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Abstract

In 2010, Brazil introduced the 10- valent pneumococcal conjugate vaccine (PCV10) into the national children’s immunization pro-
gramme. This study describes the genetic characteristics of invasive Streptococcus pneumoniae isolates before and after PCV10 
introduction. A subset of 466 [pre- PCV10 (2008–2009): n=232, post- PCV10 (2012–2013): n=234;<5 years old: n=310, ≥5 years 
old: n=156] pneumococcal isolates, collected through national laboratory surveillance, were whole- genome sequenced (WGS) 
to determine serotype, pilus locus, antimicrobial resistance and genetic lineages. Following PCV10 introduction, in <5 years 
age group, non- vaccine serotypes (NVT) serotype 3 and serotype 19A were the most frequent, and serotypes 12F, 8 and 9 N in 
the ≥5 years old group. The study identified 65 Global Pneumococcal Sequence Clusters (GPSCs): 49 (88 %) were GPSCs previ-
ously described and 16 (12 %) were Brazilian clusters. In total, 36 GPSCs (55 %) were NVT lineages, 18 (28 %) vaccine serotypes 
(VT) and 11 (17 %) were both VT and NVT lineages. In both sampling periods, the most frequent lineage was GPSC6 (CC156, 
serotypes 14/9V). In the <5 years old group, a decrease in penicillin (P=0.0123) and cotrimoxazole (P<0.0001) resistance and 
an increase in tetracycline (P=0.019) were observed. Penicillin nonsusceptibility was predicted in 40 % of the isolates; 127 PBP 
combinations were identified (51 predicted MIC≥0.125 mg l−1); cotrimoxazole (folA and/or folP alterations), macrolide (mef and/
or ermB) and tetracycline (tetM, tetO or tetS/M) resistance were predicted in 63, 13 and 21.6 % of pneumococci studied, respec-
tively. The main lineages associated with multidrug resistance in the post- PCV10 period were composed of NVT, GPSC1 (CC320, 
serotype 19A), and GPSC47 (ST386, serotype 6C). The study provides a baseline for future comparisons and identified important 
NVT lineages in the post- PCV10 period in Brazil.

DATA SUMMARY
Genome sequences are deposited in the European Nucleotide 
Archive (ENA), the accession number and the sample data 
is available in the supplementary material ( Data_ Summary_ 
GPS_ Brazil. xlsx). The authors confirm all supporting data, 
code and protocols have been provided within the article or 
through supplementary data files.

INTRODUCTION
Streptococcus pneumoniae is the main cause of otitis media 
and community- acquired pneumonia as well as invasive 
pneumococcal disease (IPD), including meningitis, sepsis 
and bacteremia [1]. Antimicrobials and vaccines are tools 
currently available to treat and prevent pneumococcal 
diseases, respectively.
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The indiscriminate use of antimicrobial agents in community 
settings results in the selection of resistant pneumococcal 
strains and impacts IPD by resulting in antibiotic treatment 
failure [2]. In addition, pressure due to vaccination can change 
resistance patterns temporally and geographically [1].

Pneumococcal conjugate vaccines (PCV, 7- valent PCV, 
10- valent PCV, and 13- valent PCV) are highly effective in 
preventing IPD caused by serotypes present in its compo-
sition [3, 4]. Brazil was the first country to introduce the 
10- valent pneumococcal conjugate vaccine (PCV10, target 
serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F) into their 
national childhood immunization programme in March 
2010 [5]. The vaccine schedule was three primary doses at 
ages 2, 4 and 6 months and a booster dose for children aged 
12–15 months. During the first year of PCV10 introduction, 
a catch- up campaign with two primary doses for children at 
7 to 11 months of age plus a booster dose at 12–15 months, 
and a single dose for children aged 12 to <24 months was 
adopted [5]. In 2016, the primary schedule was changed to 
two primary doses at ages 4 and 6 months and a booster dose 
at 12 months [6].

It is well documented that PCV introduction was followed 
by changes in S. pneumoniae epidemiology due to (i) vaccine 
pressure leading to evidence of serotype replacement by 
the capsular switch, (ii) through the expansion of common 
strains and (iii) by increases in newly emerging non- vaccine 
type strains [3, 4]; as well as reductions in the transmission 
of vaccine types (VT) resulting in the indirect effect of herd 
immunity in the unvaccinated population. Therefore, surveil-
lance is essential to detect potential temporal changes in the 
epidemiological and genetic characteristics of pneumococcal 
isolates [1, 7, 8]. Genomic methods have proved to be excel-
lent tools for understanding the biology and epidemiology 
of important bacterial pathogens, including S. pneumoniae. 
Multi- locus sequence typing (MLST) is a molecular method 
historically important, and still widely used in pneumococcal 
epidemiology that consists of sequencing seven housekeeping 
genes as a sample of genomic variation and is used to define 
the sequence type (ST) and clonal complexes (CCs) [1]. This 
present study aimed to describe the genetic characteristics of 
invasive pneumococcal disease (IPD) isolates sampled from 
ongoing routine laboratory surveillance in Brazil during the 
pre- (2008–2009) and post- (2012–2013) PCV10 introduction 
periods. The whole- genome sequence data was used for in 
silico analysis of the serotype, antimicrobial resistance predic-
tions, to identify possible changes in genetic lineages, and 
circulation of multi- drug- resistant clones following PCV10 
introduction. The data generated will provide a baseline for 
continued vaccine impact monitoring and support future 
vaccination strategies for pneumococcal disease control.

METHODS
Bacterial strain collection
The study collection consisted of a random subset of 466 IPD 
isolates recovered through a national laboratory surveillance 
network led by Institute Adolfo Lutz (IAL), the Brazilian 

National Reference Laboratory for Meningitis and Pneumo-
coccal Infections. This study included pneumococcal isolates 
from pre- (n=232, 2008–2009) and post- (n=234, 2012–2013) 
PCV10 introduction periods collected in 20 of 26 Brazilian 
States (Table S1, available in the online version of this article) 
and corresponding to 14 % (n=466/3342) of the total S. pneu-
moniae isolates received by IAL in the period analysed. Isolates 
from the years 2010 and 2011 corresponding to the first years 
of PCV10 introduction were excluded from the study. Table 
S2 shows the pneumococcal study collection isolates strati-
fied by age groups, clinical diagnosis and vaccine periods. 
Brandileone and collaborators [9] included in their publica-
tion the detailed phenotypical analyses of the pneumococcal 
serotypes that caused IPD before and after the introduction 
of PCV10 using data from the laboratory surveillance system 
in Brazil from a larger period (2005 to 2015) of time. From 
this dataset, data of 3342 isolates corresponding to the periods 
from 2008 to 2009 and 2012 to 2013 were used in our study as 
a basis for selection and comparison of serotype distribution 
of the 466 isolates whole- genome sequencing (WGS) subset 
(Figs S1 and S2). We presented serotype data for the entire 
collection of 3342 isolates and restrict other analyses to the 
466 randomly sampled WGS.

The IAL receives strains previously identified as S. pneumo-
niae by the laboratory of origin and confirms this identifica-
tion using classical methodologies described by WHO [10]. 
For routine surveillance, serotyping was performed by Quel-
lung reaction and antimicrobial susceptibility profiles were 
determined by the disc diffusion and/or broth microdilution 
to determine minimal inhibitory concentrations (MIC) 
according to Clinical Laboratory Standards Institute (CLSI) 
breakpoints [11–13].

Genome sequencing and analyses
The 466 IPD isolates were WGS on the Illumina HiSeq plat-
form to produce paired- end reads of 150 base pairs in length 
and raw data were deposited in the European Nucleotide 
Archive (ENA) (Supplementary Material:  Data_ Summary_ 
GPS_ Brazil. xlsx). WGS data were processed as previously 
described [14]. We derived the virulence factors (serotype 

Impact Statement

This study, based on WGS analysis, makes several 
noteworthy contributions to understanding the genetic 
structure of the S. pneumoniae population in Brazil. We 
analysed genomic data from invasive pneumococcal 
isolates collected in Brazil between 2008 and 2013 to 
provide a detailed description of the population struc-
ture during that sampling period. We identified globally 
spreading lineages that also included non- vaccine sero-
type components, indicating that they potentially might 
contribute to vaccine evasion. The data generated by this 
study can be used as a baseline to determine vaccine 
impact during the following years.
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[15] and pilus locus [16]) and multi- locus sequencing types 
(STs) [17].

The genetic structure was defined by assigning the clonal 
complexes (CCs) from the STs previously described by the 
Global Pneumococcal Sequencing Project (GPS) [14] and also 
by assigning Global Pneumococcal Sequence Cluster (GPSC) 
on each isolate using a PopPUNK [18], along with a reference 
list of pneumococcal isolates (n=13 454) in the GPS database 
(https://www. pneumogen. net/ gps/ assigningGPSCs. html). 
The STs and GPSCs described in this study were deposited in 
the PubMLST (https:// pubmlst. org/ organisms/ streptococcus- 
pneumoniae) and GPS databases (https://www. pneumogen. 
net/ gps/ assigningGPSCs. html), respectively. Phylogenetic 
analysis was performed on all Brazilian isolates in this study 
by constructing a maximum- likelihood tree using FastTree 
[19]. In brief, the tree was built upon a SNP alignment after 
mapping reads to the reference genome of S. pneumoniae 
ATCC 700669 (NCBI accession number FM211187) using 
Burroughs Wheeler Aligner (BWA).

Capsular or serotype switching was identified in isolates 
with identical ST but different serotypes in this study. For 
each ST, we examined the genetic relatedness of isolates in 
lineage- specific phylogenies and place the Brazilian lineage of 
interest in a global context by including other GPS published 
isolates belonging to the same GPSC [20]. The lineage- 
specific tree was constructed using GUBBINS [21]. In brief, 
GUBBINS detects recombination regions and removes them 
when constructing the phylogeny. The recombination- free 
phylogeny created by GUBBINS was used as input for Bact-
Dating [22], an R package used to create a time- measured 
phylogeny performing Bayesian dating inference of the 
nodes on the bacterial phylogenetic tree; typically involves 
simultaneous Bayesian estimation of the molecular clock rate 
and coalescent rate as previously described [20]. The time- 
measured tree was used to estimate the period when capsular 
switching occurred.

Resistance profiles for six antibiotics, including penicillin 
[defined as penicillin binding protein transpeptidase amino 
acid sequence types (PBP types) based on pbp1A, pbp2B, 
pbp2X changes] [23, 24], chloramphenicol (cat), cotrimoxa-
zole (folA and folP), erythromycin (ermB and mefA), tetracy-
cline (tetM, tetO and tetS/M), and vancomycin (vanA, vanB, 
vanC, vanD, vanE and vanG) were predicted from genomic 
data, as previously described [16, 25]. Multidrug resistance 
(MDR) was defined as isolates with predicted intermediate 
resistance or resistance to three or more classes of antibiotics 
[26]. The serotype and antimicrobial resistance predictions 
for the 466 sampled isolates were compared to the phenotypic 
results generated from routine surveillance.

Statistical analyses
The pneumococcal isolates were defined as vaccine serotype 
(VT) when isolates belonged to predicted serotypes included 
in PCV10 (1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F), and 
as non- vaccine serotypes (NVT) for the predicted serotypes 
non- PCV10, including the additional PCV13 serotypes 3, 

6A and 19A. We defined the status of a lineage (GPSC) as 
VT (100 % PCV10 serotypes), NVT (100 % non- PCV10 sero-
types) and GPSC with both VT and NVT isolates, based on its 
serotype composition detected in the whole study period. The 
prevalence of in silico serotypes was stratified by age groups 
(<5 years old and ≥5 years old).

As the population denominators are unavailable, we evalu-
ated significant changes of VT/NVT in each GPSC lineage 
in proportion to all VT/NVT, respectively, using Fisher’s 
exact test. This calculation was performed to avoid the over-
estimation of the NVT increase. Overall, and by GPSC, the 
prevalence of antibiotic resistance between vaccine periods 
was also detected using Fisher’s exact test. Two- sided P- values 
of <0.05 were considered statistically significant. The number 
of samples was calculated to achieve 80 % of statistical power 
with a significant level of P- values. Before using the Fisher’s 
exact tests to compare variables (e.g. VT or penicillin resist-
ance) before and after the PCV10 period, we calculated the 
number of samples that we need to achieve an 80 % statistical 
power with a significant level of P- value<0.05 using the R 
package pwr, which contains functions for basic power calcu-
lation [27]. When the variables (VT and/or antibiotic resist-
ance) would not have sufficient statistical power to be tested, 
Fisher’s exact test was not performed. Multiple testing was 
adjusted using the Benjamin- Hochberg false discovery rate of 
5 %, the statistical analysis was carried out in R version 3.5.2, 
and R scripts used for analyses were deposited at GitHub 
(https:// github. com/ StephanieWLo/ Genomic- Surveillance).

RESULTS
Serotype distribution
No discrepancies were observed between the 466 predicted 
serotypes and the Quellung results, and the frequency of 
the predicted serotypes in our study subset reflected the 
frequency of the serotypes identified in the larger 3342 
isolates' collection. Figs S1 and S2 show serotype distribu-
tion by vaccine period (pre- PCV10 and post- PCV10), for age 
groups <5 years and ≥5 years, and for the larger and subset 
collections included in this WGS study.

As expected, a higher number of VT isolates was observed 
in the pre- PCV10 period mainly in the <5 years while NVT 
(including the additional PCV13, 3, 6A and 19A) were more 
frequent in the post- PCV10 period (Fig. S1). Before vaccina-
tion, serotype 14 was highly common in both age groups and 
after vaccine introduction, serotype 3 was most frequent in 
children aged <5 years, followed by serotype 19A, 6A, 12F 
and 6C (Fig. S1), and in ≥5 years serotype 12F, 3, as well the 
serotypes 8 and 9 N (Fig. S2).

Pneumococcal lineages
The predictions of serotype, ST and GPSC by age group 
and vaccine period of the 466 S. pneumoniae invasive study 
isolates are presented in Table S3.

A total of 159 STs were identified among 466 isolates 
sequenced, belonging to 54 CCs and 42 singletons. The 

https://www.pneumogen.net/gps/assigningGPSCs.html
https://pubmlst.org/organisms/streptococcus-pneumoniae
https://pubmlst.org/organisms/streptococcus-pneumoniae
https://www.pneumogen.net/gps/assigningGPSCs.html
https://www.pneumogen.net/gps/assigningGPSCs.html
https://github.com/StephanieWLo/Genomic-Surveillance
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phylogeny supported the good correlation of the CCs with 
the WGS- based GPSCs and, the latter typing scheme, revealed 
the genetic relatedness among the CCs 66, 81, 2216, 9747 plus 
three singletons (ST4913, 12483, 13878) in the GPSC16, one 
of the major GPSCs identified in the study (Fig. S3).

Overall, 65 GPSCs were identified and the most prevalent 
GPSCs were GPSC6 (CC156, serotype 14/9V), GPSC16 
(CC66/81/2216/9747 and ST4913/12483/13878, serotypes 
7C/9 N/14/15A/19F/23F/24/40), GPSC12 (CC180, serotype 
3), GPSC5 (CC172, serotypes 6C/15B/15C/23A/23F) and 
GPSC11 (CC193, serotypes 11A/15A/15B/15C/18B/18C) 
(Fig. S3). Of the GPSCs identified, 36 GPSCs (55%) belonged 
to NVT lineages, 18 GPSCs (28 %) to VT lineages, and 11 
(17 %) included both VT and NVT lineages (GPSC1, 5, 10, 
11, 13, 16, 18, 23, 47, 61 and 231). Among the 466 pneumo-
coccal isolates, 410 (88 %) were assigned to 49 GPSCs that 
have previously been found in the GPS reference database 
(last updated in April 2019, n=20 187, www. pneumogen. 
net\\gps\\ assigningGPSCs. html) the remain 16 GPSCs (204, 
231, 249, 289, 311, 341, 392- 394, 571, 573- 575, 577, 702, 811) 
included STs assigned in the international PubMLST database 
as mainly associated with Brazil (http:// pubmlst. org, accessed: 
26/05/2021) (Table S3). All eight global- spreading lineages 
recognized in the previous GPS study [14] were found in 
the current bacterial collection with an overall prevalence of 
44.9 %: 17.8 % GPSC6, 9.0 % GPSC16, 5.6 % GPSC12, 3.9 % 
GPSC1, 3.0 % GPSC32, 2.6 % GPSC18, 1.5 % GPSC7, and 1.5 % 
GPSC23 (Table S3).

In comparison with the pre- PCV10 period, we detected any 
significant changes in the frequency of VT and NVT within 

GPSC, but we do not have sufficient statistical power to detect 
changes in each serotype. However, isolates associated with 
VT GPSCs decreased from 48–20 % (P<0.0001) and 32–24 % 
(P=0.2871) in the age groups <5 and ≥5 years old respectively, 
while isolates belonging to NVT GPSCs increased from 
17–39 % (P<0.0001) and 34–52 % (P=0.0246). The five most 
frequent GPSCs by age groups are listed in Tables 1 and 2. 
GPSC6 and GPSC16 were among the top lineages in both 
age groups, pre- PCV10 and post- PCV10 periods. Though 
GPSC6, composed of CC156 and VT 9V and 14, remained 
a predominant lineage during the whole period of study 
and showed a decreasing trend among the  <5 years old 
group (Fig. S4). In contrast, GPSC16 lineage persisted with 
the NVT components 9 N and 15A frequently observed in 
the post- PCV10 period. In the post- PCV10 NVT lineages 
were mainly associated with children aged <5 years; GPSC1 
(CC320, serotype 19A), GPSC12 (CC180, serotype 3) and 
GPSC51 (CC458, serotype 3) (Fig. 1, Table 1). In the ≥5 years 
old group, GPSC3 expressing serotypes 8 (CC53) and 11A 
(CC62) became the predominant lineage 2–3 years after 
PCV10 introduction, though it was not in the top five lineages 
before vaccine roll- out (Fig. 2, Table 2).

Capsular switch variants
Among the STs identified, nine occurred in more than one 
serotype and are suggestive of capsular switching events: STs 
66, 156, 193, 199, 338 and 386; four are NVT switches and 
were observed in the post- PCV10 period (ST66 serotype 9 N, 
ST 199 serotypes 19A/15B/15C, ST338 serotype 15B/15C, and 
ST386 serotype 6C).

Table 1. The five most frequent lineages associated with serotypes of IPD isolates in the age group <5 years old (N=310) in the pre- PCV10 (2008–2009) 
and the post- PCV10 periods (2012–2013), Brazil

Rank Pre- PCV10 period (n=155) Post- PCV10 period (n=155)

GPSC
(CC)

N (%) Associated serotypes (n)a GPSC
(CC)

N (%) Associated serotypes (n)a

First GPSC6
(CC156)

49 (32 %) 14 (49) GPSC6
(CC156)

17 (11 %) 14 (14), 9V (3)

Second GPSC16
(CC66, CC81)

12 (8 %) 14 (8), 7C (1), 15A (1), 19F (1),
23F (1)

GPSC16
(CC66, ST4913, 

CC2216, CC9747)

14 (9 %) 9N (4), 15A (4), 7C (2), 14 (2), 
24 (2)

Third GPSC11
(CC193)

11 (7 %) 18C (9), 18B (2) GPSC1
(CC320)

11 (7 %) 19A (11)

Fourth GPSC23
(CC385, ST11305)

7 (5 %) 6B (6), 6A (1) GPSC5
(CC172)

8 (5 %) 23F (4), 6C (2), 15B/15C (1),
23A (1)

GPSC37
(CC751, CC4978, ST750, 

ST12514, ST12841)

7 (5 %) 6B (7)

Fifth GPSC1
(CC320, ST11326)

6 (4 %) 19A (3), 19F (3) GPSC12
(CC180)

7 (4,5 %) 3 (7)

GPSC204
(CC62, ST9942)

6 (4 %) 19A (6) GPSC51
(CC458)

7 (4,5 %) 3 (3)

a, Black, VT or PCV10 serotypes; blue, NVT additional PCV13 serotypes; and red, NVT non- PCV serotypes.

http://www.pneumogen.net//gps//assigningGPSCs.html
http://www.pneumogen.net//gps//assigningGPSCs.html
http://pubmlst.org
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The ST386 (GPSC47) was represented by serotypes 6B in 
the pre- PCV10 period and 6C in the post- PCV10 period 
(Fig. 1) and a time- measured phylogeny of GPSC47 using 
isolates from the GPS database and including the ST386 of 
this study, showed serotype 6C grouped separately from the 
ST386 serotype 6B isolates (Fig. 3). Using BactDating software 
we estimated a possible capsular switch may have occurred 
between serotypes 6B and 6C isolates around 1994 (95 % 
confidence interval: 1990–1997). This suggests the capsular 
switch event occurred in the pre- PCV era leading to the selec-
tion of the NVT lineage GPSC47 (ST386, serotype 6C) over 
the VT lineage GPSC47 (ST386, serotype 6B) following PCV 
introduction.

Antimicrobial resistance
The antimicrobial susceptibility testing performed at IAL 
showed good correlation (susceptible, intermediate or resistant 
category) with the in silico prediction, presenting a 100 % of 
the agreement for erythromycin, chloramphenicol and vanco-
mycin; 98.9 % (461/466) for tetracycline, 98.7 %(460/466) for 
penicillin and 93.6 %(436/466) for cotrimoxazole. Due to the 
high level of concordance between phenotype and genotype 
results, we used the WGS predicted antimicrobial resistance 
in the following analyses.

The antimicrobial non- susceptibility patterns between pre- 
and post- PCV10 periods showed a significant increase of 
tetracycline resistance (P=0.0019) and a decrease of penicillin 
(P=0.0123) and cotrimoxazole resistance (P<0.0001) among 
isolates from children aged <5 years after vaccination. No 
significant difference (P≥0.05) was observed in the frequency 
of predicted non- susceptibility to chloramphenicol, erythro-
mycin and MDR isolates from <5 years, as well for all studied 
antibiotics in the isolates from ≥5 years (Table 3). All isolates 
were predicted as vancomycin susceptible.

WGS analysis identified 127 PBP types allele combina-
tions, 51 of them predicted non- susceptibility to penicillin 
(MIC  ≥0.125 mg l−1). Independent of age group, the PBP 
allele combinations 13- 11- 16 (n=12, MIC=4 mg l−1), 15- 12- 18 
(n=11, MIC=2 mg l−1) and 45- 12- 63 (n=8, MIC=2 mg l−1) 
were predominant and associated with specific international 
antimicrobial- resistant lineages, GPSC1 (CC320, serotype 
19A), GPSC6 (CC156, serotypes 9V) and GPSC6 (CC156, 
serotype 14), respectively. Despite the other PBP profiles that 
confer penicillin resistance in the post- PCV10 period, we 
highlight the third most frequent PBP profile in the <5 years 
old group the profile 2- 53- 77 (n=6, MIC=0.125 mg l−1) 
observed in the lineage GPSC47 (ST386, serotype 6C and 
CC315, serotype 6B) since it is associated with an important 

Table 2. The five most frequent lineages associated with serotypes of IPD isolates in the age group ≥5 years old (N=156) in the pre- PCV10 (2008–2009) 
and the post- PCV10 periods (2012–2013), Brazil

Rank Pre- PCV10 period (n=77) Post- PCV10 period (n=79)

GPSC
(CC)

N (%) Associated serotypes (n)a GPSC
(CC)

N (%) Associated serotypes (n)a

First GPSC6
(CC156)

10 (13 %) 14 (7), 9V (3) GPSC3
(CC53, CC62)

9 (11 %) 8 (6), 11A (3)

GPSC16
(CC66, CC2216, ST13878)

9 (11 %) 9N (6), 15A (3)

Second GPSC12
(CC180)

9 (12 %) 3 (9) GPSC6
(CC156)

7 (9 %) 14 (5), 9V (2)

Third GPSC16
(CC66, CC2216, CC81, 

CC9747, ST12483)

7 (9 %) 14 (2), 9N (1), 15A (1),
23F (1), 24 (1), 40 (1)

GPSC12
(CC180)

6 (8 %) 3 (6)

Fourth GPSC5
(CC172)

5 (6 %) 23F (5) GPSC8
(CC289)

5 (6 %) 5 (5)

  GPSC15
(CC191)

5 (6 %) 7F (5)

  GPSC18
(ST2258, ST12836, ST733)

5 (6 %) 16F (3), 19A (2)

Fifth GPSC83
(CC378, CC1220)

4 (5 %) 3 (4) GPSC7
(CC439)

4 (5 %) 23A (3), 23B (1)

GPSC15
(CC191)

4 (5 %) 7F (4)

GPSC32
(CC218)

4 (5 %) 12F (4)

a, Black, VT or PCV10 serotypes; blue, NVT additional PCV13 serotypes; and red, NVT non- PCV serotypes.
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NVT and capsular switching described in our study (Table 
S4).

The frequency of the gene combination ermB and mef 
increased from 2 (1 %) to 11 (7 %) isolates in the pre- PCV10 
vs post- PCV10 period in the <5 years old and was associ-
ated with GPSC1 (CC320, serotype 19A). Full resistance to 
cotrimoxazole (MIC  ≥4 mg l−1) was characterized for the 
presence of alterations in genes folA (all isolates have the 
I100L substitution) and folP, which were detected in a large 
proportion of the isolates (n=210, 46 %). As previously shown 
[16], a mutation within folA or folP alone conferred interme-
diate cotrimoxazole resistance, while mutations within both 
folA (I100L) and folP (1–2 codon insertions) conferred full 
resistance. For tetracycline, the most frequent resistance gene 
detected was tetM (n=97, 21 %), mainly identified in the post-
 PCV10 period (n=62/234, 26 %) and associated with GPSC1 
(CC320, serotype 19A) and GPSC16 (CC66, serotype 9 N). 
Additionally, we observed lower frequencies of tetO and the 
combination of the tetS and tetM genes also predicting tetra-
cycline resistance. The cat gene conferring chloramphenicol 
resistance, substitutions in the rpoB gene (P15A, H21N, or 
K22N) that predict rifampicin resistance (MIC >2 mg l−1) 
and substitutions in the parC gene (S79C, S29F, or S79Y) 

predicting fluoroquinolone resistance were identified in only 
a few isolates (Table 4).

This study observed MDR in 57 (12.2 %) pneumococcal 
isolates, 22 (9.5 %) in the pre- PCV10, and 35 (14.9 %) in 
the post- PCV10 period (Table 3). Figs 1 and 2 illustrated 
the overall resistance among the GPSCs in each age group. 
The <5 years old group presented higher levels of MDR asso-
ciated mainly with GPSCs 1, 10, 23, 47 and 341. Focusing 
on the post- PCV10 period, 12 isolates were associated with 
the lineage GPSC1 (CC320, serotype 19A) with a profile of 
high resistance to penicillin (MIC=4 mg l−1) plus resistance 
to cotrimoxazole, erythromycin, and tetracycline; and five 
related to GPSC47 (ST386, serotype 6C) with a profile of 
lower resistance to penicillin (MIC=0.125 mg l−1) and resist-
ance to erythromycin and tetracycline.

Pilus islets
During the study period, the presence of pilus islets (PIs) was 
observed in 32 % (n=150/466) of isolates (pre- PCV10: n=81 
PI- 1, n=14 PI- 2, and n=6 PI- 1 and PI- 2; and post- PCV10: 
n=30 PI- 1, n=7 PI- 2, and n=12 PI- 1 and PI- 2). The PI- 1 type 
was related to GPSC6 (CC156, serotypes 14/9V) lineage. 
The combination of P- 1 and P- 2 was observed only in the 

Fig. 1. Dynamics of Global Pneumococcal Sequence Clusters (GPSCs) among invasive isolates from children aged <5 years old over 
vaccine periods in Brazil. The number of invasive pneumococcal isolates, coloured by serotypes, is plotted by GPSC with stratification into 
two vaccine periods (pre- PCV10 and post- PCV10) and MLST CC. Solid fill represented the VT and NVT additional PCV13 serotypes while 
hatched patterns represented the NVT non- PCV serotypes. The antibiotic resistance pattern to penicillin, chloramphenicol, erythromycin, 
cotrimoxazole, tetracycline and MDR are present for each GPSC and in the entire period studied.
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lineage GPSC1 (CC320, serotypes 19A/19F) (Fig. 4). In 59 % 
(n=89/150) of isolates with a pilus we observed high level 
penicillin resistance, 75 isolates presented PI- 1 [MIC=2 mg 
l−1; GPSC6 (CC156, serotype 14)] and 14 isolates presenting 
PI- 1and PI- 2 (MIC=4 mg l−1; GPSC1 (CC320, serotype 19A), 
with 13 of them also MDR (cotrimoxazole, erythromycin and 
tetracycline).

DISCUSSION
Our study analysed the genomic characteristics of a select 
subset of invasive pneumococcus strains obtained through 
national laboratory- based surveillance in Brazil. The distribu-
tion of serotypes predicted by our WGS study represented 
as closely as possible the national serotype distribution in 
the pre- (2008–2009) and post- PCV10 (2012–2013) periods. 
As expected, a lower prevalence of VT in the post- PCV10 
period was due to the substantial PCV10 impact on IPD in 
the country [28, 29] suggesting that even in a short period 
after the introduction of the vaccine, it was possible to observe 
the phenomenon of herd immunity since this VT reduction 
was also observed in the group of ≥5 years old age, who are 
not targeted for PCV10 vaccination. However, some increase 
in NVTs was also documented. A previous Brazilian study 

[9] analysed a large collection (n=8971) of IPD isolates and 
compared the prevalence of VT and NVT over a longer period, 
pre- PCV10 (2005–2009) and post- PCV10 (2010–2015), and 
showed a large IPD VT reduction among children and adult 
population, documenting a direct and indirect vaccine effect. 
They also showed a change to NVT as the main cause of the 
IPD in the post- PCV10 period and concluded that in Brazil 
there is evidence of cross- protection between serotypes 
6B/6A, a fact not observed among the serotypes 6B/6C and 
19F/19A. In the post- PCV10 period, our study observed the 
NVT 3, 19A, 6A, 12F and 6C in the <5 years old age group, 
and serotypes 12F, 3, 8 and 9 N in the ≥5 years old age group; 
suggesting, as observed by Brandileone et al. [9], an absence 
of cross- protection between the serotypes 6B and 19F present 
in the PCV10 composition and the serotypes 6C and 19A, 
respectively, and revealing that the burden of pneumococcal 
disease could be further reduced in the country with the 
introduction in the national childhood immunization 
programme of PCV13 or other new generation of PCVs (new- 
PCV10, PCV15 and PCV20), which include the serotypes 3, 
6A (with cross- protection to serotype 6C), and 19A in their 
composition.

Fig. 2. Dynamics of Global Pneumococcal Sequence Clusters (GPSCs) among invasive isolates from children aged ≥5 years old over 
vaccine periods in Brazil. The number of invasive pneumococcal isolates, coloured by serotypes, is plotted by GPSC with stratification into 
two vaccine periods (pre- PC10 and post- PCV10) and MLST CC. Solid fill represented the VT and NVT additional PCV13 serotypes while 
hatched patterns represented the NVT non- PCV serotypes. The antibiotic resistance pattern to penicillin, chloramphenicol, erythromycin, 
cotrimoxazole, tetracycline and MDR are present for each GPSC and in the entire period studied.
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Bacterial molecular typing is essential in the surveillance of 
infectious diseases [20]. This study characterized the baseline 
population pneumococcal structure for continued vaccine 
impact monitoring using whole- genome sequencing. Genome 
data not only allow us to extract public health- relevant data 
(e.g. serotype and antibiotic resistance profile) from a single 
experiment but also delineates genetic lineages using both 
whole- genome clustering method (GPSC) and multi- locus 

sequencing typing (MLST). Our findings showed a good 
concordance between these two typing methods. The whole- 
genome clustering method has further revealed the relation-
ships between strains over a longer timescale by accounting 
for genetic variations across the whole genome [14]. The 
GPSCs characterization of the 466 IPD isolates presented a 
similar genetic structure to the globally GPSC described by the 
GPS project [14] with the majority of the isolates belonging 

Fig. 3. A timed- measured phylogeny of GPSC47 (ST386) isolates from Brazil and the other 15 countries from Gladstone et al. [14]. The 
phylogeny is built using BactDating [22] with 100 000 000 generations on a recombination- free SNP alignment generated by GUBBINs 
[21]. The most recent common ancestor (tMRCA) of the serotype 6C clade (all isolates are ST386) is estimated to emerge in around 2000 
(95 % confidence interval: 1997–2003), and the capsular switching occurred among 1990–2003. The phylogeny and metadata can be 
interactively visualized at https://microreactorg/project/tmxT66fLq56uZb5VfA1BYC.

Table 3. Proportions of IPD isolates with antibiotic non- susceptibility in pre- PCV10 and post- PCV10 periods (N=466), Brazil

Antibioticsa Age <5 years old Age ≥5 years old

Pre- PCV10
(N=155)

Post- PCV10
(N=155)

P- valueb Pre- PCV10
(N=77)

Post- PCV10
(N=79)

P- valueb

Penicillin 88 (57 %) 66 (42 %) 0.0123 18 (23 %) 17 (22 %) 0.8488

Chloramphenicol 1 (0.6 %) 0 1.0000 1 (1 %) 1 (1 %) 1.0000

Cotrimoxazole 133 (86 %) 81 (52 %) <0.0001 42 (55 %) 37 (47 %) 0.3426

Erythromycin 19 (12 %) 32 (21 %) 0.0653 3 (4 %) 5 (6 %) 0.7195

Tetracycline 24 (15 %) 48 (31 %) 0.0019 11 (14 %) 17 (22 %) 0.2982

MDRc 19 (12 %) 31 (20 %) 0.0887 3 (4 %) 4 (5 %) 1.0000

a, CLSI, breakpoints: penicillin, susceptible ≤0.06 mg l−1 and resistant ≥0.125 mg l−1; chloramphenicol, susceptible ≤4 mg l−1 and resistant ≥8 mg 
l−1; cotrimoxazole, susceptible ≤0.5/9.5 mg l−1, intermediate 1/19- 2/38 mg l−1 and resistant ≥4/76 mg l−1; erythromycin, susceptible ≤0.25 mg l−1, 
intermediate 0.5 mg l−1 and resistant ≥1 mg l−1; and tetracycline, susceptible ≤1 mg l−1, intermediate 2 mg l−1, and resistant ≥4 mg l−1.
b, Fisher´s two- tailed test.
c, MDR, multidrug resistance; intermediate or resistant isolates to three or more classes of antibiotic.

https://microreactorg/project/tmxT66fLq56uZb5VfA1BYC
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to these previously described GPSCs. The study collection 
showed the majority of the GPSC lineages belonged to NVT 
lineages and a smaller proportion of lineages expressing both 
VT and NVT serotypes. The post- PCV10 period was marked 
by the increase in NVT lineages for both the <5 and ≥5 years 

old age groups. We observed the emergence of NVT lineages, 
GPSC1 (CC320, serotype 19A), GPSC12 (CC180, serotype 3) 
and GPSC51 (CC458, serotype 3) in <5 years old and GPSC3 
(CC53, serotype 8 and CC62, serotype 11A) in ≥5 years old 
age groups, highlighting the importance of expanding the 
PCV coverage for a higher valence vaccine such as PCV13 
or others that are still in development (new- PCV10, PCV15 
and PCV20) would be useful to further reduce pneumococcal 
diseases in Brazil.

The pneumococcal population presents several strategies that 
allow the maintenance of a lineage in the face of pressures 
imposed through the use of vaccines or antimicrobials: (i) 
the replacement of a VT by NVT lineage through capsular 
switching to avoid vaccine- induced immunity, (ii) the acquisi-
tion of resistance genes and (iii) the expansion of an existing 
NVT lineage by filling the open niche left by VT lineage [3, 4]. 
In our study, we showed the lineage GPSC6 (CC156, serotypes 
14–9V) associated with penicillin resistance (PBP 15- 12- 18 
and 45- 12- 63) was frequent in both vaccine periods and age 
groups studied. This lineage, well documented in Brazil and 
globally, is often MDR [30–34], and as expected for a VT 

Table 4. Non- penicillin resistance gene determinants from IPD isolates by age groups in pre- PCV10 and post- PCV10 periods, Brazil

Antibiotic Resistance genes Age <5 years old (N=310) Age≥5 years old (N=156) Total
(N=466)

Pre- PCV10
(n=155)

Post- PCV10
(n=155)

Pre- PCV10
(n=77)

Post- PCV10
(n=79)

N (%) N (%) N (%) N (%) N (%)

Macrolidea mef 2 (1) 6 (4) 1 (1) 1 (1) 10 (2)

ermB 15 (10) 15 (10) 2 (3) 3 (4) 35 (8)

ermB +mef 2 (1) 11 (7) 0 (0) 1 (1) 14 (3)

rplD2b 0 (0) 1 (1) 0 (0) 0 (0) 1 (0.2)

Cotrimoxazolec folA only 6 (4) 3 (2) 3 (4) 2 (3) 14 (3)

folP only 24 (15) 19 (12) 12 (16) 10 (13) 65 (14)

folA +folP 104 (67) 59 (38) 27 (35) 24 (30) 214 (46)

Tetracycline tetO 0 (0) 0 (0) 0 (0) 2 (3) 2 (0.4)

tetM 24 (15) 47 (30) 11 (14) 15 (19) 97 (21)

tetS +tetM 0 (0) 1 (1) 0 (0) 0 (0) 1 (0.2)

Chloramphenicold cat 1 (1) 0 (0) 1 (1) 1 (1) 3 (1)

Rifampine rpoB1 0 (0) 1 (1) 2 (3) 0 (0) 3 (1)

Fluoroquinolonef parC 1 (1) 0 (0) 1 (1) 1 (1) 3 (1)

a, mef, macrolide efflux pumps gene resistance; ermB, macrolide erythromycin methylation.
b, One rare substitution (E7K) within rplD2 gene core genome mutations conferred erythromycin resistance.
c, One to five substitutions within the folA gene (Q1H, D2N, V3I, D12T, E14D or I20L) or one to two codon insertions within the folP gene 
(at nucleotides 169, 174, 176, 177, 178, 180, 182, 185, 186, 188, 189 or 195) result in an intermediate phenotype (MIC 1–2 mg l−1) against 
cotrimoxazole. The folA substitutions (Q1H, Q1Y, D2N, V3I, V6A, Q11H, D12G, E14D or I20L) combined with folP insertions (at the nucleotides 169, 
175, 176, 177, 178, 179, 180, 182, 187, 186, 189 or 195) result in a resistant phenotype (MIC ≥4 mg l−1).
d, cat, Chloramphenicol acetyltransferase.
e, One substitution within the rpoB1 gene (P15A, H21N or K22N) in each isolated.
f, One substitution within the parC gene (S79C, S29F, or S79Y) in each isolated.

Fig. 4. Distribution of pilus islets genes in the main GPSCs by vaccine 
period studied (n=150).
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lineage [9, 35, 36], showed a decreasing trend, primarily in 
the  <5 years old. A few lineages associated with NVTs in 
this study have also been documented globally in the post- 
pneumococcal vaccine periods [14, 37], for example, GPSC1 
(CC320, serotype 19A), GPSC3 (CC53, serotype 8), GPSC12 
(CC180, serotype 3) and GPSC16 (CC66, serotype 9 N). 
CC320 serotype 19A was one of the predominant emerging 
lineages in PCV7 and PCV10 countries [38–43]. Its expansion 
has been associated with capsular switch events from serotype 
19F to 19A and the association with MDR has further allowed 
its selection in the post- PCV period [41, 43–48]. This lineage 
was been detected in Brazil since the pre- PCV10 period, but 
it increased after the PCV10 introduction independent of the 
age group [49–51]. Another important lineage disseminated 
worldwide is GPSC12 (CC180, serotype 3), recently associ-
ated with MDR [52–54]. In Brazil, this lineage has expanded 
as a predominant cause of serotype 3 invasive disease in the 
post- PCV10 era among adults [9, 36]. In this study, GPSC12 
was associated with antimicrobial susceptibility, but at IAL has 
rarely been identified in some isolates as MDR in chloram-
phenicol, erythromycin, clindamycin and tetracycline (IAL 
unpublished data). The serotype 8 GPSC3 (CC53) lineage is 
widely distributed [37, 53, 55, 56] and has been observed in 
Brazil before PCV introduction [36, 57, 58]. In many coun-
tries, the GPSC16 (CC66) is primarily a serotype 9 N lineage 
associated with carriage [56] but has also been reported with 
different serotypes [56]. In Brazil and our study, this lineage 
is mostly invasive isolates expressing the capsular VTs 14 and 
19F [31, 33, 36] and rarely are found as serotype 9 N.

The molecular characterization of isolates enabled the identi-
fication of several possible capsular switching events from VT 
to NVT. Initial molecular studies in the serotype 6C reported 
its origin related to independent recombination events 
involved isolates from serotype 6A [59], but after that other 
studies reported possible recombinant events from other 
serotypes like 6B [60, 61] suggesting multiple genetic origins 
for serotype 6C. In our study, we estimated a switch from 
serotype 6B to 6C occurred in the GPSC47 (ST386) before 
vaccine implementation with an expansion of the serotype 
6C clone in the post- PCV10. This clonal expansion correlates 
with previous data from Lo et al. [37] that suggests serotype 
replacement is mostly mediated by expansion of NVT within 
VT lineages following vaccine implementation.

The use of PCVs in routine immunization has resulted in a 
significant effect on the prevalence of antimicrobial resistance, 
as their formulations include serotypes mostly associated with 
penicillin and multidrug resistance [62–64]. Beta- lactams 
are widely used and generally effective for the treatment of 
pneumococcal infections. Penicillin is recommended to treat 
non- meningitis pneumococcal infection caused by strains 
with penicillin MIC <8 mg l−1, instead of broad- spectrum 
antimicrobials such as the third- generation cephalosporin 
[65]. In Brazil, the use of third- generation cephalosporins is 
the standard choice for the empiric treatment of meningitis 
independent of the antimicrobial susceptibility testing results 
and the combination of cephalosporin and vancomycin has 
been used in cases of failure to respond to initial treatment. In 

the present study, we observed significant reductions in peni-
cillin and cotrimoxazole resistance rates and increases in the 
frequency of tetracycline resistance in the post- PCV10 period 
for the <5 years old group. We identified resistance determi-
nants by WGS commonly conferring resistance to penicillin, 
macrolides, cotrimoxazole, tetracycline and chloramphenicol 
[45]. In concordance, a recent Brazilian study [2] observed a 
reduction of isolates expressing penicillin MIC ≥0.125 mg l−1 
in the first 3 years of post- PCV10 introduction (2011 to 2013), 
with high rates of cotrimoxazole non- susceptibility found 
during the study years (2007 to 2019), but showing a declining 
trend after PCV10 implementation, and a gradual increase 
of non- susceptibility to erythromycin and tetracycline over 
the study, reaching high rates in the years 2017–2019. We 
demonstrated that the most frequent lineages related to 
MDR in the post- PCV10 were NVT GPSC1 (CC320, sero-
type 19A) with high resistance to penicillin (MIC=4 mg l−1), 
cotrimoxazole, erythromycin and tetracycline, and the single 
lineage with the presence of the pilus islet PI- 1 and PI- 2; and 
the GPSC47 (ST386, serotype 6C) with lower resistance to 
penicillin (MIC=0.125 mg l−1) and resistance to erythromycin 
and tetracycline. We recommend continued genomic surveil-
lance for long- term monitoring following data presented by 
Brandileone et al. [2] showing how the early impact of PCV10 
in reducing non- susceptibility to beta- lactam antibiotics was 
eroded by increases in penicillin resistance, mainly associated 
with NVT S. pneumoniae, and reaching the highest rates in 
the years 2017–2019.

In addition to the capsular polysaccharide associated with 
nasopharyngeal colonization, studies show that S. pneu-
moniae has pilus structure that is involved in the adhesion 
and invasion of the bacteria in human respiratory epithelial 
cells [66, 67]. Some studies demonstrated the association 
of antimicrobial resistance and pili presence, suggesting 
the pili structure may have a role in the spread of these 
antimicrobial- resistant lineages [66, 68, 69]. One- third of our 
isolates had target sequences for the pilus with the majority 
PI- 1 type (74%) and associated with penicillin resistance 
GPSC6 (CC156, serotype 14) lineage. A recent review [66] 
analysing the role of the pilus islet in S. pneumoniae showed 
similar overall rates of pili with the predominance of PI- 1, 
presence of PI- 1and PI- 2 in CC320 serotype 19A lineage, 
and the association of these genes with antimicrobial and 
MDR. The presence of the pilus islets PI- 1and PI- 2 in the 
MDR GPSC1 (CC320, serotype 19A) lineage may provide an 
additional advantage for these isolates as they are thought to 
enhance adherence and colonization [66]. The fact that this 
lineage is also primarily MDR could explain the success in 
the establishment of this NVT lineage in the post- PCV10 
period.

Despite the limitation that our WGS study was only performed 
on a subset of the invasive isolates from the pneumococcal 
laboratory- based surveillance system in Brazil, we did show 
that the sampling was representative of the overall collection 
of isolates. We also provided serotype data available on the 
entire collection and used the subset to identify major anti-
biotic resistance mechanisms and important genetic lineages 
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in the post- PCV10 period, highlighting the importance of 
specific NVT genetic lineages in the post- PCV10 period.

Even with the global widespread use of the PCVs, S. pneumo-
niae remains a major bacterial cause of community- acquired 
pneumonia [70] and one of the main bacterial agents associ-
ated with viral co- infections. Since the first great influenza 
pandemic in 1918 [71], followed almost a century later in 
2009 by H1N1 [72] and currently the worldwide COVID- 19 
pandemic [73] highlights continued surveillance and moni-
toring of S. pneumoniae as a priority. This study provides 
detailed genomic data of invasive pneumococcal isolates from 
national surveillance in Brazil, generating a baseline that can 
help for the creation of long- term surveillance to monitor the 
vaccine impact and public health strategies.
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