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ABSTRACT
Purpose: Measurement of bacterial adhesion has been of great interest for different dental
materials. Various methods have been used for bacterial counting; however, they are all indirect
measurements with estimated results and therefore cannot truly reflect the adhesion status. This
study provides a new direct measurement approach by using a simple artificial intelligence (AI)
method to quantify the initial bacterial adhesion on different dental materials using Scanning
Electron Microscope (SEM) images. Materials and Methods: Porphyromonas gingivalis (P.g.) and
Fusobacterium nucleatum (F.n.) were used for bacterial adhesion on dental zirconia surfaces, and
the adhesion was evaluated using SEM images at time points of one, seven, and 24h(s). Image
pre-processing and bacterial area measurement were performed using Fiji software with a
machine learning plugin. The same AI method was also applied on SEM with Streptococcus
mutans (S.m.) inoculated PMMA nano-structured surface at 1, 24, 72, and 168h(s), and then fur-
ther compared with the CLSM method. Results: For both P.g. and F.n. initiation adhesion on zir-
conia, a new linear correlation (r2 > 0.98) was found between bacteria adhered area and time,
such that:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bacteria adhered area mm2ð Þp

/ logðtimeÞ

For S.m. on PMMA surface, live/dead staining CLSM method and the newly proposed AI method
on SEM images were strongly and positively associated (Pearson’s correlation coefficient r> 0.9),
i.e. both methods are comparable. Conclusions: SEM images can be analyzed directly for both
morphology and quantifying bacterial adhesion on different dental materials’ surfaces by the
simple AI-enabled method with reduced time, cost, and labours.
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1. Introduction

Oral biofilm plays an important role in the pathogen-
esis of oral diseases such as dental caries and peri-
odontal diseases. Oral diseases do not only affects oral
health, but also general health and quality of life that
consequently creating a financial burden due to the
high treatment costs and that may not covered by
universal health coverage [1]. Bacterial adhesion is the
primary step in biofilm formation, which is a compli-
cated process that is affected by numerous factors
such as bacterial properties, material surface charac-
teristics, and environment [2]. Biofilm can be formed
on any surface within an oral cavity (i.e. dental

plaque), causing dental caries, periodontal diseases,
and failure of dental materials due to, say, peri-
implantitis [3–5].

Research on bacterial growth has been studied for
decades. Conceptually, this is a simple process
because most bacterial growth follows binary fission.
Typically, bacterial growth on material in vitro follow
a growth curve that includes four phases: (1) the (ini-
tial) lag phase: bacteria is maturing and metabolically
active before the start of exponential growth; (2) the
exponential (or log) phase: bacteria is growing at a
constant rate; (3) the stationary phase: the growth
rate of the bacteria is equal to the death rate due to
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limited nutrients; (4) and the death phase: a decrease
in live bacteria due to lack of nutrients [6]. However,
unlike controlled laboratory conditions, intraoral con-
ditions such as environment, nutrients, temperature,
and moisture levels are dynamic and diversified.
Thus, the bacterial growth phases may coexist and
overlap within the same biofilm. As such, the bacter-
ial or biofilm growth and activity may be described
more realistically as adhesion, growth, maturation and
dispersion. This superimposition of phases makes it
challenging when investigating the behavior of bacter-
ial growth on materials surfaces. In fact, studying ini-
tial bacterial adhesion on the tooth or dental material
surfaces [7–9] is of vital importance, because this can
better understand the various types of bacterial adher-
ence on different surfaces for anti-bacterial strategies
of dental materials. Thus, the mechanisms of bacteria-
material interaction and how bacteria react on differ-
ent surfaces can be explored.

To evaluate the antibacterial properties of a mater-
ial, many bacteria counting methods have been pub-
lished, including (A) direct counting methods, such as
plate counts, transmitted light microscopy, standard
fluorescence microscopy, and flow cytometry; (B)
indirect counting methods such as colony-forming
unit (CFU) plate count, radiolabeling, spectrophotom-
etry, ATP marker, and nucleic acid probes [10]. It is
worth noting that each method has its own advan-
tages for specific purposes. Take CFU as an example;
it is the most widely used indirect counting method
for evaluating antibacterial properties. It is also simple
and does not require high-end equipment. However,
there are some disadvantages. For example, only the
culturable fraction of a biofilm population can be
detected by CFU, the method is limited to detecting
microorganisms that develop colonies on agar plates,
and it is a time- and labor-consuming process [11].

Alternatively, direct counting methods have been
introduced to solve the problems encountered by
indirect methods. Scanned electron microscopy (SEM)
provides excellent quality images of bacteria and bio-
films with high resolution and magnification.
However, it cannot quantify the number of bacteria
cells and biofilms, and as such, has limited its use in
this field. Confocal laser scanning microscopy
(CLSM) is another widely used direct counting
method – both morphologically and quantitatively. It
enables the analysis of biological structures, without
damaging the biological structure [12]. Nevertheless,
it is fluorescence based, and thus fluorescent dyes are
required before observing. Therefore, the natural
fluorescence may interfere with the testing results.

Additionally, the high cost associated with CLSM may
limit its use.

In recent years, artificial intelligence (AI) has
gained a great amount of global interest. It was first
coined in 1956 by John McCarthy as ‘the science and
engineering of making intelligent machines, especially
intelligent computer programs’ [13]. The term and
concept have contributed a lot to this new research
area since then. After the two ‘AI Winters’ in the late
1970s and early 1990s, AI research had reached a
bottleneck, which led to many ups and downs and a
lack of funding support. From the late 1990s, AI
research gradually regained focus from researchers,
together with the development of computational
power, many fields have been benefited from AI since
then [14]. John Searle [15] further classified AI as
being ‘strong’ or ‘weak’ (narrow) depending on
whether a machine could achieve consciousness.
Current AI applications are all narrow-based, which
can be attributed to solving specific problems and
tasks. Notably, the application of AI and big data in
industry has presented the fourth industrial revolu-
tion. There are different ways in which a goal can be
achieved utilizing AI, the most important among
them are machine learning (ML), natural language
processing, image processing, computer vision,
speech, and robotics.

In image processing, segmentation is the process of
partitioning a digital image into two or more seg-
ments [16]. Using AI and ML algorithms, automatic
segmentation of radiology imaging, including X-ray,
computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET),
and ultrasound imaging become possible, and results
have shown the AI/ML-assisted automatic segmenta-
tion would enable a more accurate and efficient diag-
nosis of tumors and cancers in human organs [17,18].
Recently, AI techniques have been utilized in dentistry
in various ways [19] such as predicting the debonding
probability of CAD/CAM composite resin crowns
[20] and assisting in orthodontic treatment plan-
ning [21].

In a bacterial counting assessment, Andreini et al.
[22] and Ferrari et al. [23] utilized convolutional
neural networks (CNNs), which is an ML approach,
to automate bacterial counting on agar plates.
Nonetheless, most AI approaches require certain
knowledge of programming. Hence, it is not feasible
for researchers with little or no programming know-
ledge to develop such approaches. Here, we explore
the usage of an easy, free and assessable AI in the
initial bacterial counting assessment by direct
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quantification of bacteria on SEM images using an
ImageJ-based plug-in. This is a new method which
provides a direct perceived result of the initial bacter-
ial counting assessment, and more information can be
acquired from the results, i.e. the bacterial-surface
interaction.

2. Materials and methods

In order to test and verify the broad applicability of
the new image analysing method using AI, two differ-
ent sets of SEM data were used that include (A):
Porphyromonas gingivalis (P.g.) and Fusobacterium
nucleatum (F.n.) inoculated on a flat zirconia surface,
and (B): Streptococcus mutans (S.m.) inoculated on an
nano-structured Poly(methyl methacrylate)
(PMMA) surface.

For (A), it followed the protocols described in sec-
tions 2.1 to 2.3 before image processing, as stated in
sections 2.4 to 2.5. For (B), the SEM and confocal
microscopy (CSLM) data were adopted from previ-
ously published studies [24], whereas CLSM was used
as control. In brief, the nano-structured PMMA sur-
face was prepared via a molding process, and S.m.
was used for the bacterial growth on the said surface
(Figure 1). Bacterial growth was evaluated at respect-
ive time points of one hour, one day, three days, and
seven days. The LIVE/DEAD BacLightTM Bacterial
Viability Kit (L7012 Invitrogen; Molecular Probes,
Eugene, OR, USA) was used for staining. Six areas
were randomly selected and imaged by a CLSM (IX81
FluoView FV1000; Olympus, Shinjuku-ku, Tokyo,

Japan). SYTO 9 was excited by a 488 nm laser and
propidium iodide (PI) was excited by a 543 nm laser,
a beam splitter SDM560 and a filter set BA655-755
was employed to observe the viability and distribution
of biofilm on specimens. CLSM images were then
imported to image analysis software (ImageJ; National
Institutes of Health, Bethesda, Maryland, USA) and
converted to 8-bit binary (black and white) images by
adjusting the threshold. ‘Analyze Particles’ function
was used to count the total amount of live and dead
bacterial cells. Mean values of bacterial cell count in
six areas were calculated for further comparison. The
adopted SEM images in this study were processed
using the protocol of sections 2.4 and 2.5.

2.1. Preparation of zirconia discs

Commercially available zirconia blocks (Ivoclar IPS
e.maxVR ZirCAD MT A2, Lot:VM9002) of 98.5mm in
diameter and 14mm in thickness were cut into discs
of 25mm in diameter and 1.2mm in thickness by a
high-speed linear precision saw (IsometVR 5000,
BUEHLER, USA) with a diamond blade under run-
ning water. The samples were then polished with SiC
abrasive papers of 1000-grit and 2000-grit in sequence
on a polishing machine, and reached a surface rough-
ness value of 0.5mm. The polished zirconia blocks
were sintered following the manufacturer’s protocol.
The size of the sintered samples turned into
20.0 ± 0.5mm in diameter and 1.0mm in thickness
due to the phase transformation during sintering.
After the above treatments, the samples were

Figure 1. Schematics of (B): two initial bacterial adhesion counting methods.
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ultrasonically cleaned with a 70% ethanol solution for
15min, rinsed with double deionized water, and dried
in clean ambient air for four hours before the samples
were blown with clean high-pressure gas to remove
any possible residue on the surface. The samples were
finally sterilized with a dry heat method in 160 �C for
two hours in a heating and drying oven (Model 600,
MEMMERT, Germany).

A total of 24 cylindrical zirconia samples were ran-
domly divided into six groups. A control group of four
specimens was taken without any further treatment.

2.2. Bacteria inoculation

Two bacteria, P.g. (ATCC 33277) and F.n. (ATCC
23726), were selected for this study, both of which are
common bacteria that appear in oral biofilm. To grow
P.g. and F.n., a medium of 108 bacteria CFU/ml (P.g./
F.n.) in P.g. broth was added (1.5ml/well) to 12-well
plates (Corning, USA) with a zirconia disc in each
well. The well plates were incubated anaerobically
(incubation condition of CO2 of 10%, H2 of 10% and
N2 of 80%) at 37 �C up to time points of one hour,
seven hours, and 24h. Grow medium (P.g. broth)
composes of 30 g Tryptic Soy Broth (TSB), 5 g yeast
extract, 1 L distilled water, and 10ml hemin/vitamin K
stock solution. TSB medium contains 17 g Tryptone,
3 g Phytone, 5 g NaCl, 2.5 g dipotassium phosphate
(K2HPO4), 2.5 g glucose, and 1 L distilled water.

2.3. Scanning electron microscopy (SEM)

SEM (SU-1510, HITACHI, Japan) images were taken
for the bacteria inoculated samples to observe the sur-
face morphology, and then reserved for further image
analysis. Images were taken at random locations at mag-
nifications of 6000�, 4000�, 2000�, and 1000�.

Samples were rinsed with PBS solution to wash
away any impurities from the broth, followed by fix-
ation and dehydration procedures. Fixative solution of
2.5% glutaraldehyde was added to the well plates and
kept in a refrigerator overnight. The ethanol solution
with different concentrations (i.e. 70%, 85%, 95%, and
100%) were added to the well plates in sequence from
low to high. The dehydrated time was 30min for
70%, 85%, and 95% ethanol and 60min for 100%
ethanol. The samples were then dried for two hours
and sputtered with 80% platinum and 20% palladium
before SEM testing.

2.4. Image analysis

The SEM images of (A) and (B) were processed, and
the initial bacterial growth was analyzed by the
Trainable Weka Segmentation (TWS) plug-in in Fiji,
an ImageJ based package, following the same proced-
ure, as described below:

2.4.1. Preprocessing
For all SEM images, the length and width are 2560
pixels and 1920 pixels. The lower part (2560� 140
pixels) was trimmed because the scale bar could affect
the results. Therefore, the size of the SEM images
used for analysis has a dimension of 2560� 1780. For
(A), we choose the 2000�magnification images for
analysis because the morphology of the bacteria can
be seen clearly under this magnification, yet a broader
field of view is achieved. Thus, we can calculate that
810 pixels corresponds to 20 mm, according to the
scale bar showed in the SEM images. For (B),
2500�magnification was used, where 1012.5 pixels
correspond to 20 mm.

To enhance the accuracy and efficiency of the pro-
cess, the following image adjustment procedures were
adopted: (1) Rolling ball background subtraction (to
correct the unevenly illuminated background by using
a ‘rolling ball’ algorithm); (2) Subtract background;
(3) Contrast enhancement; (4) Remove outliers and
(5) Image sharpening.

2.4.2. Segmentation by TWS plug-in
The adjusted images were then loaded into the TWS
plug-in. Standard training settings were used. To train
the ML algorithm (Figure 2), two classifiers were selected
and used. Three to five areas of a bacteria occupied sur-
face (classified as class 1 in red) and background (classi-
fied as class 2 in green) were manually marked, and
then clicking ‘train classifier’, whereas the software
would learn the pattern. Once finished, the generated
result distribution would be overlaid on the image.
Further adjustments regarding the accuracy of the com-
puter segmented layers can be made if necessary.

The trained classifier can be saved by clicking ‘save
classifier’. To reapply the classifier to subsequent
images, click ‘load classifier’. It is noteworthy that
‘create new class’ enables the segmentation of three or
more classes (e.g. a mixed bacteria culture).

2.4.3. Results calculation
After image segmentation, the result was obtained by
using the ‘create result’ function for further process-
ing. An image in green and red would be created
after clicking it. We further converted this image into
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an 8-bit black-and-white image; the black area on the
image represents the bacteria occupied area. Then, the
‘analyze particles’ function can be used. The black
area could be detected by this function, and the per-
centage of the black area occupied within the whole
image could be calculated. In this study, particles
below 50 pixels (for the SEM images of 2000� magni-
fication) and 62.5 pixels (for the SEM images of
2500� magnification) were considered as noise, and
therefore have been excluded from the results
calculation.

An illustrative example for pre-processing, segmen-
tation and calculation is shown in Supplementary
Information.

2.5. Statistical analysis

For (B), the Pearson’s correlation was used to meas-
ure the relationship between the results obtained by

TWS Plug-in and CLSM methods for the initial bac-
terial adhesion stage (i.e. bacteria inoculated between
1 to 24 h) and the whole inoculation period (i.e. bac-
teria inoculated between 1 to 168 h), while the critical
level for statistical significance was set at a¼ 0.05.
The calculation was done using Excel software (Office
365, MICROSOFT, USA).

3. Results

3.1. P.g. And F.n. inoculated on the flat
zirconia surface

Figure 3 illustrates a representative example of over-
lapped SEM and 8-bit black-and-white images show-
ing the distribution of P.g. and F.n. adhered on a flat
zirconia surface at the time points of one hour, seven
hours, and 24 h, respectively. The images were taken
directly from the TWS plug-in, and a graduate growth
for both P.g. and F.n. can be found over time.

Figure 3. The area percentage of P.g. and F.n. occupied area after 1 h, 7 h and 24 h’ inoculation.

Figure 2. Demonstration of manually label the bacteria and background.
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However, the growth rate varies. For instance, P.g.
sample grows much slower than F.n. sample. For F.n.
sample, the bacteria almost fully covered the zirconia
surface after 24 h’ inoculation.

Figure 4 shows the aera percentage of the P.g. and
F.n. occupied area after one hour, seven hours, and
24 h’ inoculation. As Figure 4 shows, it can be con-
cluded that strong linear correlations were found
between the inoculation time (in log scale) and area
percentage (in square root), that is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bacteria adhered area mm2ð Þ

p
/ logðtimeÞ

The goodness of fit, R2 for this model were 0.985
and 0.999 for P.g. and F.n., respectively.

3.2. S.m. Inoculated on the PMMA surface

In (B), the bacterial adhesion result generated by
TWS plug-in were compared with the CLSM result at

Figure 4. Area percentages of two bacteria in different time points and linear regression of the data.

Figure 5. Summary of the bacterial adhesion results evaluated by CLSM (live plus died) and SEM images in different cell incuba-
tion times.
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the same time points of one hour, 24 h, 72 h,
and 168 h.

It can be seen from Figure 5 that comparable
results were obtained after evaluating the bacterial
adhesion between the live/dead staining method using
CLSM images and the newly proposed AI method
using SEM images. The Pearson’s correlation coeffi-
cient (r) for the initial bacterial adhesion period (S.m.
inoculated for 24 h) is calculated to be 0.926 and the
p-value is 0.016; while the r for the whole inoculation
period (0 to 168 h) is 0.903 with a p-value of 0.010,
indicating both correlation coefficients are signifi-
cantly different from zero. This said, the AI method
can quantitatively analyse the SEM images and pro-
vide a good correlation that is comparable
with CLSM.

4. Discussion

This article provides a new approach to evaluating ini-
tial bacterial adhesion on dental materials from 1h to
7 days. In (A), we explored the use of TWS plug-in in
the area of initial bacterial adhesion tests. The growth
rate of P.g. sample is much slower than F.n. sample,
this result is identical to other studies [25,26]. The
main reason in the difference of growth rate may be
due to the different nature of P.g. and F.n. with differ-
ent specific growth rate (l) and lag phase (k) that are
affected physically by various adhesion strength
between different bacteria-material. In addition, it could
also be affected by external influences such as increased
deposition from the media. Further studies are needed
in this aspect. In (B), we further compared the bacterial
adhesion (S.m.) results generated by the TWS plug-in
method and CLSM method, and a statistically signifi-
cant correlation was found between the two methods.
The TWS plug-in is an ease-of-use tool that enables
researchers to perform images using an ML algorithm,
even with limited programming experience.

Fiji is an open-source image processing package
based on ImageJ. The TWS plug-in in Fiji was used
for the image segmentation in this study. The TWS
plug-in is a Fiji plugin and library that combines a
collection of ML algorithms with a set of selected
image features to produce pixel-based segmentations
[27]. The TWS plug-in has been adopted in several
kinds of studies such as tissue segmentation [28] and
biofilm detection [29]. However, it has not been
applied in a bacterial counting assessment.

There are some advantages to using this approach to
examine initial bacterial adhesion. For instance, due to
the high resolution of SEM images, it has become a

practical method for observing the bacteria and morph-
ology of testing samples in antimicrobial tests. The
TWS plug-in utilizes SEM images as the source of bac-
terial counting. As such, this method could provide an
option to make SEM images suitable for analyzing the
bacterial adhesion not only qualitatively, but also (at
least semi-) quantitatively that can complementary to
traditional CFU counts and CLSM. Additionally, as
shown in the results from this study, this AI-assisted
method can apply on different dental materials with dif-
ferent surface profile (i.e. flat vs. nano-rough; zirconia
vs. PMMA), and revealed new area-time relationship.

There are also certain limitations regarding this
method. Since images obtained in SEM are two-
dimensional (2D), 2D areas of surface-attached bac-
teria on materials can be detected by the TWS plug-
in. Thus, only the initial stages of bacterial adhesion
apply to this method. Once the testing surface is fully
covered with bacteria, that is, 3 D biofilm is formed
in whatever time, the program will not work since the
biofilm has fully covered the testing surface. The
thickness of the biofilm also cannot be detected by
this method. In addition, this method does not differ-
entiate between live and dead bacteria, as the analysis
is based on SEM images. Thus, it may not be suitable
for investigating live/dead related properties.
Furthermore, according to the nature of the TWS
plug-in (i.e. the pixel classification), a higher contrast
of the image is helpful to differentiate the bacteria
and background surface. In some cases, when the
contrast of bacteria and background is low and diffi-
cult to identify, it may be difficult for the program to
differentiate the two. To generate more accurate
results, a higher contrast between the bacteria and
background is recommended. Additionally, the bac-
teria may not grow homogeneously on testing surfa-
ces, so it is necessary to capture more areas when
taking SEM images to improve data accuracy.

The file size of SEM images uses a significant amount
of computer memory, which can affect the efficiency or
the time used in the ML training process for the TWS
plug-in. In this study, the typical memory used for an
SEM image is around 5MB and takes around one
minute for the program to finish the segmentation pro-
cess. However, lower resolution images can greatly accel-
erate the speed of segmentation, but this also depends
on the hardware settings of the computer itself. That
said, human accuracy on training the images – particu-
larly the marking of bacteria on surfaces using the TWS
plugin – can also affect the applicability of the AI. In
Fiji software, this includes rectangles, ovals, polygons,
and freehand selections. To obtain the most accurate
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and uniform result, it is recommended to trace the bac-
teria using freehand selections with the margin closely
attached to the bacteria periphery.

5. Conclusion

This study concluded that the AI tool (Fuji Trainable
Weka Segmentation (TWS) plug-in) was able to
measure the early stages of bacterial adhesion on den-
tal materials with situations of (A) Porphyromonas
gingivalis (P.g.) and Fusobacterium nucleatum (F.n.)
on zirconia for 1, 7 and 24 h, and (B) Streptococcus
mutans (S.m.) on nano-structured PMMA for 1, 24,
72, and 168 h(s), by direct quantifying the initial bac-
teria counts, i.e. occupied areas, from the respective
SEM images. A new colonized area-time relationship
about bacteria-zirconia was found, and the SEM
images provided a closely match with CLSM results
on PMMA.
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