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Investigation of metabolites for estimating blood deposition time
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Abstract Trace deposition timing reflects a novel concept in
forensic molecular biology involving the use of rhythmic bio-
markers for estimating the timewithin a 24-h day/night cycle a
human biological sample was left at the crime scene, which in
principle allows verifying a sample donor’s alibi. Previously,
we introduced two circadian hormones for trace deposition
timing and recently demonstrated that messenger RNA
(mRNA) biomarkers significantly improve time prediction
accuracy. Here, we investigate the suitability of metabolites
measured using a targeted metabolomics approach, for trace
deposition timing. Analysis of 171 plasmametabolites collect-
ed around the clock at 2-h intervals for 36 h from 12 male
participants under controlled laboratory conditions identified
56 metabolites showing statistically significant oscillations,
with peak times falling into three day/night time categories:
morning/noon, afternoon/evening and night/early morning.

Time prediction modelling identified 10 independently con-
tributing metabolite biomarkers, which together achieved pre-
diction accuracies expressed as AUC of 0.81, 0.86 and 0.90
for these three time categories respectively. Combining me-
tabolites with previously established hormone and mRNA
biomarkers in time prediction modelling resulted in an im-
proved prediction accuracy reaching AUCs of 0.85, 0.89
and 0.96 respectively. The additional impact of metabolite
biomarkers, however, was rather minor as the previously
established model with melatonin, cortisol and three mRNA
biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for
the same three time categories respectively. Nevertheless, the
selected metabolites could become practically useful in sce-
narios where RNA marker information is unavailable such as
due to RNA degradation. This is the first metabolomics study
investigating circulating metabolites for trace deposition
timing, and more work is needed to fully establish their use-
fulness for this forensic purpose.

Keywords Blood deposition time .Metabolites . Circadian
biomarkers . mRNA . Trace time estimation

Introduction

Knowing the time of the day or night when a biological trace
was placed at a crime scene has valuable implications for
criminal investigation. It would allow verifying the alibi and/
or testimony of the suspect(s) and could indicate whether oth-
er, yet unknown suspects may be involved in the crime. As
such, knowing the trace deposition time would provide a link,
or lack of, between the sample donor, identified via forensic
DNA profiling, and the criminal event. Therefore, finding a
means to retrieve information about the deposition time of
biological material is of inestimable forensic value. In
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principle, molecular biomarkers with rhythmic changes in
their concentration during the 24-h day/night cycle and
analysible in crime scene traces would provide a useful re-
source for trace deposition timing.

Circadian rhythms are oscillations with a (near) 24-h
period present in almost every physiological and behav-
ioural aspect of human biology. They are generated on a
molecular level by coordinated expression, translation and
interaction of core clock genes and their respective protein
products [1]. Together, these genes form a transcriptional-
translational feedback loop driving the expression of var-
ious clock-controlled genes, which manifests as rhythms
in numerous processes including metabolism [2–7], where
circadian timing plays a role in coordinating biochemical
reactions and metabolic activities. Because of this ubiqui-
ty of circadian rhythms and their association with many
biological processes, the pool of potential rhythmic bio-
markers is vast and diverse [8].

In a proof-of-principle study, we previously introduced the
concept of molecular trace deposition timing, i.e. to establish
the day/night time when (not since) a biological sample was
placed at the crime scene, by measuring two circadian hor-
mones, melatonin and cortisol, in small amounts of blood and
saliva, and demonstrated that the established rhythmic con-
centration pattern of both biomarkers can be observed in such
forensic-type samples [9]. Recently, we identified various
rhythmically expressed genes in the blood [10] and subse-
quently demonstrated the suitability of such messenger RNA
(mRNA) biomarkers for blood trace deposition timing by es-
tablishing a statistical model based on melatonin, cortisol and
three mRNA biomarkers for predicting three day/night time
categories: morning/noon, afternoon/evening and night/early
morning [11].

Here, we investigate different types of molecular bio-
markers, namely metabolites, i.e. intermediates or products
of metabolism, for their suitability in trace deposition timing.
Metabolic processes are known to be coupled with the circa-
dian timing system in order to properly coordinate and execute
them [6, 12, 13]. Thus, many (by-)products of metabolism
have been shown to exhibit rhythms in their daily concentra-
tion levels in metabolomics studies [7, 14, 15], while none of
them as yet have been tested for trace deposition timing. Using
plasma obtained from blood samples collected every 2 h
across a 36-h period from healthy, young males, 171 metabo-
lites were screened via a targeted metabolomics approach to
identifiy those with statistically significant rhythms in concen-
tration. Rhythmic markers, as shown previously with hor-
mones and mRNA [9, 11], are able to predict day/night time
categories. Thus, we hypothesized that applying rhythmic me-
tabolites (with or without previously established rhythmic bio-
markers) for time prediction modelling could improve the
categorical time prediction for trace deposition timing, which
was assessed in this study.

Materials and methods

Metabolite data

The plasma metabolite data used in this study were obtained
from blood samples collected during the sleep/sleep depriva-
tion study (S/SD) conducted at Surrey Clinical Research
Centre (CRC) at the University of Surrey, UK. Full details of
the study protocol and eligibility criteria have been reported
elsewhere [4, 5, 7]. For the present analysis, 18 sequential two-
hourly blood samples per participant (n = 12 males, mean
age ± standard deviation = 23 ± 5 years) were used, giving a
total of 216 observations for subsequent model building. These
samples spanned the first 36 h of the S/SD study (from 12:00-h
day 2 to 22:00-h day 3). The samples covering the subsequent
sleep deprivation condition, from 00:00 h on day 3 to 12:00 h
on day 4, were excluded from the analysis. Full details of the
blood sample collection, plasma extraction method, targeted
LC/MS metabolomics analysis and subsequent statistical anal-
yses have been described in Materials and Methods and
Supplementary Material sections of the previous articles [4,
5, 7]. Concentration data of 171 metabolites (μM), belonging
to either acylcarnitines, amino acids, biogenic amines, hexose,
glycerophospholipids and sphingolipids, were obtained using
the AbsoluteIDQ p180 targeted metabolomics kit (Biocrates
Life Sciences AG, Innsbruck, Austria) run on a Waters Xevo
TQ-S mass spectrometer coupled to an Acquity HPLC system
(Waters Corporation, Milford, MA, USA).

After correcting the metabolite data for batch effect de-
scribed in detail in [7], we analysed the metabolite profiles
with the single cosinor and nonlinear curve fitting (nlcf)
methods to determine the presence of 24 h rhythmicity, as
was done previously [4, 5]. This first selection step of metab-
olites for time category prediction was based on the statisti-
cally significant outcomes from the nlcf and single cosinor
methods. The selected metabolites had to have a statistically
significant amplitude and acrophase, calculated with the nlcf
method, and statistically significant fits to a cosine curve, as
calculated with the single cosinor method.

Model building and validation

Final selection of markers for prediction modelling was done
using multiple regression including all markers as the
explainary variables and the sampling time as the dependent
variable and ensuring all of the selected markers having sta-
tistically significant and independent effect on the overall
model fitting. The metabolite markers that did not show a
statistically significant independent effect were excluded from
the marker selection process. The most suitable predicted time
categories were established, based on the average peak times
of the metabolites and hormone concentrations, as calculated
with the nlcf method.
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The prediction model was built based on multinomial lo-
gistic regression, where the batch-corrected concentration
values of metabolites were considered as the predictors and
the day/night time categories as the response variable, as de-
scribed elsewhere [11, 16]. Additionally, we combined the
previously proposed circadian hormones melatonin and corti-
sol [9] as well as the previously established rhythmic mRNA
biomarkersMKNK2, PER3 and HSPA1B [11] with the metab-
olites in a prediction model, to determine whether a combina-
tion of the different types of rhythmic markers improves the
prediction accuracy of time estimations. The dataset used for
prediction modelling consisted of 216 observations, i.e. 12
individuals and 18 time points per individual. The multinomi-
al logistic regression is written as

logit Pr y ¼ morningnoon jx1…xkð Þð Þ ¼ ln
π1

π3

� �
¼ α1 þ ∑β π1ð Þkxk

logit Pr y ¼ afternooneve jx1…xkð Þð Þ ¼ ln
π2

π3

� �
¼ α2 þ ∑β π2ð Þkxk

and the probabilities for a certain day/night category can be
estimated as

π1 ¼
exp α1 þ ∑β π1ð Þkxk

� �
1þ exp

�
α1 þ ∑β π1

�
kxk

� �
þ exp α2 þ ∑β π2ð Þkxk

� �

π2 ¼
exp α2 þ ∑β π2ð Þkxk

� �
1þ exp

�
α1 þ ∑β π1

�
kxk

� �
þ exp α2 þ ∑β π2ð Þkxk

� �

and π3 = 1 − π1 − π2.
The day and night category with the max (π1 , π2 , π3) was

considered as the predicted time category.
The model predicted the probabilities of different possible

outcomes of a categorical dependent variable, given a set of
variables (predictors), as previously described and applied for
eye and hair colour prediction based on SNP genotypes
[16–18] and for trace deposition time using circadian mRNA
biomarkers [11].

Because of the small sample size, the performance of the
generated model(s) was evaluated using the leaving-one-out
cross-validation (LOOCV) method [19]. This approach builds
a prediction model from all observations minus one, in this
case for 215 observations, and predicts the time category for
the one remaining observation. Thewhole procedure is repeat-
ed once for each observation, i.e. in this case 216 times. The
area under the receiver operating characteristic (ROC) curve
(AUC), which describes the accuracy of the prediction, was
derived for each time category based on the concordance be-
tween the predicted probabilities and the observed time

category. In general, AUC values range from 0.5, which cor-
responds to random prediction, to 1.0, which represents per-
fect prediction. The concordance between the predicted and
observed categories was categorized into four groups: true
positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). Four accuracy parameters were derived:
sensitivity = TP / (TP + FN) × 100, specificity = TN / (TN +
FP) × 100, positive predictive value (PPV) = TP / (TP +
FP) × 100 and negative predictive value (NPV) = TN /
(TN + FN) × 100.

Notably, the 216 observations that were used in this study
were not completely independent from each other; however, we
aimed to minimize the bias by cross-validation using LOOCV.

Results

Identification of rhythmic metabolites and biomarker
selection for time prediction modelling

From the 171 metabolites analysed in the plasma samples, we
identified 56 metabolite biomarkers showing statistically sig-
nificant oscillations, with both the nlcf and cosinor methods
(Table 1). Next, these 56 metabolites were assigned to day or
night time categories based on their mean peak (acrophase)
time estimates (Table 1). An overrepresentation of metabolites
(n = 50, 89%) demonstrating peak concentrations in the after-
noon, between 13:00 and 17:30 h, was noted. Five out of 56
(9%) metabolites had their highest concentration values dur-
ing the night, between 21:00 and 03:00 h. Only one metabolite
showed a peak time in the early morning, around 06:00 h.
Consequently, we assigned all 56 metabolites to three day/
night time categories, i.e. morning/noon (07:00–14:59 h),
afternoon/evening (15:00–22:59 h) and night/early morning
(23:00–06:59 h), together comprising one complete 24-h
day/night cycle.

Time prediction modelling using metabolites and other
biomarkers

In the first step of the biomarker selection, we applied linear
regression to all 56 metabolites, identified as significantly
rhythmic, to select those with an independent contribution to
the model for predicting the three day/night time categories:
morning/noon, afternoon/evening and night/early morning, as
previously done for mRNA and hormone biomarkers [11].
This analysis revealed a subset of 10 metabolite biomarkers
(AC-C16, AC-C18:1, AC-C4, isoleucine, proline,
PCaaC38:5, PCaaC42:2, PCaeC32:2, PCaeC36:5 and
SMC24:1). The remaining 46 metabolites were omitted from
the subsequent model building and model validation analysis
as their effect on time category predictionwas ‘masked’ by the
10 metabolite biomarkers included in the model. A
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Table 1 Plasma metabolites
(n = 56) with statistically
significant rhythmicity in
concentration during the 24-h
day/night cycle, identified using
both the single cosinor and non-
linear curve fitting (nlcf) methods,
with their assigned time
categories

Number Metabolite Average acrophase
(single cosinor)
(time in h)

Average acrophase
(NLCF) (time in h)

Assigned time
category

1 AC-C0 6.45 6.16 Morning/noon

2 AC-C14 16.18 16.52 Afternoon/evening

3 AC-C14:2 14.01 13.40 Afternoon/evening

4 AC-C16 15.14 15.31 Afternoon/evening

5 AC-C16-OH 16.11 16.43 Afternoon/evening

6 AC-C16:1-OH 13.40 15.49 Afternoon/evening

7 AC-C16:2-OH 13.39 14.49 Afternoon/evening

8 AC-C18:1 13.12 13.08 Afternoon/evening

9 AC-C18:2 13.49 13.41 Afternoon/evening

10 lysoPC a C16:0 15.04 15.31 Afternoon/evening

11 lysoPC a C18:0 14.56 15.34 Afternoon/evening

12 PC aa C36:4 16.29 17.13 Afternoon/evening

13 PC aa C38:0 14.09 14.25 Afternoon/evening

14 PC aa C38:3 14.39 15.20 Afternoon/evening

15 PC aa C38:4 15.21 15.52 Afternoon/evening

16 PC aa C38:5 14.56 15.38 Afternoon/evening

17 PC aa C38:6 15.01 15.40 Afternoon/evening

218 PC aa C40:1 13.28 14.27 Afternoon/evening

19 PC aa C40:2 13.50 14.44 Afternoon/evening

20 PC aa C40:3 14.13 15.00 Afternoon/evening

21 PC aa C40:4 14.34 14.57 Afternoon/evening

22 PC aa C40:5 14.42 15.07 Afternoon/evening

23 PC aa C40:6 14.43 15.23 Afternoon/evening

24 PC aa C42:0 13.57 14.17 Afternoon/evening

25 PC aa C42:1 14.04 14.43 Afternoon/evening

26 PC aa C42:2 13.49 14.45 Afternoon/evening

27 PC aa C42:4 14.19 14.48 Afternoon/evening

28 PC aa C42:5 14.20 14.54 Afternoon/evening

29 PC aa C42:6 14.12 14.47 Afternoon/evening

30 PC ae C32:2 13.20 14.20 Afternoon/evening

31 PC ae C34:2 14.25 15.51 Afternoon/evening

32 PC ae C36:3 14.16 15.05 Afternoon/evening

33 PC ae C36:4 14.19 14.25 Afternoon/evening

34 PC ae C36:5 14.22 14.10 Afternoon/evening

35 PC ae C38:0 14.58 16.15 Afternoon/evening

36 PC ae C38:4 13.42 14.10 Afternoon/evening

37 PC ae C38:5 14.13 14.25 Afternoon/evening

38 PC ae C38:6 14.08 14.23 Afternoon/evening

39 PC ae C40:1 14.33 16.43 Afternoon/evening

40 PC ae C40:3 13.22 14.04 Afternoon/evening

41 PC ae C40:4 13.57 14.30 Afternoon/evening

42 PC ae C40:5 13.54 14.19 Afternoon/evening

43 PC ae C40:6 13.28 14.03 Afternoon/evening

44 PC ae C42:0 14.29 15.14 Afternoon/evening

45 PC ae C42:4 14.16 14.49 Afternoon/evening

46 PC ae C42:5 14.06 14.25 Afternoon/evening

47 PC ae C44:4 14.06 14.37 Afternoon/evening

48 PC ae C44:5 14.17 14.29 Afternoon/evening
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multinomial logistic regression model including the 10 inde-
pendently contributing metabolite biomarkers achieved cross-
validated AUC values of 0.81, 0.86 and 0.90 for the three time
categories: morning/noon, afternoon/evening and night/early
morning respectively (for the outcomes of other prediction
accuracy parameters, see Table 2). Figure 1 presents z-scored
concentration values across the day/night cycle for these 10
metabolite biomarkers.

However, our previously established model based on two
circadian hormones (melatonin and cortisol) and three mRNA
biomarkers (MKNK2, HSPA1B and PER3) gave considerably
higher AUC values of 0.88, 0.88 and 0.95 for the same three
time categories respectively [11], than achieved here with the
model based on the 10 plasma metabolites. Therefore, we per-
formed time prediction modelling using the 10 metabolite bio-
markers highlighted here together with the previously identified
hormone and mRNA biomarkers. This analysis revealed a sub-
set of seven independently contributing biomarkers: five me-
tabolites (AC-C16, AC-C18:1, AC-C4, isoleucine and
SMC24:1), one hormone (melatonin) and onemRNAbiomark-
er (MKNK2). The AUC values obtained with this combined
biomarker model were 0.85 for morning/noon, 0.89 for the
afternoon/evening and 0.96 for night/early morning (Table 2).

Discussion

In this forensically motivated metabolomics study, 56 metabo-
lite biomarkers exhibiting significant daily rhythms in concen-
tration were identified in plasma and were further investigated
for their suitability for estimating blood trace deposition time.
The 171 metabolites initially tested were included in the
AbsoluteIDQ p180 targeted metabolomics kit (Biocrates Life
Sciences AG, Innsbruck, Austria) and belong to five compound
classes and are involved in major metabolic pathways, such as
energy metabolism, ketosis, metabolism of amino acids, cell

cycle and cell proliferation and carbohydrate metabolism, to
name a few. Metabolism is interconnected with circadian
rhythms, influencing them and, in turn, being influenced by
them [2, 6, 12, 13, 20]. Among the metabolites with statistically
significant oscillations identified here, we found a strong over-
representation of those exhibiting peak concentrations in the
afternoon, mainly from the phosphatidylcholine class
(Table 1). Although currently we cannot fully understand what
causes this overrepresentation, the observed peak times agree
with data showing lipid metabolism transcripts in humans hav-
ing maximum transcription levels during the day [21].

The prediction model established here utilized 10 metabo-
lite biomarkers for estimating three day/night time categories

Table 2 Accuracy estimates of time prediction models based on
significantly rhythmic and independently contributing biomarkers

Model based on metabolites
AC-C16, AC-C18:1, AC-C4, isoleucine, proline, PC aa C38:5, PC aa
C42:2, PC ae C32:2, PC ae C36:5, SMC24:1

Predicted time category AUC Sens Spec PPV NPV

Morning/noon 0.81 0.55 0.85 0.65 0.79

Afternoon/evening 0.86 0.82 0.77 0.75 0.84

Night/early morning 0.90 0.67 0.90 0.65 0.90

Model based on metabolites, hormonesa and mRNAsa

AC-C16, AC-C18:1, AC-C4, isoleucine, SMC24:1, melatonina and
MKNK2a

Predicted time category AUC Sens Spec PPV NPV

Morning/noon 0.85 0.71 0.84 0.69 0.85

Afternoon/evening 0.89 0.78 0.82 0.78 0.83

Night/early morning 0.96 0.70 0.93 0.76 0.91

AUC area under the receiver operating characteristic (ROC) curve, PPV
positive predictive value, NPV negative predictive value, Spec specificity,
Sens sensitivity
a As established previously [11]

Table 1 (continued)
Number Metabolite Average acrophase

(single cosinor)
(time in h)

Average acrophase
(NLCF) (time in h)

Assigned time
category

49 PC ae C44:6 14.16 14.23 Afternoon/evening

50 SMC16:1 13.28 13.39 Afternoon/evening

51 SMC24:1 13.51 13.51 Afternoon/evening

51 AC-C4 2.48 2.37 Night/early morning

53 Isoleucine 22.45 22.36 Night/early morning

54 Proline 21.16 21.07 Night/early morning

55 Sarcosine 21.58 22.03 Night/early morning

56 lysoPC a C18:2 20.48 21.12 Night/early morning

Metabolite order based on the assigned time category

AC acylcarnitines, lysoPC a lysophosphatidylcholines, PC aa diacylphosphatidylcholines, PC ae acyl-alkyl-
phosphatidylcholines, SM sphingomyelins
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and achieved AUCs of 0.81 for morning/noon, 0.86 for
afternoon/evening and 0.90 for night/early morning catego-
ries. Following this finding, the metabolite model was com-
pared to the models we previously introduced: (i) the
hormone-based model, (ii) the mRNA-based model and (iii)
the combined hormone and mRNA-based model [11]. The
first comparison with the hormone-based model (cortisol
and melatonin) (i) showed an improved performance of the
metabolite-based model in predicting afternoon/evening and
night/early morning categories (0.86 vs 0.83 and 0.90 vs 0.85
respectively) [11]. Comparison with mRNA-based model
(biomarkers HSPA1B, PER1, PER3, TRIB1, THRA1,
MKNK2) (ii) revealed that the metabolite-based model
achieved higher AUCs for the morning/noon and afternoon/
evening categories (0.81 vs 0.75 and 0.86 vs 0.80 respective-
ly) [11]. In both model comparisons (i and ii), the remaining
category was predicted slightly less accurately in the
metabolite-based model. However, the final comparison with
the combined model, based on two hormones (melatonin, cor-
tisol) and three mRNA biomarkers (MKNK2, HSPA1B and
PER3), (iii) showed that the metabolite-based model was con-
siderably less accurate, giving lower AUC values by 0.07,
0.02 and 0.05, for morning/noon, afternoon/evening and

night/early morning respectively [11]. This final finding was
the motivation to combine together in one time prediction
model the 10 metabolite biomarkers identified here, with the
hormone and mRNA biomarkers identified previously [11].
The best combined model was based on five metabolites (AC-
C16, AC-C18:1, AC-C4, isoleucine and SMC24:1), melato-
nin and the MKNK2 and reached AUC values of 0.85 for
morning/noon, 0.89 for afternoon/evening and 0.96 for
night/early morning. Overall, this combinedmodel was slight-
ly more accurate in predicting the afternoon/evening and the
night/early morning categories (AUC increase of 0.01) and
slightly less accurate in predicting the morning/noon category
(AUC decrease of 0.03) compared with the previously
established combined hormone and mRNA-based model
[11]. This rather minor impact of the newly tested metabolites,
relative to the previously tested hormones and mRNA bio-
markers [11], questions the value of using plasma metabolites
for trace deposition timing.

The major subset of the metabolites identified in the current
study peaked during the day, and this might reflect either the
feeding-fasting schedule [7, 22] or their original source. The
original source of metabolites circulating in plasma is difficult
to determine accurately since they can be derived from
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Fig. 1 Ten rhythmic metabolite markers selected for time prediction
modelling. The data are presented as z scores (for illustrative purposes
only) across a period of 36 h. Each coloured line represents one

individual; the black bold line corresponds to an average cosine curve
(as calculated with the nlcf method)
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multiple organs that are regulated by different systemic and
external cues influencing their function and rhythmicity,
which, in turn, modifies the rhythms of the generated metab-
olites. Consequently, if the metabolites identified here are sen-
sitive to feeding and fasting cues, their applicability for trace
deposition timing may be rather limited, but their value for
monitoring peripheral circadian rhythms in the liver, for in-
stance, may be crucial.

Furthermore, the previously introduced hormone and
mRNA biomarkers [11] can feasibly be analysed by using
an ELISA assay and RT-qPCR respectively, techniques
that nowadays are straightforward and require only basic
laboratory instruments and have been shown to be suit-
able for forensic trace analysis. In comparison, relatively
specialized LC/MS equipment and methodology are need-
ed to simultaneously analyse a large number of metabo-
lites circulating in plasma, even more so, when measuring
a forensic trace sample. Regardless of these constraints, it
has been shown that measuring metabolites in dried blood
is possible [23, 24], but needs to be studied further in the
forensic context, where the quantity and the quality of
dried blood stains are often compromised. However, in
situations where intact RNA is not available and the pre-
ferred mRNA-based time estimation models can therefore
not be used, metabolite markers might be the markers of
choice. In such situation, metabolite analysis may provide
valuable information on trace deposition time.

The technical challenges should thus not impede future
studies to fully establish whether plasma metabolites
could be useful biomarkers for trace deposition timing,
and if additional metabolites can achieve a more detailed
and accurate time estimation than the metabolites identi-
fied here. Additionally, more samples collected around the
24-h clock from more individuals need to be analysed to
make the time prediction model more robust, and the
analysis method, at best a multiplex system, needs to be
forensically validated including sensitibity testing, speci-
ficity testing and stability testing, before final forensic
casework application may be considered.
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