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The transcription factor Nanog plays a critical role in the self-

renewal of embryonic stem cells as well as in neural stem

cells (NSCs). microRNAs (miRNAs) are also involved in

stemness regulation. However, the miRNA network down-

stream of Nanog is still poorly understood. High-throughput

screening of miRNA expression profiles in response to modu-

lated levels of Nanog in postnatal NSCs identifies miR-17-92

cluster as a direct target of Nanog. Nanog controls miR-17-92

cluster by binding to the upstream regulatory region and

maintaining high levels of transcription in NSCs, whereas

Nanog/promoter association and cluster miRNAs expression

are lost alongside differentiation. The two miR-17 family

members of miR-17-92 cluster, namely miR-17 and miR-20a,

target Trp53inp1, a downstream component of p53 pathway.

To support a functional role, the presence of miR-17/20a or

the loss of Trp53inp1 is required for the Nanog-induced

enhancement of self-renewal of NSCs. We unveil an arm of

the Nanog/p53 pathway, which regulates stemness in post-

natal NSCs, wherein Nanog counteracts p53 signals through

miR-17/20a-mediated repression of Trp53inp1.
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Introduction

Nanog encodes a homeobox transcription factor expressed in the

inner cells of blastocyst (ICM), as well as in the embryonic stem

(ES) and in germline cells (Chambers et al, 2003;

Mitsui et al, 2003). Nanog has been reported to belong to a

‘core program’ of so-called ‘stemness genes’, also conferring

cytokine-independent (e.g., LIF, BMP, and GDF) self-renewal to

ES cells (Mitsui et al, 2003). As a part of such a program, Nanog

transcription is modulated by a variety of transcription factors

involved in stemness (e.g. FoxD3, Oct4/Sox2, Zfp143, TCF3, p53

and the Hedgehog (Hh) pathway effector Gli1), which bind to its

proximal promoter region (Pan and Thomson, 2007; Chen et al,

2008a, b; Po et al, 2010). Indeed, reprogramming of differentiated

somatic cells to induced pluripotent stem cells (iPSCs) by Oct4,

Sox2, c-Myc, and Klf4, reactivates the expression of Nanog

(Takahashi and Yamanaka, 2006; Brambrink et al, 2008); in

addition, Nanog overexpression itself cooperates with some of

the above stemness factors (i.e., c-myc) in cell reprogramming

(Lewitzky and Yamanaka, 2007), indicating that Nanog has an

important function in determining stemness. To this regard,

Nanog is required to drive the cell transit to ground-state

pluripotency in both ES cells and iPSC (Silva et al, 2009).

A role for Nanog has also recently been described in

postnatal cerebellar neural stem cells (NSCs), where Hh/Gli-

dependent Nanog overexpression sustains self-renewal (Po

et al, 2010; Zbinden et al, 2010). In spite of our good

understanding of the mechanisms regulating the expression

of these stemness drivers, there is incomplete knowledge of

their target genes and of how the resulting regulatory network

operates in order to determine stem cell features. MicroRNAs

(miRNAs) have emerged as important players in the control of

stem cell behaviour (Blakaj and Lin, 2008). MiRNAs bind to

the 30untranslated region (30UTR) of target mRNAs to repress

their translation and stability (Stefani and Slack, 2008).

Previous reports have described miRNAs (i.e., miR-302-367,

miR-134, and miR-296) targeting Nanog in ES cells (Tay et al,

2008a, b); however, whether Nanog regulates the miRNA

network in stem cell context has not been elucidated yet.

To this end, we analysed high-throughput miRNA profiling

in NSCs upon modulation of Nanog expression. This study

allowed us to identify specific miRNAs controlled by Nanog,

including miR-17-92 cluster. The two miR-17 family members

of miR-17-92 cluster, namely miR-17 and miR-20a, negatively

control p53-induced nuclear protein 1 (Trp53inp1), a down-

stream component of p53 pathway. In NSCs, Nanog enhances

miR-17 family and inhibits the expression of Trp53inp1, thus

promoting self-renewal. Our findings show that Nanog con-

trols stem cells through miR-17/20a-mediated repression of

Trp53inp1, thus blunting the known opposing activity of p53

upon Nanog, in order to maintain NSC. Therefore, we identi-

fied a previously unsuspected backward arm of the Nanog/

p53 pathway cross-regulation of stemness.

Results

High-throughput miRNA profiling in high- and

low-Nanog expressing cells

To identify miRNA regulated by Nanog, we have chosen

different cell models in which to modulate the levels of
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Nanog expression: high-Nanog and low-Nanog expressing

cells. Indeed, we have previously described that Prominin-

1þ cells, reported to populate the postnatal mouse cere-

bellum (Lee et al, 2005), are characterized by high Nanog

levels and are able to form neurospheres (Po et al, 2010).

To select this ‘high Nanog NSC’ (HN-NSC) cell population,

we infected neurospheres with lentiviral vector expressing

GFP under the control of Nanog promoter (Nanog/GFP) or a

control CMV promoter (CMV/GFP) and sorted the GFP-

positive cells. Nanog/GFP-positive cells presented, as ex-

pected, higher levels of Nanog and stemness-related markers,

Gli1 and prominin-1, compared to the CMV/GFP (Figure 1A;

Supplementary Figure S1A). We also generated an additional

model of high-Nanog expressing cells by transfecting a

Nanog-encoding vector (or of an empty vector as a control)

in neurospheres (Figure 1B; Supplementary Figure S1B).

Conversely, downregulation of Nanog or low-Nanog ex-

pressing cells (LN-NSCs) were obtained culturing HN-NSC

under differentiation conditions (Figure 1C; Supplementary

Figures S1C and S1D). Either platelet derived growth factor

(PDGF) or retinoic acid (RA) prevented neurosphere forma-

tion from dispersed secondary neurospheres and resulted in

cells with a differentiated morphology (Supplementary

Figure 1C) and expressing markers of differentiation.

Differentiated NSCs presented higher levels of the neuronal

differentiation marker bIII-tubulin, while the stemness deter-

minant Nanog and the Hh pathway components Smo and

Gli1 were reduced (Figure 1C; Supplementary Figure S1D).

In addition, LN-NSCs have been also obtained by siRNA-

mediated targeting of Nanog (siNanog; Figure 1D and

Supplementary Figure S1E). Clonogenic assays of Nanog-

depleted NSCs revealed a lower capacity to form neuro-
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Figure 1 Features of neurospheres with respect to Nanog expression. (A) Western blot and mRNA levels of Nanog, Gli1, and Prominin-1
(Prom1) in GFP-sorted cells infected with Nanog-GFP or CMV-GFP control lentiviral vector. Graph error bars indicate s.d. calculated on at least
three independent experiments. *Po0.05 versus CMV-GFP. Densitometry of western blot is in Supplementary Figure S1A. (B) Western blot for
protein and mRNA levels of Nanog after overexpression of Nanog or Empty (Ctrl) vectors. Bars represent the mean of three independent
experiments ±s.d. *Po0.05 versus Ctrl. (see Supplementary Figure S1B for densitometry). (C) Representative image of protein levels of
stemness (Nanog), Hh (Gli1 and Smo), and differentiation (bIII-tubulin) markers in HN-NSC treated with PDGF or RA (4 days) (see
Supplementary Figure S1D for densitometry). (D) SiRNA-mediated silencing of Nanog (siNanog): in the upper part, mRNA levels and western
blot of Nanog; in the lower part, bright-field images of secondary neurosphere-forming assay of NSCs after Nanog silencing (scale bar, 100 mm)
and the relative percentage of neurosphere-forming capability. Bars represent the mean of three independent experiments ±s.d. *Po0.05
versus siCtrl. (E) Hierarchical clustering of differentially expressed miRNA, in high (HN-NSC: Nanog-GFP, Nanog overexpressing cells (Nanog)
or low Nanog cells (LN-NSC: 4-day RA or PDGF treated; silencing of Nanog (siNanog). All data are normalized against the relative controls. A
green-red colour scale depicts normalized miRNA expression levels (green, low; red, high). Source data for this figure is available on the online
supplementary information page.
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spheres (Figure 1D, bottom ; Supplementary Figure S1F). All

of the above cell models were therefore classified as ‘low

Nanog’ NSCs (LN-NSC). We performed high-throughput

miRNA expression profiling on all HN-NSC and LN-NSC

models. In the HN-NSC contexts, we found a total of

69 differentially expressed miRNAs (54 upregulated and

15 downregulated, with respect to relative controls)

(Supplementary Figure S2; Supplementary Table S1). In the

LN-NSC models, a total of 105 miRNAs were differentially

expressed (84 downregulated and 21 upregulated, compared

to relative controls) (Supplementary Figure S2;

Supplementary Table S2). Cross-comparison of all clustered

miRNAs allowed us to generate a ‘consensus’ of 12 miRNAs,

which are upregulated in all models of HN-NSC and down-

regulated in all models of LN-NSC, and 2 miRNAs which

behave in the opposite way (Figure 1E; Supplementary

Tables S1 and S2). These miRNAs are more likely to be

directly regulated by Nanog expression. Interestingly, our

screening approach unveiled Nanog modulation of the two

paralogous polycistronic miRNA clusters miR-17-92 and miR-

106b-25 (Figure 1E; Supplementary Tables S1 and S2) pre-

viously reported to modulate various cell-cycle regulators,

potentially involved in stem/progenitor cell control (Li et al,

2011; Vidigal and Ventura, 2012).

Indeed, it has been described that miR-17-92 cluster en-

hances the proliferation of cerebellar granule cell progenitors

(GCPs) (Northcott et al, 2009; Uziel et al, 2009), while an

miR-106b-25 cluster has been reported to regulate adult NSC

proliferation and neuronal differentiation (Brett et al, 2011).

Since GCPs originate during the differentiation of NSCs both

in vitro and in vivo (Klein et al, 2005; Po et al, 2010), we

focused our further study on these clusters.

MiR-17-92 cluster is a direct Nanog target in NSC

We first validated profiling data by single assay QPCR

(Figure 2A). To verify a direct transcriptional Nanog control

on the two miRNA clusters, miR-17-92 and miR-106b-25, their

genomic cis-regulatory regions were investigated. To this end,

we looked for the presence of putative Nanog responsive

elements (NREs) using the Genomatix Mathinspector soft-

ware package, by scanning 1.5 kb of mouse genomic sequence

located upstream of the predicted miR-17-92 cluster transcrip-

tion start site (TSS) and the sequences upstream miR-106b-25

cluster TSS together with the promoter of the Mcm7 gene

hosting this cluster (Kim and Kim, 2007). We identified s1

(� 241 bp), s2 (� 874 bp), and s3 (� 1063 bp) sites in miR-17-

92 locus (Figure 2B; Supplementary Figure S3) as well as s1–

s3 (� 45 bp, � 480 bp, and � 1403 bp, respectively) and s4

(� 356 bp of Mcm7 promoter) in miR-106b-25 cluster as

putative NRE (Supplementary Figure S4A). Next, we exam-

ined the in vivo occupancy of endogenous Nanog on these

putative cis-regulatory sequences in HN-NSCs. Chromatin

immunoprecipitation (ChIP) experiments revealed that

Nanog was recruited on the s1, s2, and s3 sites in miR-17-92

cluster (Figure 2C). Nanog recruitment was accompanied by

acetylation of histone H3 in the same promoter sequence, as a

marker of a transcriptionally active region. After RA treatment

of HN-NSC, Nanog levels were reduced together with abroga-

tion of its binding on NREs (Figure 1C) and a decrease in

acetylated histone H3 (Figure 2C). In contrast, s1–s4 sites of

miR-106b-25 cluster did not recruit Nanog, suggesting that this

cluster is not subjected to a direct transcriptional regulation by

Nanog (Supplementary Figure S4B). To confirm the role of

Nanog in the control of miR-17-92 cluster transcription, we

generated and tested constructs in which the wild-type or

mutated miR-17-92 upstream regulatory region was driving

luciferase reporter. We found that either overexpression or

siNanog significantly enhanced or inhibited, respectively,

miR-17-92 promoter activity (Figure 2D). Accordingly, en-

hanced miR-17-92 promoter-driven luciferase activity was

observed in Nanog promoter-GFP-sorted cells, compared to

controls, proving that Nanog-dependent miR-17-92 transcrip-

tion is enriched in Nanogþ cells (Figure 2D). We also

generated mutant reporters (Ds1, Ds2, and Ds3) that have

altered sequences in the Nanog-binding sites, which pre-

vented Nanog-induced luciferase activity, suggesting that the

presence of these NREs is required to activate transcription of

miR-17-92 cluster (Figure 2D). As a positive control, the

transcriptional activity of Nanog on its own promoter was

tested, as described earlier (Wu et al, 2006). Overall, these

findings demonstrated that miR-17-92 cluster is a direct

transcriptional target of Nanog.

MiR-17-20a targets Trp53inp1 in NSC

To better understand the network of Nanog/miR-17-92 in

NSCs, we searched for potential targets of this cluster.

Mir-17-92 cluster consists of six miRNAs that are processed

from a common precursor transcript and that can be

subgrouped into four families based on their ‘seed’ sequence,

including miR-17 family (miR-17 and miR-20a), miR-18

family (miR-18a), miR-19 family (miR-19a and miR-19b),

and miR-92 family (miR-92a). We searched for putative

targets of each family using the prediction algorithms of

PicTar, TargetScan, and MiRBase. We found that, among

miR-17-92 cluster putative gene targets, the most highly

downregulated or upregulated gene in Nanog-GFP and in

siNanog cells, respectively, was Trp53inp1 (Supplementary

Figures S5A and B). Trp53inp1 is an anti-proliferative

protein within the p53 pathway, being transcriptionally acti-

vated by p53 and enhancing its activity upon its responsive

genes, that is, p21 (Okamura et al, 2001; Tomasini et al, 2001,

2002). The other miR-17-92 putative target genes evaluated

resulted just slightly (i.e., p21 and Rb1) or not regulated

(Supplementary Figures S5A and B). Since Trp53inp1 was

the most consistently gene regulated by Nanog in NSCs

(Supplementary Figures S5A and B) and in the light that

p53 pathway is a master stemness regulator (Meletis et al,

2006), we focussed on the characterization of Trp53inp1 by

Nanog/miR-17/92 axis. By base-pairing complementation,

we found that the 30UTR of Trp53inp1 encompasses two

putative binding regions (1016–1021 nt and 4268–4275 nt)

bearing significant complementarities against both miR-17

and miR-20a (Figure 3A; Supplementary Figure S6A).

Abrogation of miR-17 family members, through LNA-modi-

fied antagomirs (LNA), confirmed the Nanog-dependent up-

regulation of Trp53inp1, while other genes evaluated resulted

unaffected (Supplementary Figure S6B).

The two 30UTR elements of Trp53inp1 and the sequences of

their miR-17 family putative binding sites are extremely

conserved among different species (mouse, rat, monkey,

and human orthologues) (not shown), suggesting a func-

tional role. Therefore, to investigate whether Trp53inp1 is a

‘bona fide’ target of miR-17 family members, a mouse

Trp53inp1 4418 bp 30UTR fragment was divided into two

miR-17-92 cluster is a direct Nanog target
N Garg et al

2821&2013 European Molecular Biology Organization The EMBO Journal VOL 32 | NO 21 | 2013



clones comprising 1–2275 bp (site 1) and 2131–4418 bp

(site 2) regions harbouring the putative miRNA-binding

sites and cloned downstream the luciferase reporter gene

(Supplementary Figure S7A). Luciferase activity of

Trp53inp1 30UTR-site 1 was markedly reduced by 40 and

50% in cells transfected respectively with miR-17 or miR-20a,

while these miRNAs decreased 30UTR site 2 activity by 45

and 55%, respectively (Figure 3B). Conversely, site 1 or

site 2 deletion from Trp53inp1 30UTR abrogated miR-17 or

miR-20a-reduced luciferase activity as compared to their

wild-type 30UTR, suggesting that these sites are required

for miRNA binding and activity (Figure 3B). Remarkably,

Trp53inp1-30UTR-Luciferase activity was reduced in

NanogGFP NSCs or increased after siNanog, suggesting a

relevance of this regulation in high or low Nanog contexts

(Figure 3C). Accordingly, inactivation of each miRNA by

specific LNA anti-miR induced an increase in Trp53inp1

mRNA and protein levels (Figure 3D; Supplementary

Figure S7B). Overall, these findings demonstrated that

Trp53inp1 is a direct target of the Nanog/miR-17 family axis.

In order to verify the presence of Nanog/miR-17/20a/

Trp53inp1 axis in vivo, we derived Prominin-1þ NSC from

fresh mouse cerebella, as previously described (Po et al,

2010). Prominin-1þ FACS-sorted cells displayed high levels

C

A

+ RA 

Ig
G

N
an

og

In
pu

t

A
c 

H
3

β Actin
S3

S1

S2

Ig
G

N
an

og

In
pu

t

A
c 

H
3

Basal  

B +1

–1063 –874 –241

s1s2s3

miR-17-92
17 18a 19a 20a 19b 92a

D

*
*

* *
*

Nanog

NSC
+RA

0

5

10

F
ol

d 
in

du
ct

io
n

NSC

S1
S2
S3

NSC
+RA

NSC

AcetylH3

*wt

s1 
s2 
s3 

Nanog-Luc

PgL4 

s1s3

miR-17-92 Luc

s2 

0 2 4 6 12 14

**

CMVGFP

NANOGGFP

siNanog
o/e Nanog

* *

16

* * *

Basal NSC

Luciferase activity

miRNA levels (arbitrary units)

1 5 10–5–10

miR-92a

miR-19b

miR-20a

miR-19a

miR-18a

miR-17

PDGFRA siNanog

miR-25

miR-93

miR-106b

NanogNanogGFP

Figure 2 Nanog transcriptionally controls miR-17-92 cluster expression. (A) RT–qPCR analysis of individual microRNA miR-17-92 and miR-
106b-25 clusters in HN-NSC (Nanog-GFP and Nanog overexpressing cells) or LN-NSC (NSC after RA and PDGF treatment and Nanog silencing).
Bars represent the mean of three independent experiments ±s.d. Po0.05 versus respective control for all. (B) Representation of microRNA-17-
92 cluster upstream regulatory region showing the putative Nanog responsive elements (NREs), labelled as s1, s2, and s3 (depending upon the
distance from TSS, s1 closest and s3 farthest). (C) ChIP (upper panel) and qPCR-ChIP (lower panel) assays from untreated or RA-treated NSC
using anti-Nanog or anti-acetyl-H3 antibodies. Eluted DNA was PCR amplified for s1, s2, and s3 NRE of miR-17-92 cluster upstream region or b-
actin with primers shown in Materials and methods. Real-time qPCR-ChIP results are expressed as fold induction versus b-actin-amplified ChIP
controls. Bars represent the mean of three independent experiments ±s.d. *Po0.05 versus untreated cells. (D) Relative luciferase activity
driven by mouse miR-17-92 cluster wild-type (wt) upstream regulatory region (� 1107 bp, as reported in Supplementary Figure S3) in basal
condition, in Nanog-GFP versus CMV-GFP cells and after silencing and overexpression of Nanog. Mutants (Ds1, Ds2, and Ds3) of Nanog-
binding sites are shown in the presence of Nanog overexpression in NSC. As a control, luciferase activity of mouse Nanog promoter
(� 2500 bp) reporter construct carrying Nanog consensus sequence (Nanog-Luc) in all contexts analysed is shown. Luciferase activity of PgL4
(empty vector) reporter construct (as a mock control) is also reported. Results are normalized with pRL-CMV-Renilla Luciferase. Bars represent
the mean of at least three independent experiments performed in triplicate ±s.d. *Po0.01. **Po0.005. Source data for this figure is available
on the online supplementary information page.

miR-17-92 cluster is a direct Nanog target
N Garg et al

2822 The EMBO Journal VOL 32 | NO 21 | 2013 &2013 European Molecular Biology Organization



of both Nanog and miR-17-92 cluster, while Trp53inp1

expression was very low, compared to sorted Prominin-1�

cells (Figure 3E). These results show that, in analogy with

neurospheres, in ‘ex vivo’ NSC, miRNA 17-92 cluster and

Nanog are highly expressed, while Trp53inp1 is downregu-

lated, thus supporting the presence of a Nanog/miR-17/20a/

Trp53inp1 axis in a ‘bona fide’ NSC context.

Nanog/miR-17/20a/Trp53inp1 controls cell cycle and

proliferation

It has been described a p53-induced negative regulation of

both Nanog expression (Lin et al, 2005; Kawamura et al,

2009) and NSC self-renewal (Meletis et al, 2006), aimed at

restraining the overproliferation of NSCs by limiting the

frequency of self-renewing divisions. The Nanog-dependent

control of Trp53inp1, that we have described, would suggest

a backward regulation of p53 pathway Nanog cross-talk,

where Nanog counteracts the growth-limiting function of

p53 pathway.

To verify this hypothesis, we first checked how Nanog/

miR-17/20a/Trp53inp1 axis is regulated along the cell

cycle. NSCs were synchronized through a 12-h treatment

with nocodazole, resulting in G2-phase accumulation

(Figure 4A). After nocodazole withdrawal, synchronized

cells were monitored along cell-cycle phases (Figure 4B;

Supplementary Figure S8) for Nanog and Trp53inp1 levels
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Graph error bars indicate s.d. calculated on at least three independent experiments. *Po0.05 versus LNA ctrl. Relative densitometry of western
blot is reported in Supplementary Figure S7B. (E) Gene expression analysis of Prom1, Nanog, and Trp53inp1 mRNA and microRNA from miR-
17-92 cluster of FACS-sorted Prominin1þ (Prom1þ ) versus Prominin1� (Prom1� ) cells. Results were obtained from the cell pools derived
from eight fresh mouse cerebella of 4-day-old mice. Bars represent the mean of three independent experiments ±s.d. *Po0.05 versus Prom1�

cells (dashed line). Source data for this figure is available on the online supplementary information page.
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(Figure 4C). Nanog levels increased as early as 6–8 h after

drug withdrawal (time 0 h), Po0.05 versus T0 (Figure 4C),

which marks cells moving from G1 to S phase (Figure 4B;

Supplementary Figure S8). Such increase preceded the upre-

gulation of miR-17/20a levels (between 8 and 10 h) (Po0.05

versus T0), followed by a decrease in Trp53inp1 levels

(between 10 and 12 h) (Po0.05 versus T0) (Figures 4C and

D). As cells moved along S phase after 8 h, Nanog and

Trp53inp1 levels arose or declined, respectively (Figures 4B

and C). Remarkably, this modulation was associated with

increased miR-17/20a levels in early S phase, which would

explain Trp53inp1 low levels (Figures 4C and D).

The above findings suggest that Nanog is functionally

linked to cell proliferation rate, as supported by the ability

of Nanog silencing to reduce BrdU uptake in HN-NSCs

(Figure 5A; Supplementary Figure S9). Moreover, double

staining with BrdU and 7-AAD allowed us to follow HN-

NSC cell cycle after Nanog silencing, that resulted in a

reduction in S phase together with an increase in G0/G1

(Figure 5B; Supplementary Figure S10). Accordingly, by

labelling NSC using a fluorescent anti-Nanog antibody, we

observed that the majority of Nanogþ cells were in the S

phase (Figure 5C). A similar increase in Nanogþ cells was

observed after the treatment with the Hh agonist SAG, pre-

viously shown to enhance NSC proliferation (Po et al, 2010)

(Figure 5D).

Overall, these observations indicate that Nanog enhances

the proliferation of NSCs by promoting G1/S transition,

supporting the previously described findings in human ES

cells, in which Nanog enhances S-phase entry (Zhang et al,

2009).

miR-17/20a is required for Nanog effects on NSC,

through inactivation of Trp53inp1

To further investigate the mechanism of Nanog-dependent

Trp53inp1 regulation, we first examined how Trp53inp1

levels changed upon Nanog modulation. We observed a

reduced expression of Trp53inp1 in both NanogGFP and

SAG-treated NSC (Figures 6A and B). Conversely, siNanog

reverted Trp53inp1 expression levels (Figure 6C). To confirm

that Nanog effect on Trp53inp1 is mediated by miR-17/20a,

we inhibited these miRNAs with specific LNA antagomirs

(LNA 17/20a) in the presence of Nanog overexpression.

Nanog overexpression induced a decrease in Trp53inp1;

however, in the presence of miR-17/20a silencing, Nanog

did not inhibit Trp53inp1, thus proving that its action on

Trp53inp1 is mediated by these two miRNAs (Figure 6D).

Moreover, to directly address the role of Trp53inp1 and

miR-17/20a in cell proliferation, we transfected HN-NSC

with a combination of LNA anti-miR-17 and -20a. LNA

antagomir increased Trp53inp1 protein levels (Figure 7A)

and significantly reduced cell proliferation rates (Figure 7B;
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Supplementary Figure S11). To confirm the anti-proliferating

role of Trp53inp1 in this context, we prevented the LNA-

miR17/20a-mediated upregulation of Trp53inp1 by specific

Trp53inp1 silencing (siTrp53inp1) (Figure 7A). Trp53inp1

silencing rescued the reduced cell proliferation induced by

LNA anti-miR alone (Figure 7B). These observations support

that Trp53inp1 reduced NSC proliferation rate induced by loss

of miR-17/20a. Since Nanog drives NSC proliferation, we

then asked whether this effect was mediated by the decrease

in Trp53inp1 through upregulation of miR-17/20a. As shown

in Figure 7C, siNanog resulted in increased Trp53inp1 levels,

an effect prevented by simultaneous overexpression of miR-

17/20a or siTrp53inp1 (Figure 7C). Remarkably, the reduction

of BrdU uptake in Nanog-depleted NSCs was also abrogated

by miR-17/20a overexpression or by siTrp53inp1 (Figure 7C;

Supplementary Figure S12). Finally, to better understand the

effect of Nanog/miR17/20a/Trp53inp1 axis upon cell cycle,

we carried out FACS analysis with BrdU and 7-AAD double

staining, to monitor cell-cycle phases (Supplementary Figure

S10). According to results shown above, a decrease in S phase

BrdUþ cells was observed in NSC after Nanog silencing, an

effect reverted by Trp53inp1 knockdown or by miR-17/20a

overexpression (Figure 7D). Consistently, cell-cycle analysis

showed that LNA-miR-17/20a-induced reduction in S-phase

cells was reverted by siTrp53inp1 and was not affected

by Nanog overexpression (Figure 7E; Supplementary

Figure S10). Collectively, these findings suggest that Nanog,

miR-17/20a, and Trp53inp1 are involved in the control of

NSC proliferation and S-phase entry through Nanog-induced

upregulation of miR-17/20a and consequent downregulation

of p53 pathway component Trp53inp1.

Nanog-miR-17/20a-Trp53inp1 axis controls NSC

self-renewal

A critical property of stem cells is self-renewal, summarized

by the ability to form neurospheres derived from the clonal

expansion of individual stem cells, when cultured in vitro. We

have previously reported that this property is driven by

Nanog in NSCs (Po et al, 2010). To elucidate the functional

role of miR-17/20a in NSCs self-renewal, we overexpressed

these two LNA anti-miR, alone or in combination in NSCs

and observed a significant reduction in clonogenic rates, as

revealed by neurosphere-forming assay (Figures 8A and B).

To understand the role of Trp53inp1 in this context, we

transfected specific siTrp53inp1. Trp53inp1 silencing rescued

the reduced self-renewal ability of LNA-miR-treated cells that

displayed an increased yield of neurosphere formation

compared to controls (Figures 8A and B). These observations

confirm that Trp53inp1 is responsible for the reduction

in NSC self-renewal induced by loss of miR-17/20a. Since

high expression of Nanog drives NSCs self-renewal (Po et al,

2010), we investigated the role of miR17/20a/Trp53inp1 axis

in Nanog activity. Remarkably, siRNA-mediated Trp53inp1

depletion or overexpression of miR17/20a counteracted the

reduction in NSC self-renewal observed after siNanog

(Figure 8C).
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Overall, our findings indicate that Nanog enhances

miR-17/92 cluster expression that in turn targets Trp53inp1,

thus contributing to release NSC self-renewal constraints

(Figure 8D). These observations suggest that miR-17 and

miR-20a are required for Nanog effects on NSC, through

inactivation of Trp53inp1.

Discussion

Nanog is known to be critical for the maintenance of ESC

(Chambers et al, 2003; Mitsui et al, 2003) and also recently

described to foster self-renewal of postnatal NSCs (Po et al,

2010), although the downstream miRNA network has not

yet been understood. We describe here the first report of a

high-throughput screening of expression profiles of miRNAs

regulated by Nanog in postnatal NSCs and identify a number

of miRNAs that are modulated following increased or

decreased expression of this transcription factor, suggesting

that they might be downstream effectors of Nanog. To gain

insights into the transcriptional regulatory networks in ESC

cells, ChIP coupled with ultra-high-throughput DNA deep-

sequencing (ChIP-seq) has identified the association of the

core transcriptional regulatory Oct4/Sox2/Nanog/Tcf3

complex to a number of miRNA promoters (Marson et al,

2008). Notably, some of these Oct4/Sox2/Nanog/Tcf3-bound

promoters correspond to miRNAs modulated by Nanog in

NSCs described in our study (e.g., miR-19b and miR-363),

suggesting that they are putative direct targets of this

transcription factor and that they are conserved in NSCs. In

contrast, the most abundant miR-290/295 cluster in murine

ESC, which is also occupied by Oct4/Sox2/Nanog/Tcf3

(Marson et al, 2008), is not modulated by Nanog in NSCs,

suggesting an miRNA specificity among stem cells lines.

Interestingly, a never reported observation of our study is
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the finding of an miR-17/92-Trp53inp1 axis downstream

Nanog in NSCs, suggesting a new circuitry involving a

Nanog, miRNAs and p53 pathway (Trp53inp1) in neuronal

stem cells (Figure 8D).

MiR-17-92 cluster is a novel direct target of Nanog in

NSCs

We identify herein that miR-17-92 cluster is a direct trans-

criptional target of Nanog. This transcription factor binds

directly at the miR-17-92 cluster regulatory region and in-

creases the levels of all of the miRNAs belonging to it. This is

the first report both of a functional link between Nanog and

miR-17-92 cluster and of the ability of miRNA members of the

cluster, the miR-17 family, to control NSC features. This

strengthened the role of Nanog as a critical player in the

homeostatic control of adult neuronal stem cell functions.

According to our observations, it has been described that

miR-17-92 cluster also controls iPSC, ESC, lung stem cells as
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well as multipotent haematopoietic progenitors (Smith et al,

2010; Li et al, 2012; Oeztuerk-Winder et al, 2012). The ability

of Nanog, an Hh target gene, to regulate miR-17-92 cluster

highlights the role of developmental signals in the control of

miRNAs. Indeed, Hh pathway has been reported to

upregulate miR-17-92 cluster through its target MYCN in

cerebellar GCPs (Northcott et al, 2009; Uziel et al, 2009),

which are generated upon NSC differentiation in vitro and

in vivo (Klein et al, 2005; Po et al, 2010). Our study provides a

further explanation to the Hh-driven control of miR-17-92

cluster, which is also mediated by the Hh/Gli-induced Nanog

expression observed in postnatal cerebellar NSCs (Po et al,

2010). We show that Nanog, which is expressed at very high

levels in NSCs, as compared to GCPs (Po et al, 2010),

enhances miR-17-92 cluster under the control of Hh, thus

driving self-renewal. Moreover, these findings boost the

knowledge about the Hh/miRNAs interplay. A new axis,

including miR-17-92 cluster, controlled by Hh via Nanog, is

now added to miRNA/Hh cross-regulation, according to the

miRNA-mediated targeting of Smo and Gli1 already reported

in GCPs (Ferretti et al, 2008).

MiR-17/20a targeting of Trp53inp1 identifies a backward

loop in the p53/Nanog network in NSCs

We identify here Trp53inp1 as a novel miR-17/20a target in

NSCs. Indeed, Trp53inp1 30UTR is specifically bound by miR-

17 and miR-20a, the two members of miR-17 family, resulting

in a decrease in Trp53inp1 protein levels.
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Most interestingly, we suggest that miR-17-92 cluster med-

iates Nanog action upon self-renewal and cell growth. We

have described an early burst of Nanog at G1/S transition,

with a subsequent increase in miR-17/20a and a decrease in

Trp53inp1, suggesting coordination in controlling G1/S tran-

sition in NSCs. While these data support the previously

described role of Nanog in G1/S transition in human ES

cells (Zhang et al, 2009), we suggest that Trp53inp1

contributes Nanog effect on the cell cycle through miR-17/

20a in NSC.

The Nanog/miR-17/92/Trp53inp1 axis we have described a

novel mechanism that underlies the p53/Nanog network,

known to play a crucial role in stem cells. Indeed,

Trp53inp1 is involved in cell stress response and is a p53-

dependent and -independent inhibitor of cell-cycle progres-

sion and promoter of apoptosis (Okamura et al, 2001;

Tomasini et al, 2003, 2005). This protein is not only

induced by p53, but also controls p53-mediated activity

(Okamura et al, 2001; Tomasini et al, 2002). Trp53inp1 co-

localizes with p53 and physically interacts with proteins

modifying p53 transcriptional activity on several p53 target

genes, such as homeodomain-interacting protein kinase-2

(HIPK-2), (Tomasini et al, 2003) that phosphorylates p53 at

Ser 46 and enhances its function (D’Orazi et al, 2002).

Trp53inp1 thus appears as a key element in p53-mediated

cell-cycle arrest. The oncosuppressor p53 has been described

to have a critical function in inhibiting the reprogramming of

iPSCs and of pluripotent and self-renewing stem cells and to

repress Nanog expression (Lin et al, 2005; Kawamura et al,

2009) as well as NSC proliferation and self-renewal (Meletis

et al, 2006). P53 also suppresses Hh pathway (Stecca and

Ruiz i Altaba, 2009; Mazzà et al, 2013, in press) that in turn

represses p53 (Abe et al, 2008; Stecca and Ruiz i Altaba,

2009). A p53-independent regulation of Nanog and of

stemness is also occurring in NSCs, through Gli-mediated

direct transcriptional control (Po et al, 2010). Therefore, we

speculate that p53 may restrain self-renewing NSC divisions

(i) by directly suppressing Nanog expression (Lin et al, 2005);

(ii) through cross-inhibition of Hh signalling via Nanog (Po

et al, 2010), and (iii) through Trp53inp1 increase, which acts

as a suppressor of stem cell self-renewal by acting as a

functional positive feedback loop on p53 (i.e., enhancing

p21 expression). We speculate that additional Nanog-

induced effects might be miR-17/20a-mediated inhibition of

p21 (both direct and Trp53inp1-mediated) and Rb1.

In conclusion, we prove that Nanog maintains self-renewal

and cell cycle in post-natal NSCs counteracting p53 pathway,

at least partially, through miR-17/20a-mediated repression of

Trp53inp1.

Materials and methods

Stem cell culture
Mouse cerebella were obtained from postnatal 4-day-old wild-type
BL6 mice with the approval of Institutional Review Board (Po et al,
2010). Briefly, tissues were collected in HBSS supplemented with
0.5% glucose and penicillin-streptomycin, grossly triturated with
serological pipette and treated with DNAse I to a final concentration
of 0.04% for 20 min. Finally, cell aggregates were mechanically
dissociated using pipettes of decreasing bore size to obtain a single-
cell suspension. Cells were cultured as neurospheres in selective
medium after centrifugation; DMEM/F12 supplemented with 0.6%
glucose, 25 mg/ml insulin, 60 mg/ml N-acetyl-L-cysteine, 2 mg/ml
heparin, 20 ng/ml EGF, 20 ng/ml bFGF (Peprotech, Rocky Hill, NJ),

1� penicillin-streptomycin and B27 supplement without vitamin A.
For the neurosphere-forming assay, cells were plated at clonal
density (1–2 cells/mm2) into 96-well plates and cultured in
selective medium as described above. For differentiation studies,
neurospheres were mechanically dissociated, and the resulting cells
were plated onto D-poly-Lysine-coated dishes in differentiation
medium (DMEM/F12 with N2 supplement and 2 mg/ml heparin,
0.6% glucose, 60 mg/ml N-acetyl-L-cysteine, containing 1% Calf
Serum and PDGF 10 ng/ml (Sigma, P3076) or RA 2mM (Sigma,
R2625), for 4 days. Unless otherwise indicated, media and
supplements for cell culture were purchased from Gibco-
Invitrogen (Carlsbad, CA) and chemicals were purchased from
Sigma-Aldrich (St Louis, MO). Neurospheres were transduced
with pGreenZeo Lentiviral Reporter Vectors containing specific
promoters for NANOG (Nanog-GFP) or CMV (CMV-GFP) (Biocat,
Heidelberg, Germany). For overexpression studies, Nanog vector
(pPYCAG-IP-Nanog-IRES-EGFP) and control plasmid (pPYCAG-IP-
IRES-EGFP) were kindly provided by Dr Fiona Watt, University of
Cambridge, UK. NSC images were acquired using the EVOS xl core
digital inverted microscope (AMG). Neurospheres were treated with
Smo-agonist SAG (200 nM, Alexis).

For cell-cycle analysis, Nocodazole (Sigma-Aldrich) was added at
the concentration of 500 ng/ml for 12 h for synchronization in G2
phase, cells were then washed to remove Nocodazole and put in
stem medium to allow cell-cycle progression. Cells were then
stopped at given points for FACS, RNA, and protein analyses and
for immunofluorescence investigations. All experiments were per-
formed at least in triplicate and results represented as mean
values±s.d.

Fluorescence-activated cell sorting
Mechanically dissociated cells transduced with Nanog-GFP or with
CMV-GFP were sorted by fluorescence-activated cell sorting, FACS
Aria (Becton Dickinson, NJ).

Mechanically dissociated fresh mouse cerebella cells were stained
with anti-Prominin1-PE (Miltenyi Biotec) according to the manu-
facturing instructions and sorted by FACS Aria.

For visualization of cells in different phases of cell cycle, cells
were fixed with 70% ethanol for 2 h at þ 41C; cells were then
washed and incubated overnight with 25 mg/ml 7-AAD (Sigma) and
40 mg/ml RNAse A (Sigma) in PBS.

For double staining, first cells were pulsed for 3 h with BrdU, then
were fixed in 30% Methanol and 0.4% PFA and incubated for
15 min with 500 000 U/ml DNAse (Sigma). Fixed cells were washed
and incubated with Anti-BrdU–APC (BD Pharmingen) for 1 h at RT.
Finally, cells were counterstained with 7-AAD.

For endogenous Nanog visualization by FACS, antibody Alexa
Fluor 647 Mouse anti-mouse Nanog (560279; BD Pharmingen) and
Alexa Fluor 647 Mouse IgG1K Isotype Control (557732; BD
Pharmingen) were used. In both cases, cells were counterstained
with 7-AAD. The staining procedure was done according to the
manufacturer’s instructions (Catalogue Number: 00-5523,
eBioscience, CA). Briefly, two million cells were fixed with 1 ml
Fixation/Permeabilization solution, pulse vortexed and incubated at
41C or at room temperature for 60 min in the dark. Fixed cells were
then permeabilized, stained using Nanog Alexa-Flour or Isotype
control and visualized by FACS on FACSCalibur using the CellQuest
software (both from BD Biosciences, San Jose, CA, USA).

RNA isolation and real-time qPCR
RNA isolation from cells and tissue samples was performed as
described previously (Ferretti et al, 2006). cDNA synthesis was
performed using the High Capacity cDNA reverse transcription kit
from Applied Biosystems (Foster City, CA). Quantitative reverse
transcription (RT–PCR) analysis of Nanog, Gli1, bIII-tubulin,
CcnD1, Smo, Trp53inp1, b-actin, b2 microglobulin, and Hprt
mRNA expression was performed on cDNAs employing the ABI
Prism 7900HT Sequence Detection System (Applied Biosystems)
using TaqMan gene expression assay according to the
manufacturer’s instructions (Applied Biosystems/LifeTech). Each
amplification reaction was performed in triplicate, and the average
of the three threshold cycles was used to calculate the amount of
transcripts in the sample (SDS software, AB). mRNA quantification
was expressed, in arbitrary units, as the ratio of the sample quantity
to the calibrator or to the mean values of control samples. All values
were normalized to three endogenous controls, b-actin, b2
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microglobulin and Hprt. MiRNA expression using Taqman probe
was performed as described earlier (Ferretti et al, 2008) using the
following miRNAs: miR-17-5p (Code:002308), miR-18a-5p (Code:
002422), miR-19-3p (Code:000395), miR-19b-3p (Code:000396),
miR-20a-5p (Code:000580), miR-20b-5p (Code:001014), and
miR-92a-3p (Code:000430).

Western blot assay
Cells were lysed in Tris–HCl pH 7.6, 50 mM, deoxycholic acid sodium
salt 0.5%, NaCl 140 mM, NP-40 1%, EDTA 5 mM, NaF 100 mM, Na
pyrophosphate 2mM and protease inhibitors. Lysates were separated
on 8 or 10% acrylamide or pre-cast gel (4–12%, Invitrogen) and
immunoblotted using standard procedures. Anti-Mouse Nanog
(RCAB0001P; Cosmo Bio Co, Japan), anti-Gli1 H-300 (sc-20687;
Santa Cruz Biotechnology, CA), anti-Prominin1 (Ab16518-Abcam,
MA), anti-Smo N-19 (sc-6366; Santa Cruz Biotechnology), anti-
mouse bIII-Tubulin (MAB 1637; Millipore), anti-Trp53inp1 (sc-68919;
Santa Cruz Biotechnology), anti-CyclinD1 (sc-246; Santa Cruz
Biotechnology), anti-p21 (sc-397; Santa Cruz Biotechnology), anti-
GAPDH (ab8245; Abcam, MA), anti-Actin I19 (sc-1616; Santa Cruz
Biotechnology) and HRP-conjugated secondary antisera (Santa Cruz
Biotechnology) were used followed by enhanced chemiluminescence
(ECL Amersham, Amersham, UK).

Densitometry calculations for western blot were calculated using
the ImageJ software, verifying for non-saturation and subtracting
background. Values are expressed as the integrals of each band
normalized to weakest band.

miRNA expression profiling
Analysis of the expression profiling of 550 mouse miRNAs was
carried out on RNA samples according to Applied Biosystems
protocols, as described previously (Ferretti et al, 2009). The assay
included RT with specific stem-loop primers followed by real-time
qPCR using miRNA-specific TaqMan MGB probe and TaqMan
universal master mix in an Applied Biosystems 7900HT PCR
system. Pre-processing of raw data files consisted of threshold
and baseline corrections for each sample, with each amplification
plot assessed to confirm that the threshold cycle (Ct) value
corresponded with the midpoint of logarithmic amplification (SDS
2.3, Life Technologies). For all miRNA quantification experiments,
cycle threshold (Ct) values greater than 36 were excluded. Values
were normalized against the expression levels of RNU6B and
RNU48 and Delta Ct values were calculated using the Real-Time
StatMiner software (Integromics TM, Philadelphia, PA). The same
software was used to generate unsupervised hierarchical clustering
based on the support tree average linkage with and Euclidean
correlations.

Overexpression and knockdown studies
Synthetic miRIDIAN mimic (miR-17, code: C-310561-07-0010; miR-
20a, code: C-310514-05-0010) or negative control (miRIDIAN mimic
negative control, code: CN-0010000-01-05) (Dharmacon) was trans-
fected into cells using the DharmaFECT Duo transfection reagent
(Dharmacon) at 100 nM. SiGlo Green and siGLO Red transfection
control reagents (10 nM) (Dharmacon) were used to verify transfec-
tion efficiency that ranged between 75 and 85%. Antagomir-
mediated miRNA knockdown was carried out using fluorescein-
labelled LNA oligonucleotides (Exiqon, Vedbaek, Denmark; miR-17:
code 426848-00, miR-20a: code 411929-08) or combination of these
miRNAs and scrambled control (Exiqon mirCURY knockdown
probe control A: code 199002-08) (Exiqon), transfected into NSC
cells at a final concentration of 50 nM by Hiperfect reagent (Qiagen,
Hilden, Germany). Transfection efficiency ranged between 70 and
80%. siRNA for mouse Nanog (siNanog) and control (code
AM4611) were obtained from Ambion-Applied Biosystems proto-
cols. For Trp53inp1 silencing, a pool of three pre-designed siRNAs
from Ambion-Life Technologies was used (ID: s82034, s82035, and
s82036,) and silencing control was negative control 2 siRNA (code:
4390847). Transfection of siRNA duplexes (40 nM) was carried out
using the Hiperfect reagent (Qiagen) according to the manufac-
turer’s instructions. Transfections were carried out for 48 h.

Chromatin immunoprecipitation
ChIP was performed as described earlier (Canettieri et al, 2010).
Briefly, cells were cross-linked 10 min with 1% formaldehyde, and
the reaction was stopped with 0.125 M glycine for 5 min. Cells were

washed and harvested, and cytoplasmic membranes were lysed
with lysis buffer (5 mM Pipes, 85 mM KCl, and 0.5% Nonidet P-40).
After centrifugation, nuclei were lysed with sonication buffer (in
1% SDS, 10 mM EDTA, and 50 mM Tris (pH 8) supplemented with
protease inhibitors) to obtain chromatin fragments of about 400–
600 nucleotides. After sonication, lysates were precleared for 1 h,
diluted with nine volumes of dilution buffer (0.01% SDS, 1.2 mM
EDTA, 16.7 mM Tris–HCl (pH 8), 1.1% Triton X-100 and 167 mM
NaCl) and incubated with the specific antibodies overnight. The
next day, salmon sperm-saturated protein A beads (Upstate) were
added for 40 min, after which the lysates were washed five times
with Buffer A (0.1% SDS, 2 mM EDTA, 20 mM Tris–HCl (pH 8), 1%
Triton X-100 and 150 mM NaCl), four times with Buffer B (0.1%
SDS, 2 mM EDTA, 20 mM Tris–HCl (pH 8), 1% Triton X-100 and
500 mM NaCl), and once with Buffer TE (10 mM Tris–HCl (pH 8)
and 1 mM EDTA). After the final washing, the immunecomplexes
were eluted with elution buffer (1% SDS and 100 mM NaHCO3) for
30 min at room temperature and, after the addition of 200 mM NaCl,
the cross-linking was reversed with an overnight incubation at
651C. Subsequently, samples were digested with proteinase K and
RNase A for 2 h at 421C, and the DNA was purified and precipitated.
The following antibodies were used: rabbit monoclonal anti-Nanog
(Cell Signaling, code: 8600), rabbit polyclonal anti-acetyl-histone 3
(Millipore, code: 06599), normal rabbit IgG (sc-2027). Eluted DNA
was analysed with standard PCR techniques or real-time qPCR.
Primers were designed with the Primer Design and Search Tool. The
reaction was carried out using the following primers:

Primers for miR 17-92 upstream region (RT–qPCR):
Site miR 17-92 s1 Fw: TTGTAGGACCCTTATTGTGTGTTTTT
Site miR 17-92 s1 Rev: CAAATTGGACACATGTAAGCCTTAA
Site miR 17-92 s2 Fw: GGATAGAATTGCCCCTTAGGAAGA
Site miR 17-92 s2 Rev: AGGGTAAGCACATTTGCTCAAAA
Site miR 17-92 s3 Fw: TTGCTGCTACTCATCTTGCAGTATT
Site miR 17-92 s3 Rev: AGTTGAAAACCCACCAAGATTCA
Primers for miR 17/92 upstream region (PCR):
Site s1 Fw: CCTGGTCAATGTGAGGCTTT
Site s1 Rev: GCCAAAGCTCTAAATTCTGT
Site s2 Fw: GGATGTGAATCTTGGTGGGT
Site s2 Rev: ACGTGTATGACTAGGGTTGG
Site s3 Fw: CCTGGTTGCCCTTTTTCTCT
Site s3 Rev: CCCATTCCAAGTTGCTCTTC
Primers for miR-106b-25 upstream region (RT–qPCR)
Site miR-106b-25 s1 Fw: CACCTCACCTAATGACCCTCAAG
Site miR-106b-25 s1 Rev: CGGTAGCACAGAGAGGACCACTA
Site miR-106b-25 s2 Fw: CACATGGTCTCTGAAGTCTGTCAAG
Site miR-106b-25 s2 Rev: AACTTCCAACTTTTCAGGAGAATGA
Site miR-106b-25 s3 Fw: GATTCTCACCACGCTCAATGC
Site miR-106b-25 s3 Rev: GCCGGAAGCTGGACGTT
Site miR-106b-25 s4 Fw: AGAGTTGAGGACAGAGGCCATTA
Site miR-106b-25 s4 Rev: GGGTGCCATCTTGCAGGTT
Primers for beta-actin (PCR and RT–qPCR)
Fw: AGAGGGAAATCGTGCGTGAC
Rev: AACCGCTCGTTGCCAATAGT

Luciferase assays
Mouse miR-17-92 promoter_luciferase vector (� 1273 bp) was ob-
tained from Genecoepia (Catalogue No. CS-MmiPRM3357-PG04,
Gene Accession: MI0000567). Mouse Nanog promoter_luciferase
vector (� 2500 bp) (Nanog5P reporter) was obtained from Addgene
(code: Plasmid 16337, Cambridge, MA). NSCs were transfected in
24-well plates with 80 ng of Nanog or miR-17/92 promoter_lucifer-
ase vector, 400 ng of Nanog or mock and 5 ng of or pRL-CMV-Renilla
Luciferase control vector with the Fugene6 Transfection Reagent
(Roche, Basel, Switzerland). Cells were harvested and tested 24 h
post transfection with the dual-luciferase assay (Promega). Empty
pGL4 vector was tested as a negative control with Nanog or mock.
Results are expressed as luciferase/renilla ratios and represent the
average±s.d. of at least three experiments, each performed in
triplicate.

miRNA target sites in 30UTR Trp53inp1 gene regions were identi-
fied by bioinformatic analysis using the following online databases:
Target Scan (http://www.targetscan.org), pictar (http://pictar.mdc-
berlin.de/), and MiRBase Sanger (http://microrna.sanger.ac.uk/cgi-
bin/targets/v5/search.pl) (only those putative miRNA target sites
resulting from at least two databases were considered as positive).
The entire 30UTR region (4418 bp) of Trp53inp1 was cloned by
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Genecopoeia and divided into two regions: UTR length 1–2275 bp
(Catalogue No. MmiT032758a-MT05, Gene Accession:
NM_021897.3) and 2131–4418 bp (Catalogue No. MmiT032758b-
MT05, Gene Accession: NM_021897.3). These constructs were
used to generate, by site-directed mutagenesis as described later,
the mutant derivatives lacking miRNA-binding sites. NSCs were
cultured in 24-well plates and transfected first with 100 nM of
synthetic miRNA (17, 20a) or scramble control and after 24 h with
0.1 mg of specific 30UTR or 0.3 mg of negative control vector
(Genecopoeia, Catalogue No. CmiT000001.MT05). Cells were har-
vested and tested 24 h post second transfection with the dual-
luciferase assay (Promega). All luciferase activity data are presented
as means±s.d. of values from at least three experiments, each
performed in triplicate.

Site-directed mutagenesis
Mutation by deletion of critical nucleotides in Nanog-binding sites
was designed according to Pavletich and Pabo (1993) and Mizugishi
et al (2001). To mutagenize the promoter constructs, the
QuickChange Lightening Site-Directed Mutagenesis Kit (Agilent)
was used. The reaction was carried out according to the
manufacturers’ protocol using the following primers:

s1 miR-17/92 NBS Fw: GGGGAAGCCTACTGTAAAAGCCAAGGGA
TTGTATCTTA
s1 miR-17/92 NBS Rev: TAAGATACAATCCCTTGGCTTTTACAGTA
GGCTTCCCC
s2 miR-17/92 NBS Fw: TAGGAAGATTAAGAGAAGAGCAACTGCTC
GGAAAGTGG
s2 miR-17/92 NBS Rev: CCACTTTCCGAGCAGTTGCTCTTCTCTTA
ATCTTCCTA
s3 miR-17/92 NBS Fw: TACTCATCTTGCAGTATTTCGCACGGATGT
GAATCTTGG
s3 miR-17/92 NBS Rev: CCAAGATTCACATCCGTGCGAAATACTGC
AAGATGAGTA
Mutation by deletion of critical in miRNA-binding sites in

Trp53inp1 site was designed as mentioned above. The reaction
was carried out using the following primers:

s1 Trp53inp1 30UTR Fw: GATGGGTTGGTTTCCACAAG
s1 Trp53inp1 30UTR Rev: CCTGCTGTGGTAAGTATTAGT
s2 Trp53inp1 30UTR Fw: GGTCAGAGATGGTCAGTTTT
s2 Trp53inp1 30UTR Rev: GAACCCATTACAAAGAACTG

Cell proliferation assay
Cell proliferation of NSCs was evaluated by BrdU incorporation
(24 h pulse). Cells were plated on poly-lysine-coated Lab-Tek
chamber slides (coverslips) and allowed to adhere for 3 h and
then fixed with 4% paraformaldehyde, permeabilized with 0.1%
Triton X-100, and BrdU detection (Roche) was performed according
to the manufacturer’s instructions. 594-conjugated anti-mouse sec-
ondary antibody was purchased from Molecular Probes (Invitrogen,
Eugene, OR). Nuclei were counterstained with the Hoechst reagent.

Coverslips were mounted with fluorescence mounting medium
(S3023) (Dako, Carpinteria, CA). Images were taken with a digital
camera (ProgRes C10 plus, Zeiss) interfaced to a computer with IAS
2000 software version 009000 (Delta Sistemi, Rome, Italy) using the
Leica DM2500 microscope. At least 300 nuclei were counted in
triplicate, and the number of BrdU-positive nuclei was recorded.
Results are represented as mean values±s.d. from at least three
biological replicas.

Statistical analysis
For all miRNA analysis experiments, Wilcoxon signed-rank test was
used using the StatMiner software (Integromics, TM) to generate
Delta-Delta Ct values for each comparison. P-values were adjusted
using the FDR Benjamini-Hochberg method, and significance was
attributed with FDRo0.05 for all analyses. Supervised hierarchical
clustering of differentially expressed miRNAs in HN-NSC versus LN-
NSC was generated by the Permutmatrix software according to
Delta Ct values. The clustering and tree are based on the
Euclidean correlation, complete linkage, and Unidimensional scal-
ing. Statistical analysis of biological experimental triplicates was
performed using the StatView 4.1 software (Abacus Concepts,
Berkeley, CA). Statistical differences were analysed by Mann–
Whitney U test for non-parametric values. The results are expressed
as mean±s.d. from an appropriate number of experiments as
indicated in the figure legends.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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