sign of malignancy (67). A more comprehensive
understanding of what drives mucosal melanocyte proliferation
as well as the regression in melanoacanthoma, and how the fast-
growing melanoacanthoma transforms into MM, is needed.

Oral macule, nevus, and melanoacanthoma are usually
diagnosed as benign lesions, but periodical physical examinations
and biopsies of those melanocytic lesions are still recommended
because approximately one-third of OMM patients are found to
present benign pigmented lesions prior to the emergence of the
malignant state (67–69). Additionally, our collaborating clinicians
and pathologists at Shanghai Ninth People’s Hospital have observed
the development of hyperpigmentations adjacent to OMM in a
majority of patients and they suspect that tumors expand through
those de novo pigmented lesions (Figures 1D). Based on the above
findings, we propose that a subgroup of benign lesions, especially
macules, possess the potential to transform to OMM. If true,
identification of biomarkers for those cancer-predisposing lesions
coupled with more radical surgical excision may improve the
outcome of patients. To achieve this goal, a thorough genetic
evolution study sequencing not only malignant MMs but also
benign lesions and suspected premalignant lesions is needed.
Assessment of the genetic evolution of benign and malignant
MM subtypes may reveal markers of increased risk of malignant
transformation to aid in early diagnosis and clinical management.
MUCOSAL MELANOMA

OMM is one of the most frequent and well-studied MM subtypes.
The preferred site for OMM (Figure 1D) is the keratinized
mucosa, including the hard palate and maxillary gingiva where
the masticatory stress is focused (70). Symptoms include pain,
ulceration, bleeding, loose teeth, bone erosion, etc. (71, 72). The
MM shows variable color from black to red or white accompanied
with asymmetric and irregular morphology (73). Contrasting
from CM, which is commonly diagnosed in the radial growth
phase, OMM is usually first identified in a vertical growth phase
with 30% of lesions at an invasive stage, and 55% of lesions at a
combined invasive and in situ stage (7). Also different from CM,
MM lacks a clear classification system for subtypes of lesions.
Based on the histopathologic patterns and levels of solar damage,
there are several different categorization methods for CM (74),
whereas the subclassification of MM remains controversial.
Currently, it is simply divided into MM in situ, invasive MM,
andMMwith a mixed pattern. The observing surface architecture
of MM ranges from macular to ulcerated and nodular (75).
Lentigo maligna melanoma (Figure 1C) is regarded as one
form of OMM in situ as it shares similar histopathological
traits as typical OMM in situ (Figures 1M, N). From the
Frontiers in Oncology | www.frontiersin.org 5
microscopic perspect ive , OMM consists of diverse
morphological melanocytes including epithelioid, spindle, and
plasmacytoid, which typically have a large, vesicular nucleus with
prominent nucleoli (Figures 1O, P). They are usually aggregated
into sheets or alveolar groups and less commonly neurotropic or
desmoplastic configurations are observed. Most of the tumors
contain melanin, while only a small proportion is amelanotic
(76). As for immunohistochemical features of OMM, there is no
single immunohistochemical marker that invariantly identifies all
OMM. A variable expression of S-100, Melan-A, MITF,
tyrosinase, and HMB-45 has been reported (27, 28, 49, 76).
SOX 10 is a new marker, showing high sensitivity (positive in
88-100% of OMM cases) but moderate specificity in MM (77, 78).
Hence, identification of biomarkers for OMM with better test
characteristics of needed to achieve a consistent accurate
diagnosis of MM and its initial lesions.
MUTATIONS AND SIGNALING PATHWAY
DEPENDENCY IN MM

To date, whole-genome sequencing (WGS) and whole-exome
sequencing (WES) has revealed the genomic profile of MM and
pinpointed reoccurring aberrant genes that potentially drive the
evolution of melanocytes to malignant tumors in the mucosal
membrane. In contrast to CM, MM harbors a low single
nucleotide mutation burden, but a high number of
chromosomal structural variants (16, 79). BRAF and NRAS
mutations, which are widely present in CM, are less frequent
in MM (16, 79). Instead, activating mutations in SF3B1 and KIT,
loss of CDKN2A, PTEN, or SPRED1, as well as amplification of
CDK4, TERT, KIT, MDM2, or CCND1, are more common in
MM (16). Table 2 compares the genetic profile between CM and
MM. The data for altered genes in CM are average from Akbani’s
and Hayward’s papers (17, 79), while the figures for MM are
obtained from Newell’s paper (16). Figure 2 summarizes the
frequency of alterations in possible driver genes based upon
WGS data of 67 frozen tumors (16). Those mutated genes
correspond to specific cellular pathways that are potentially
highly dependent on the initiation and progression of MM,
providing potentially effective targets for combined treatment
in the clinic.

KIT Signaling Pathway
C-KIT is a receptor tyrosine kinase located on the membrane of
various cell types. The stimulation of the C-KIT receptor by its
extracellular ligand leads to downstream activation of the MAPK
and PI3K signaling cascades that play an important role in
proliferation, survival, and motility of melanoma cells (80).
There is a high prevalence of KIT gain-of-function alterations
including missense mutation and copy number amplification in
patients with MM at rates of 15% and 21% respectively (16),
while the corresponding figures in CM are only 3.7% and 4.2%
separately (17, 79). MMs with KIT mutations presumably affect
the function of juxta-membrane autoinhibitory domain (JMD)
(W557R, N566D, V559A, V559D, V560D, V569G, P573L,
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L576P, K642E) and tyrosine kinase domains (D816H, D820Y,
A829P, N822K), causing constitutive activation of C-KIT-
regulated pathways (81–84). Among the aforementioned
mutations, K642E is the most frequently observed in MM.
Although codon 642 is located out of the JMD, amino acid
aberrations in this position are thought to destabilize the JMD
through amino acid interactions (81). Besides WGS and WES
data, immunohistochemistry images show increased protein
expression of C-KIT in all in situ MMs and nearly 90% of
invasive tissues in a cohort of 18 cases (85), indicating the
strengthening of the C-KIT signaling pathway. Compared to
CM, the gain-of-function alterations of KIT are more common
not only in MM but also in acral melanoma (AM) (86). Although
Frontiers in Oncology | www.frontiersin.org 6
the mechanism explaining why C-KIT is pathogenetically
important in sun-protected melanomas remains poorly
understood, it does not prevent the protein from being a
potentially effective therapeutic target and a series of C-KIT
inhibitors are currently under pre-clinical and clinical
investigations (82, 87–89).

RAS-RAF-MEK-ERK MAP Kinases
Pathway
Stimulation of C-KIT or other receptor tyrosine kinase on the
cellular membrane by extracellular growth factors provokes
downstream activation of RAS and RAF kinases followed by
phosphorylation of MEK and ERK, leading to activation of the
TABLE 2 | Comparison of genetic profiles MM and CM.

Cellular pathway Gene CM MM

C-KIT pathway KIT 3.7mut; 4.2%amp (17, 79) 15%mut; 21%amp (16)
MAPK pathway NRAS 29%mut (17, 79) 18%mut (16)

BRAF 51%mut (17, 79) 16%mut; 13%amp (16)
NF1 15%mut (17, 79) 16%mut (16)
SPRED1 rare 7.5%mut; 3.0%del (16)

PI3K pathway PTEN 9.0%mut; 12%del (17, 79) 6.0%del (16)
Splicesome pathway SF3B1 6.4%mut (17, 79) 12%mut (16)
Cell cycle pathway TP53 16%mut (17, 79) 9.0%mut (16)

CDK4 4.0%amp (17, 79) 28%amp (16)
CCND1 5.5%amp (17, 79) 18%amp (16)
MDM2 3.5%amp (17, 79) 19%amp (16)
CDKN2A 16%mut;44%del (17, 79) 24%del (16)

Telomere maintenance TERT promoter 72%mut (17, 79) 9.0%mut (16)
TERT 8.2%amp (17, 79) 22%amp (16)
July 2021 | Volum
Mut, mutation; Amp, amplification; Del, deletion.
FIGURE 2 | Molecular pathways involved in the development of mucosal melanoma. Red-filled rectangles indicate genes experiencing activating mutation or
amplification, while blue-filled rectangles genes undoing suppressing mutation or deletion. Black figures suggest mutation rates, whereas red and blue percentages
are respectively amplification and deletion proportions in the test cohort. Created with BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-
templates.
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MAPK pathway implicated in the regulation of cell proliferation,
differentiation, and survival (90). NRAS and BRAF both play a
part in the MAPK pathway, which are thought to contribute to
melanoma development.

NRAS activating mutations are prevalent in CM at 29% (17,
79), while the mutation frequency in MM is only 18% (16).
Furthermore, nearly 90% of NRAS missense mutations occur at
codon 61 in CM, compared to 54% for MM. The remaining 46%
of mutations are located at codon 12 and codon 13 (91).
Compared with NRAS activating mutations at positions 12 and
13, NRAS Q61 mutations exert a stronger activating effect on the
MAPK pathway since codon 61 is the catalytic residue for GTP
hydrolysis and Q61 mutation impedes the return of RAS to an
inactive GDP-bound state (92). For both CM and MM, Q61R
and Q61K are the most commonly detected amino acid
transitions at codon 61. Similarly, the most common
mutations for both types of melanoma at codon 13 are G13D
and G13R, although G13R is predominant in CM and G13D in
MM (93).

BRAF is a serine-threonine kinase involved in the MAPK
signaling pathway. Over 50% of CM cases report activating
mutation of the BRAF gene (17, 79), while merely 16% of
MMs experience the same alteration (16). In addition to
harboring common active mutations, BRAF is distinct from
NRAS in MM in that the locus undergoes amplification in 13%
of cases (16). Mutations in the BRAF gene are missense
mutations and they most frequently occur at codon 600, the
activating loop, where amino acids change from valine to
glutamic acid (V600E) (93). Besides the activation loop (A-
loop), the second most common site for amino acid
substitutions is the GSGSFG phosphate-binding loop (P-loop)
at residues 464-469 (94). The activity of BRAF kinase is regulated
by the interaction formed between A-loop and P-loop, thus
mutations in either A-loop or P-loop disrupt the interaction and
cause hyperactivation of the kinase (93, 95). In CM, more than
90% of mutations are present on the V600 codon, whereas in
MM only 63% are V600 mutations, with the remainder (37%) on
the G469, D594, and K601 codons (91, 93). In other words, MM
not only has far less frequent BRAF missense mutations but also
has more diverse locations for BRAF mutations as compared to
CM. However, similar to CM there is nearly no coincidence of
NRAS and BRAF missense mutations, suggesting functionally
redundant NRAS and BRAF mutations in MM despite more
variable mutational locations.

Although the contribution of mutantNRAS and BRAF to MM
progression appears to be less common than melanoma of the
skin, more components in the MAPK pathway of MM tend to
undergo mutations or copy number changes, rendering
inhibition of MAPK signaling transduction more challenging.
The NF1 gene, for example, encodes neurofibromin 1 protein, a
negative regulator of Ras proteins, and can lose its function in
both CM and MM. NF1 mutation rates are 16% in MM (16) and
15% in CM (17, 79), suggesting NF1 plays a pivotal role in the
biology of both types of melanoma. Loss of NF1 is associated
with sustained activation of Ras proteins, leading to
hyperactivation of MAPK and PI3K-AKT intracellular
Frontiers in Oncology | www.frontiersin.org 7
signaling pathway that evokes melanogenesis. Similar to CM,
NF1 suppression is significantly enriched in tumors lacking
either BRAF or NRAS mutations (16, 96). However, in
melanomas harboring both BRAF and NF1 mutations, it is
more likely that tumors can escape from MAPK inhibiting
therapy (97, 98). Meanwhile, NF1 is significantly co-mutated
with KIT in 32% of MMs, whereas the co-occurrence level in CM
is merely 4% (99), which indicates that the MAPK cascade is
upregulated in MM not only by the single protein in the
cytoplasm but also by the assistance of C-KIT receptor on the
cell membrane.

SPRED1 is another potential driver gene for MM. SPRED1,
sprout-related, EVH1 domain containing protein 1, is a tumor
suppressor. SPRED1 facilitates the localization of NF1 to the
plasma membrane where it suppresses RAS signaling (6).
Therefore, the loss of SPRED1 function leads to the activation
of MAPK pathway signaling transduction. 7.5% of MM have
SPRED1 inactivating mutations and 12% undergo SPRED1 copy
number loss (16), whereas SPRED1 alterations are insignificant
in CM (17, 79). In MM, SPRED1 loss rarely co-occurs with BRAF
mutations, NRAS mutations, or NF1 inactivation mutations (6),
indicating those alterations play similar roles in activating
MAPK pathway signaling in MM. Analogous to NF1, around
30% of MM cases with SPRED1 inactivation simultaneously
exhibit KIT alterations, suggesting that SPRED1 inactivation
may be in collaboration with other oncogenic events to
stimulate tumor development (100). Based on the pattern of
mutually exclusive occurrence of NF1 and SPRED1 and their
respective tendency to alter simultaneously with KIT, it is
reasonable to speculate that NF1 and SPRED1 loss function
similarly in MM. In addition, it has been proposed that the
reduced sensitivity and drug resistance to KIT inhibitors partially
result from the hyperactivation of MAPK caused by the loss of
SPRED1 – a model verified in human melanoma cell lines and in
vivo zebrafish model (6, 101), but presently untested in mouse
models and patient samples.

PI3K-AKT-mTOR Pathway
The PI3K-AKT-mTOR pathway is another frequently activated
oncogenic signaling cascade in MM, which is verified by elevated
AKT phosphorylation through immunohistochemical staining
(102, 103). The aforementioned abnormal KIT, NRAS, NF1, and
SPRED1 genes are able to not only activate the MAPK signaling
cascade but also dysregulate the PI3K-AKT-mTOR pathway.
Additionally, the PI3K pathway is stimulated by suppression of a
negative regulator, phosphatase and tensin homologue (PTEN)
(104). Compared with 12% of PTEN loss in CM where deletions
and mutations both account for the changes (17, 79), PTEN is
deeply deleted in merely 6.0% of MM cases and has hardly any
mutations (16) Furthermore, there is rare co-occurrence of
deleted PTEN and amplified KIT that possibly implies that loss
of PTEN or gain of KIT are redundant for the activation of the
PI3K pathway in MM. This is also supported by the fact that
besides KIT and PTEN, mutations in PI3K and AKT homologous
of PI3K-AKT-mTOR are scarce (4.8% PIK3CA, 3.8% PIK3CG,
and 4.8% AKT3) (105). It has been reported that silencing of
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PTEN cooperates with activated AKT to promote metastasis of
melanoma (102, 103, 106, 107), but MM does not show a weaker
performance in metastasis than CM in the clinic possibly because
there are other gene alterations in the PI3K pathway promoting
invasiveness of tumor (108). In a cohort of 91 MM patients, 18%
of cases show TSC1 loss-of-function mutations which plays a
suppressive role in cellular proliferation initiated by mTOR (109)
and a similar result also showed in a recently published meta-
analysis review of MM (105). Due to the limited sample size, the
alteration levels for TSC need to be further verified. Taking into
account the frequency of alterations in known genes involved in
PI3K-AKT-mTOR pathway activation, applying PI3K pathway
blockers could possibly be an effective target strategy in
MM patients.

The Spliceosome Pathway
The spliceosome complex is responsible for the removal of
introns from precursor mRNA and the ligation of exons to
form mature mRNA. SF3B1 (splicing factor 3b subunit 1) is the
largest and core component of the U2 small nuclear
ribonucleoprotein (snRNP) and thus SF3B1 mutations directly
cause aberrant gene transcripts which eventually lead to mRNA
degradation or abnormal protein function or protein decay (110,
111). SF3B1 mutations have been reported in 12% of MM (16),
while a very small portion of tested CM patients harbor similar
alterations (17, 79, 112). Despite their notable absence in CM,
alterations in the SF3B1 gene are not unique to MM - similar
mutations have also been detected in uveal melanoma, breast
cancer, myelodysplastic syndromes, and chronic lymphocytic
leukemia, including mutation hotspots such as codon 700, 622,
625, 662, and 666 (99, 113). To be more specific, SF3B1
mutations at codon 625 are predominately associated with
mucosal and uveal melanoma, while alterations at codon 700
are present across myeloid leukemia and chronic lymphocytic
leukemia (6), implying disparate SF3B1 mutational preference
that is possibly related to distinct etiology. Although SF3B1
mutations are widely present in MM, it is poorly understood
which genes alternatively spliced by mutant SF3B1 drive
malignant transformation. It has been discovered that BRD9,
PPP2R5A, and DVL2, are candidate genes for alternative splicing
in SF3B1 K700-mutant chronic lymphocytic leukemia (114–
116), while ABCC5, UQCC, and CRNDE are possible targets in
three uveal melanoma cases mixed with R625 and K700
mutations (117). Hence, due to the variability of SF3B1
mutations in solid and hematologic cancers, experiments that
query the consequence of the SF3B1 R625 mutation in mucosal
melanocytes are needed to understand mis-spliced targets and
tumorigenic oncogenic mechanisms related to SF3B1 mutations
in MM.

Intriguingly, although SF3B1 does not possess a direct role in
MAPK pathway signal transduction, there is little overlap
between tumors with MAPK pathway mutations and SF3B1-
mutated tumors, suggesting that SF3B1 mutations possibly lead
to splicing variations of specific genes that can lead to MAPK
activation (16). Meanwhile, the MAPK pathway can also regulate
splicesome activity. It is reported that activation of the MEK-
ERK pathway by Golgi stress enhances the activity of ETS
Frontiers in Oncology | www.frontiersin.org 8
transcriptional factors that have the capacity to regulate the
expression of splicesome components, resulting in a switch of
MCL1 protein function through different splicing (118). This
study indicates that dysregulation of some downstream effectors
by the MAPK pathway is able to lead to splicing aberrations. The
mechanisms connecting the splicing alternations to signal
transduction remain enigmatic. Mutant K700E SF3B1 causes
loss of function of phosphatase PP2A, followed by the
phosphorylation changes related to signaling cascade (115),
thereby providing a potential link between an alternative
splicing and signaling pathways. Further investigations are
needed to elucidate the specific mis-spliced genes and proteins
directly influenced by SF3B1 mutations together with the
crosstalk between SF3B1 and MAPK pathway in tumorigenesis
of MM, and the findings may provide a new perspective for
targeted therapy.

Cell Cycle Pathway
The abrogation of cell cycle checkpoint and apoptosis regulators
is widely present in melanoma (119), including CDKN2A loss
and CDK4/6 or CCND1 amplification. The CDKN2A locus
encodes two distinct tumor suppressors, p16INK4A and p14ARF.
The p16INK4A protein suppresses the forward progression of the
cell cycle by inhibiting CDK4 or CDK6. The CDK4/6/CCND1
complex phosphorylates and inhibits the retinoblastoma (Rb),
which leads to E2F1 transcription activation and G1-S phase cell
cycle transmission (120). The other CDKN2A transcript, p14ARF,
functions, at least in part, by blocking MDM2 ubiquitylation
mediated TP53 degradation, which permits apoptosis escape
(121). In MM patients, 24% of tumors exhibit copy number
loss of CDKN2A (16). Additionally, CDK4, CCND1, and MDM2
are amplified in 28%, 18%, and 19% of samples respectively, and
TP53 mutations occur in 9.0% of MMs (16). Most of these cell
cycle components are also commonly disrupted in CM.
However, although CM has a much higher CDKN2A loss than
MM, MM tends to show a greater frequency of CCND1 and
CDK4 amplification (120, 122), implying CDK4 blocking agents
may achieve a desired anti-tumor effect on MM. Intriguingly,
MM cells without mutations in BRAF orNRASmutations tend to
exhibit CCND1 or CDK4 amplification (122), suggesting that
copy number variations of cell cycle regulatory genes act as an
alternative driver and can substitute for BRAF or NRASmediated
proliferation signaling pathway activation.

Telomere Maintenance
Telomerase reverse transcriptase, encoded by the gene TERT, is
the catalytic subunit of the enzyme telomerase, responsible for
lengthening telomeres at the end of chromatin (123, 124). Thus,
overexpression of TERT confers the potential of cells to become
immortal (125), which is one of the hallmarks of cancer. TERT
promoter mutations and TERT amplifications are common
genetic events in the early stages of melanoma of the skin (8).
For CM, more than two-thirds of tumors exhibit TERT promoter
mutation, and only a minority of malignancies present copy
number amplification (17, 79). As a comparison, the frequency
of TERT activating alteration in MM declines to 30%, and most
of them are copy number gain rather than promoter mutations
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(16). As for why CM and MM present distinct mechanisms of
TERT activation, most TERT promoter mutations in CM are
C>T mutations or CC>TT di-pyrimidine mutations (126, 127),
suggesting that TERT promoter mutations are induced by UV
radiation which partially explains why these mutations are rare
in sun-shielded MM. Apart from TERT, the gene ATRX is also
involved in telomere maintenance. ATRX is associated with
alternative lengthening of telomeres as an additional
mechanism for telomere maintenance in tumors lacking TERT
promoter mutations (128). Despite rare samples associated with
ATRX alterations in CM, nonsense mutation and frameshift of
ATRX are detected in 11.9% of MMs (16) implying that ATRX is
responsible for telomere extension in MM as well. However, the
altering level of ATRX needs to be further tested in a larger
cohort since the gene are not significantly mutated in other
sequencing results except for Newell’s study.

Although CM exhibits a much higher frequency of TERT
activation than MM, there is no statistically significant difference
in telomere length among CM and MM, and both of them even
undergo telomere shortening (8, 79, 129). Those intriguing
findings remind us that aberrant TERT might have
tumorigenic impacts in melanocytes other than telomere
lengthening. It is reported that human TERT (hTERT) is
equipped with a telomere protective function independent of
its canonical catalytic activity (130). Overexpression of hTERT in
melanoma is able to produce a protective complex on DNA
damage that leads to the sustained proliferation capacity of
cancer cells (130). In addition, phosphorylated TERT at a
specific position by CDK1 has an RNA-dependent RNA
polymerase (RdRP) activity (131). RdRP generates small
interfering RNAs complementary to a tumor suppressor gene
FOXO4, degrading mRNAs of FOXO4, reducing protein
expression and consequently leading to tumor formation (131,
132). Taken together, these observations suggest potential
differences in telomere maintenance mechanisms among
different subtypes of melanoma.
PROGRESS IN MM TARGET THERAPY

When compared with CM, MM is typically detected at advanced
stages, which renders the tumor challenging to treat. Surgical
excision is predominately the first choice for MM (133–135).
However, due to the lentiginous growth pattern, multifocal
nature of MM, and limitations of the specific MM anatomic
sites, it is extremely difficult for surgery to achieve wide negative
margins, which leads to a high local relapse rate at 50%-90% (2).
For unresectable and metastatic MM, targeted therapy and
immunotherapy are constrained since MM is deficient in
dominant MAPK activating mutations that can be targeted and
is less responsive to immunotherapy (136). Therefore, to date,
the first-line therapeutic modality for advanced MM remains
chemotherapy despite limited efficacy (137).

While targeted therapies for MM are limited, multiple clinical
trials targeting aberrant genes in MM are ongoing. Similar to
CM, the MAPK cascade is hyperactivated by altered genes in
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MM including NRAS, BRAF, NF1, and SPRED1, thereby making
inhibition of MAPK signal transduction a promising treatment
strategy for MM patients. For the minority of MM patients with
BRAF mutations, combined inhibition of BRAF and MEK is an
attractive strategy because the combination therapy shows an
impressive response rate at 76% and has a 5-year survival rate of
33% for BRAFV600E/K positive CM patients (138). Although
there is no clinical trial underway specifically evaluating the
safety and efficacy of combination therapy of BRAF inhibitor
plus MEK inhibitor in MM, a retrospective study in Japan
showed that MM/AM and CM exhibited similar response rates
to combined BRAF and MEK suppression (64.3% vs 76.5%)
(139), suggesting the potential efficiency of dual repression of
BRAF and MEK in MM. For patients without BRAF mutations
but with NRAS, NF1, or SPRED1 alterations, targeting the
downstream protein MEK is another strategy for MM patients.
The safety and efficacy of MEK blocking agents in MM have been
confirmed in an ongoing phase 2 study where 20% NRAS-
mutated melanoma patients showed partial response to MEK
inhibitor binimetinib with tolerated and manageable adverse
events (140). However, for both monotherapy of MEK
inhibitor and combined treatment of BRAF and MEK
inhibitors, acquired resistance through reactivation of the
MAPK pathway can restrict their therapeutic efficacy (141). To
overcome this resistance, it is necessary to inhibit downstream
proteins like ERK or develop new molecules targeting aberrant
MAPK signaling. Meanwhile, besides independent suppression
of MAPK pathway, MEK blockers have also been combined with
mTOR1/2, AKT, or CDK4/6 inhibitors in preclinical models or
in clinical trials of MM (142–144). Although therapeutic
parameters do not significantly improve compared to the
single MAPK inhibition, dual signaling pathway blocking still
provides a new perspective for MM targeted therapy.

Interestingly, compared to CM, MM patients tend to harbor
more activating mutations or amplifications in the receptor
tyrosine kinase KIT, providing a rationale for targeting C-KIT.
Imatinib, sunitinib, dasatinib, nilotinib, and masitinib are
approved C-KIT inhibitors in different cancer types and their
anti-cancer effects for MM are currently in the clinical research
stage (145–148). Imatinib is the most widely investigated C-KIT
inhibitor. In a recent trial of 78 melanoma patients harboring
KIT alterations, the median overall survival for imatinib is 13.1
months and the objective response rate is 21.8% (149).
Additionally, it has been discovered that C-KIT inhibitor
imatinib harbors high efficacy against melanoma with KIT
mutations, but not with KIT amplification only (54% vs 0%
partial response) (148, 150). To be more specific, MMs with KIT
mutations in exon 11 (L576P) and exon 13 (K642E) tend to have
a better and longer response to C-KIT inhibitors than other
mutations (84, 151). Despite the strong anti-tumor effect of C-
KIT inhibitors, MM patients who respond to the inhibiting
agents well at the beginning will frequently experience a brief
period of disease response before developing resistance to KIT
inhibitors that eventually leads to progressive disease (152, 153).
The acquired resistance to KIT inhibitors is possibly conferred
from pre-existing concomitant mutations in other oncogenes like
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NRAS or secondary KIT mutations during the use of drugs. For
instance, secondary A829P KIT mutation renders melanoma
cells resistant to imatinib but has no influence on nilotinib and
dasatinib, while the T670I KIT mutation exhibits resistance to
imatinib, nilotinib as well as dasatinib, but can still be suppressed
by sunitinib (154). Considering the promising performance of C-
KIT inhibitors in MM, now more efforts have been focused on
the understanding of the acquired resistance mechanism and the
development of new blocking agents to overcome resistance,
offering hope for patients with advanced MM and limited
treatment options.

In the future, targeted therapy could offer an alternative
adjuvant therapy option for a group of patients based on their
gene sequencing results. If actionable driver mutations are
identified in an individual MM, targeted therapies for the
driver genes or proteins could be utilized on a patient-by-
patient basis. Until now there are only a few available targeted
therapies for MM clinical trials: BRAF, MEK, CDK4/6 and, C-
KIT inhibitors, with limited clinical use and efficacy. Therefore, it
requires more efforts on developing other alternative targeting
strategies based on mutated genes in MM such as splicesome
complex components, telomerase, and DNA repair pathway.
H3B-8800, for instance, is the blocker for splicing modulator
of SF3B complex and it at present is in phase I study of myeloid
cancers (155). Considering the MM specific SF3B1 hotspot
mutation in R625, developing strategies that can specifically
target R625 mutant SF3B1 might may achieve benefit MM
patients with low side effects.
DISCUSSION

MM is a rare but aggressive malignancy. Due at least in part to
delayed diagnosis at the advanced stage and the lack of efficient
therapeutic strategies, this subtype of melanoma is associated
with a worse prognosis than melanoma arising from the skin. In
contrast to CM, the etiology, risk factors, and pathogenesis of
MM are poorly understood, partially explaining the deficiency of
effective treatment options and extremely poor prognosis. This
review takes OMM as a model and attempts to identify
commonalities in etiology, pathogenesis, mutation patterns,
and corresponding pathway dependency. Besides cigarette
smoking, denture irritation, and alcohol, chronic infections
caused by microorganisms and mechanical stress generated by
routine activities may have an impact on tumorigenesis in the
mucosal membrane. However, the oral microflora is in a
dynamic process of change and is influenced by many internal
and external factors, including the host’s physical conditions,
diet, and hygiene habits. A more comprehensive study
investigating the relationship between flora and cancer, the
selection of patients, sampling locations, and control settings
will be needed.

Since there is limited knowledge about pre-MM lesions and a
lack of corresponding molecular pathological biomarkers, early
diagnosis, as well as early intervention becomes extremely
challenging, leading to the short life expectancy in MM
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patients. Due to the unclear relationships between benign
lesions and precursor lesions, histopathological information
alone cannot thoroughly define and accurately discriminate
them. It is reported that one patient died of OMM after 63
months of misdiagnosed premalignant atypical melanocytic
hyperplasia as a benign lentigo simplex (50). Therefore, it is an
urgent need to discover biomarkers for lesions with a greater
tendency of malignant transformation. To achieve this goal, a
thorough genomic and transcriptomic profiling of the
evolutionary trajectories of MM starting from benign lesions
and potential intermediate lesions is worth pursuit. Another
strategy for studying cancer evolution is to establish transgenic
mice that capture the evolution process of MM. However, unlike
CM, there is a lack of animal models that can recapitulate the
oncogenesis process accompanied with the accumulation of
genetic alterations in MM. By stepwise introduction of BRAF
V600E mutation, CDKN2A loss, PTEN loss and mTOR
activation, CM precursor lesions followed by CM formation
was observed in mice (156–159). Likewise, decoding the
accumulative mutation pattern based on MM patient samples
will pave the path to the generation of MM transgenic mice
model, which not only contribute to understanding the
pathogenesis of MM but also serve as functional tools to
evaluate the efficacy of novel therapeutic modalities.

Recent sequencing studies have identified significant
alterations in NRAS, BRAF, NF1, KIT, SF3B1, TP53, and
SPRED1, informing potential targeted therapeutic strategies for
MM (14–16, 160, 161). Firstly, MM patients have shown similar
pathway dependency although with divergent mutation patterns.
Compared to CM, fewer NRAS, BRAF mutations are seen in
MM, but more SF3B1 mutation and KIT alterations are found.
Since targetable BRAF mutations are far less frequent in MM,
target validation of other alterations in the MAPK pathway is
needed. The sequencing results of 67 MMs show that mutations
of NRAS, BRAF, KIT, and SF3B1 are mutually exclusive,
implying those mutations may converge on activating the
MAPK pathways (16). Further studies about how SF3B1
mutations are involved in MAPK pathway activation are
needed. Secondly, MM has gained fewer genetic mutations for
cell cycle regulators but more copy number changes than CM.
While CDKN2A copy number loss is a frequently observed event
in both CM and MM, MM presents more CDK4 and CCND1
amplifications, which makes targeting CDK4 promising in MM.

It is worth mentioning that MM has a much higher level of
structure variation and chromosomal instability compared to
CM. As a result, specific attention should be paid to targeting the
chromosomal rearrangements. Targeting genes involved in DNA
damage repair response including PARP, DNA-PKcs, ATR,
ATM, CHK1, WEE1 might achieve unexpected clinical
response in MM patients (162–164). Olaparib, for instance, is
an FDA-approved inhibitor of the enzyme poly ADP ribose
polymerase (PARP) which can efficiently kill BRCA mutant
tumor cells, a successful synthetic lethality based targeting
strategy used in breast cancers and ovarian cancers (165).
Although MM rarely shows BRCA mutations, the significantly
high level of structure variation indicates the deficiency of
July 2021 | Volume 11 | Article 702287

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ma et al. MM Evolution and Targeted Therapy
homologous recombination repair (HRR) capacity, which makes
MM potentially responsive to PARP inhibition. Nevertheless, a
more comprehensive understanding about the mutation
signatures as well as signatures of chromosome structure
variation in MM are needed. A more stringent validation of
PARP inhibitor response in MM cell lines, PDX, and early
clinical trials are supposed to conduct to better understand the
pharmacological mechanism of drug response in MM.

Other than targeted therapy, immune checkpoint blocker
(ICB) based immunotherapy has shown a strong anti-tumor
effect on metastatic CM. Ipilimumab against cytotoxic T-
l ymphocy t e an t i g en 4 (CTLA4) , n i vo lumab and
pembrolizumab against programmed death 1 (PD1) as well as
atezolizumab against programmed death-ligand 1 (PD-L1) are
approved by the FDA for the treatment for advanced melanoma
either as monotherapy or combination therapy (166). The overall
response rate (ORR) for CM patients to ipilimumab, nivolumab,
pembrolizumab and atezolizumab is 12%, 40%, 33% and 30%
respectively (167–169), while the combined treatment of
ipilimumab with nivolumab significantly improves the ORR to
61% with median progression-free survival (PFS) of 11.5 months
(170, 171). However, those ICBs do not exert a satisfactorily
inhibitory impact onMM as they do on CM, showing the ORR to
anti-CTLA4 or anti-PD1/PDL1 as the single agent from 7% to
35% (136, 172–174). Even the combination regimen of anti-
CTLA4 (ipilimumab) and anti-PD1 (nivolumab) agents merely
witness a slight increased ORR to 37% with PFS at 5.9 month
(136, 175). The limited response to ICBs in MM is mainly
because of low mutation burden and limited immune cell
infiltration compared to CM (3, 176, 177). To further
overcome unsatisfactory performance of ICBs in MM,
combination of ICBs with different targeted therapy strategies
has been tested in clinical trials. For example, a phase Ib trial
using PD-1 antibody toripalimab and vascular endothelial
growth factor receptors (VEGFR) inhibitor axitinib showed a
Frontiers in Oncology | www.frontiersin.org 11
dramatical improvement in ORR and PFS to 61% and 9.1
months separately (178, 179), although the safety and efficacy
of this combination strategy needs to be further validated.
Meanwhile, the combination of toripalimab and vorolanib
which targets and inhibits multi-tyrosine kinase including
VEGF and C-KIT are ongoing in MM trial (180).

In summary, both basic research and drug discoveries in CM
have achieved enormous progress, whereas little is known about
either how MM initiates or how to target MM. As a result,
patients of MM are suffering from limited treatment options and
undesirable response rates that lead to extremely poor prognoses.
Here we summarize the current state of knowledge regarding
initiation and progression of MM and the risk factors and
treatment options for MM. In doing so, we highlight current
gaps in our knowledge regarding MM progression, and propose
important future research directions, includes studying the
genetic evolution trajectory of MM from benign precursor
lesions and evaluating new targeting strategies specifically for
MM, such as targeting CDK4, SF3B1 or PARP, either as single
agent or in combinations with ICBs. We hope these efforts will
give more comprehensive knowledge about how MM initiates
and progresses, provide more specific biomarkers for MM early
diagnosis, offer more potentially effective treatment options for
MM and, in the end, improve the life expectancy and quality for
MM patients.
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