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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been extensively

used to study brain aging, but the age effect on the frequency content of the rs-fMRI

signal has scarcely been examined. Moreover, the neuronal implications of such age

effects and age–sex interaction remain unclear. In this study, we examined the

effects of age and sex on the rs-fMRI signal frequency using the Leipzig mind–brain–

body data set. Over a frequency band of up to 0.3 Hz, we found that the rs-fMRI

fluctuation frequency is higher in the older adults, although the fluctuation amplitude

is lower. The rs-fMRI signal frequency is also higher in men than in women. Both age

and sex effects on fMRI frequency vary with the frequency band examined but are

not found in the frequency of physiological-noise components. This higher rs-fMRI

frequency in older adults is not mediated by the electroencephalograph (EEG)-

frequency increase but a likely link between fMRI signal frequency and EEG entropy,

which vary with age and sex. Additionally, in different rs-fMRI frequency bands, the

fMRI-EEG amplitude ratio is higher in young adults. This is the first study to investi-

gate the neuronal contribution to age and sex effects in the frequency dimension of

the rs-fMRI signal and may lead to the development of new, frequency-based rs-

fMRI metrics. Our study demonstrates that Fourier analysis of the fMRI signal can

reveal novel information about aging. Furthermore, fMRI and EEG signals reflect dif-

ferent aspects of age- and sex-related brain differences, but the signal frequency and

complexity, instead of amplitude, may hold their link.

K E YWORD S

brain aging, electroencephalograph, fMRI signal amplitude, fMRI signal frequency, LEMON
study, neurovascular coupling, resting-state fMRI, sex differences

1 | INTRODUCTION

Brain aging is a nebulous process that can involve many modulators

and manifest through many markers of neuronal health. There have

been established findings of cognitive (Harada, Natelson Love, &

Triebel, 2013), morphological (Salat et al., 2004; Zhao et al., 2019),

microstructural (Madden et al., 2012), vascular (Ungvari, Kaley, de

Cabo, Sonntag, & Csiszar, 2010), and functional (Andrews-Hanna

et al., 2007; Varangis, Habeck, Razlighi, & Stern, 2019) differences

between healthy young and older adults. Moreover, resting-state

functional connectivity is found to be higher in women (Hjelmervik,

Hausmann, Osnes, Westerhausen, & Specht, 2014; Zhang
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et al., 2016), and the rate of age-associated neuromorphological lower

among women (Cowell et al., 1994; Edward Coffey et al., 1998; Gur

et al., 1991), related primarily to female sex hormonal (estrogen)

changes in aging (Colciago, Casati, Negri-Cesi, & Celotti, 2015; Res-

nick, Metter, & Zonderman, 1997; Rossetti, Cambiasso, Holschbach, &

Cabrera, 2016; Zárate, Stevnsner, & Gredilla, 2017).

Understanding the effects of healthy aging on brain oscillations

has long been a goal of aging research. Brain oscillations measured

using electroencephalography such as electroencephalography

(EEG) and magnetoencephalography (MEG) can provide measure-

ments reflecting the age-effect underlying neuronal signals with

power variation (see review in the study by Ishii et al., 2017) in each

frequency band. EEG and MEG studies have also reported a reduc-

tion of neuronal activity frequency in mild cognitive impairment

(Garcés et al., 2013). Hence, although electrophysiological mea-

sures of brain oscillations do not always have a clear one-to-one

relationship to cognition, brain-oscillation dynamics are relevant to

cognitive aging. Currently, the use of resting-state functional MRI

(rs-fMRI) for mapping brain oscillations is rapidly growing. Brain

variability (Garrett, Kovacevic, McIntosh, & Grady, 2010; Kumral

et al., 2019), the amplitude of low-frequency fluctuations (ALFF)

(Jia et al., 2020; Zou et al., 2008), and the resting-state fluctuation

amplitude (RSFA) (Kannurpatti, Rypma, & Biswal, 2012) are all indi-

cators of rs-fMRI oscillatory amplitude. Moreover, the ALFF and

RSFA have both been found to vary with age (Tsvetanov

et al., 2020; Yin et al., 2014).

Note that rs-fMRI fluctuation amplitude is associated with vascu-

lar (Tsvetanov et al., 2015), metabolic (Jiao et al., 2019), and cognitive

influences (Garrett, Lindenberger, Hoge, & Gauthier, 2017; Takeuchi

et al., 2017). Thus, the interpretation of rs-fMRI signal fluctuations

has yet to be fully clarified. In this regard, one commonly investigated

question is the relationship between fMRI and amplitudes of the EEG

signals (de Munck et al., 2007; Goldman, Stern, Engel, & Cohen, 2002;

Lu, Grova, Kobayashi, Dubeau, & Gotman, 2007). The EEG signal

entropy (complexity) has also been associated with rs-fMRI functional

connectivity (Liu, Song, Liang, Knöpfel, & Zhou, 2019; Wang

et al., 2018). To date, it remains to be understood how age effects in

EEG and fMRI signals are associated in the context of aging, which is

a question that is central to the interpretation of rs-fMRI findings.

Age-associated differences in neurovascular coupling are in turn key

to understanding the age-related differences between the EEG-fMRI

linkage, and this coupling could also vary with age (Tsvetanov, Hen-

son, & Rowe, 2021).

The frequency content of the rs-fMRI signal can provide a novel

set of markers of brain function. Indeed, frequency dependence of

functional connectivity has been uncovered (Kalcher et al., 2014), and

the frequency spectrum of the rs-fMRI signal has become increasingly

studied to isolate dynamic neuronal and hemodynamic information

(Yuen, Osachoff, & Chen, 2019). Given the multiple physiological

changes that occur in aging, it is informative to incorporate frequency

features into the study of aging using rs-fMRI as well. To date, the

only work that has adopted this approach is by Yang et al. (Yang, Tsai,

Lin, Peng, & Huang, 2018), who used the Hilbert transform to derive

intrinsic modes of oscillation from the rs-fMRI signal. Their study

found that the frequency band between 0.045 and 0.087 Hz is more

strongly associated with cognitive scores, whereas lower frequencies

are more likely to be driven by physiological processes such as sponta-

neous fluctuations in arterial carbon dioxide level at rest. This is in

close agreement with findings by Yuen et al. in young adults using var-

iational mode decomposition (Yuen et al., 2019). Furthermore, Yang

et al. reported a widespread increase in the instantaneous frequencies

in aging within the “cognitively driven” frequency band, with a less

extensive increase at lower frequencies.

The previous work, while extremely novel and informative, has

left some unanswered questions.

1. There is still very limited investigation into variations in the fre-

quency of the rs-fMRI signal in aging and the age–sex interaction.

2. Given the known complexity of the signal and noise contributions

to the rs-fMRI signal, including by intrinsic variations in carbon

dioxide (CO2) (Chang & Glover, 2009; Golestani, Chang, Kwinta,

Khatamian, & Chen, 2015; Wise, Ide, Poulin, & Tracey, 2004), res-

piration (Birn, Diamond, Smith, & Bandettini, 2006; Chang &

Glover, 2009; Golestani et al., 2015; Shams, LeVan, & Chen, 2021)

and cardiac pulsation (Attarpour, Ward, & Chen, 2021; Chang

et al., 2013; Falahpour, Refai, & Bodurka, 2013; Shmueli

et al., 2007), the neuronal associations of the observed frequency

shifts remain unclear. Hence, it is still unclear how EEG and fMRI

are related in aging.

3. Given the widespread use of Fourier-transform based methods for

studying rs-fMRI power distributions (Zou et al., 2008), it is impor-

tant to clarify whether Fourier-based spectral decomposition can

produce results to support the Hilbert-transform-based findings.

In this study, using data from the Leipzig mind–brain–body

(LEMON) study (Babayan et al., 2019), we probe the above questions.

This study is expected to lead to the improved use of rs-fMRI for

studying aging brain dynamics.

2 | METHODS

2.1 | Participants

The “Leipzig Study for Mind-Body-Emotion Interaction” (LEMON,

publicly available at http://fcon_1000.projects.nitrc.org/indi/retro/

MPI_LEMON.html) (Babayan et al., 2019) dataset comprises

227 healthy subjects in two age groups. The older group is aged

between 59 and 77 years old (N = 74, 37 females) while the younger

group is between 20 and 40 years old (N = 153, 45 females). No par-

ticipant reported a history of cardiovascular disease, psychiatric dis-

ease, neurological disorders, malignant disease, or medication/drug

use that could affect the study. The study protocol conformed to the

Declaration of Helsinki and was approved by the ethics committee at

the medical faculty of the University of Leipzig (reference number

154/13-ff) (Table 1).
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We performed additional quality control and excluded data sets

that had incomplete data, mismatching sampling rates, image artifacts,

excessive head movement, or excessive background noise. The final

sample used in this study, with 185 subjects, includes 134 young (20–

40 years old, 42 females) and 51 old subjects (59–77 years old,

23 females). Ages were only recorded by the LEMON study quinquen-

nially (5-year steps), thus only the group means and STDEVs of the

mean are provided. For the age distributions, see Figure A1 in Supple-

mentary Materials. Furthermore, the education levels were provided

in the German system (Hauptschule and above) and are equivalent to

“high school” in North America across all subjects.

2.2 | Data acquisition

All data acquisitions are described in the LEMON publication

(Babayan et al., 2019). The relevant sections are summarized below.

2.2.1 | Magnetic resonance imaging

Magnetic resonance imaging (MRI) was performed on a 3 T scanner

(MAGNETOM Verio, Siemens Healthcare GmbH, Erlangen, Germany)

equipped with a 32-channel head coil. Participants were informed to

keep their eyes open while focusing on a low-contrast cross during

the scan.

Structural T1-weighted image was acquired using an MP2RAGE

sequence with parameters: TR = 5,000 ms, TE = 2.921 ms,

TI1 = 700 ms, TI2 = 2,500 ms, FA1 = 4�, FA2 = 5�,

bandwidth = 240 Hz/pixel, FOV = 256 mm, voxel size 1 mm isotro-

pic, 176 slice encodes. Functional imaging was performed with a T2*-

weighted gradient-echo EPI sequence, with TR = 1,400 ms,

TE = 30 ms, flip angle = 69�, bandwidth = 1776 Hz/pixel, partial Fou-

rier ⅞, voxel size 2.3 mm isotropic, 64 slices.

2.2.2 | Electroencephalograph

In a separate session, 16 min of resting-state EEG were recorded with

BrainAmp MR-plus amplifiers using 62-channel (61 scale electrodes

and 1 VEOG electrode below the right eye) active ActiCAP electrodes

(both Brain Products GmbH, Gilching, Germany) attached according

to the international standard 10-10 system and referenced to FCz.

The ground electrode was located at the sternum and skin–electrode

interface impedance was kept below 5 kΩ. The EEG signal is digitized

at a sampling frequency of 2,500 Hz and amplitude resolution was set

to 0.1 μV. The EEG session included a total of eight eyes-closed

(EC) blocks and eight eyes-open (EO) blocks, each 60 s. During the EO

blocks, subjects were asked to fixate on a black cross on a white back-

ground presented using the Presentation software (Version 16.5,

Neurobehavioral System Inc., Berkley, CA, USA). As rsfMRI data were

collected only in the EO condition, only EEG from the EO condition

was used in the comparative analysis.

2.3 | rs-fMRI data preprocessing and analysis

The rs-fMRI processing strategy is summarized in Figure 1. fMRI

preprocessing was implemented with tools from FSL (Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012) and FreeSurfer

(Fischl, 2012). The following steps were included in preprocessing:

(a) 3D motion correction (FSL MCFLIRT), (b) slice-timing correction

(FSL slicetimer), (c) brain extraction (FSL bet2 and FreeSurfer

mri_watershed), (d) rigid body coregistration of functional data to

the individual T1 image (FSL FLIRT), (e) regression of the mean sig-

nals from white-matter (WM) and cerebrospinal fluid (CSF) regions

(fsl_glm), (f ) bandpass filtering to obtain band 1 (0.01–0.1 Hz) and

band 2 (0.1–0.3 Hz), (g) special normalization to MNI152 (Montreal

Neurological Institute) standard space with spatial resolution 2 mm

isotropic (FSL FLIRT and FNIRT), and (h) the data were spatially

smoothed with 6 mm full-width half-maximum (FWHM) Gaussian

kernel (FSL fslmaths). The two frequency bands are meant to cap-

ture fluctuations that are typically associated with neuronal activity

(lower frequency) and physiological processes (higher frequency),

informed by prior literature (Yang et al., 2018; Yuen et al., 2019).

The band-pass filter was implemented using Matlab (327th order

Kaiser band-pass FIR filter with respective passband) to ensure

minimal overlap between the bands. The magnitude and phase

responses of the filter are shown in Figure S2. Furthermore, the

motion-correction parameters and the WM-CSF signals were saved

as a surrogate for head-motion physiological noise traces for fur-

ther analysis.

STDEV and central frequency were calculated within each voxel

time series then segmented to 106 ROIs using the Harvard-Oxford

subcortical and cortical atlas (Desikan et al., 2006) for the mediation

and S-ratio analyses. In particular, the central frequency was calcu-

lated by the center-of-mass approach, expressed by Equation (1).

frequency¼
Pm

i¼0PifiPm
i¼0Pi

, ð1Þ

where P represents power, and f frequency, and (i = 0,...,m) is the fre-

quency index in the Fourier domain (m corresponds to the maximum

frequency). This approach ensured greater robustness against noise

than identifying a single peak frequency The amplitude envelope of

each band's oscillations was extracted using the Hilbert transform

(Rosenblum, Pikovsky, Kurths, Schäfer, & Tass, 2001) and then tempo-

rally smoothed by a kernel with a FWHM of 0.5 s.

TABLE 1 Subject demographics

Attributes Young Old

N 134 51

Age (mean/STDEV of mean) 25.5 ± 3.4 years 66.9 ± 4.8 years

Male : Female (M:F) ratio 42:92 23:28
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2.4 | EEG data preprocessing and analysis

The EEG processing strategy is summarized in Figure 1. EEG

preprocessing was conducted with EEGLAB (version 14.1.1bl;

Delorme & Makeig, 2004) functions implemented in Matlab (The

MathWorks Inc., Natick, Massachusetts, USA). The raw EEG data

were down-sampled from 2,500 Hz to 250 Hz, band-pass filtered

to 1–45 Hz with a fourth order back and forth Butterworth filter

before being split into EO and EC conditions; 6.6% of the data

were rejected by visual inspection, due to facial muscular tension

and gross movements as well as artefactual channels. Further-

more, principal component analysis was used to reduce the dimen-

sionality of the data to at least 30 principal components that

explain 95% of the total variance. Then, using independent com-

ponent analysis (Bell & Sejnowski, 1997), signal components

related to physiological sources, for example, eye blinks, eye

movements, residual ballistocardiograph artifacts, and muscle

activity were further rejected. Preprocessed EEG signals were re-

referenced to the common average and channel FCz was added as

a normal channel.

F IGURE 1 Overview of the analysis procedure. Two electroencephalograph (EEG) pipelines and one functional magnetic resonance imaging
(fMRI) pipeline are used, as well as a ratios pipeline
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The geometry of the source reconstruction model was based on

the MNI/ICBM152 (International Consortium for Brain Mapping)

standard anatomy. eLORETA (exact low-resolution brain electromag-

netic tomography) implemented in the M/EEG toolbox of Hamburg

(METH) (Haufe & Ewald, 2019) was used to compute the source dis-

tribution from the scalp EEG recordings. The lead field matrix was

generated to relate 2,113 source voxels and 62 scalp electrodes.

Singular-value decomposition of each voxel was used to determine

the dominant orientation of the source signal.

2.4.1 | Band-limited approach

Band-pass filtering of the EEG signal was used to produce the well-

known frequency bands of brain oscillations: delta (1–4 Hz), theta

(4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz). We employed an

epoch-based approach (Figure 1), whereby the standard deviation

(STDEV) in each EEG band was calculated for sliding EEG epochs

that match the TR of the fMRI data (1.4 s). This step allows us to

match the temporal features in the EEG and fMRI time series and is

analogous to the epoch-wise variability measure in task-based fMRI

introduced by Garrett et al. (Garrett et al., 2010). The STDEV and

peak EEG frequency were computed for each epoch. Power is

reflected by STDEV of each source's smoothed time series, which

are further averaged within 106 regions of interest (ROIs) as desig-

nated according to the Harvard-Oxford subcortical and cortical

atlas (Desikan et al., 2006). Note that the STDEV is simply the

square root of total spectral power (used for metrics such as the

amplitude of low-frequency fluctuations; Zou et al., 2008). Subse-

quently, the epoch-based STDEV is calculated by the STDEV across

all epoch-specific STDEVs. Peak frequencies were defined by the

average of peak frequency in each epoch of corresponding EEG

time series.

We also implemented a nonepoch analysis pipeline, in which EEG

time series were used directly without epoch-matching to the fMRI

data. The results are provided for reference only in Supplementary

Materials Data S1.

2.4.2 | Multiscale approach

To simultaneously characterize multiple EEG bands, we computed

multiscale entropy (MSE) (Costa, Goldberger, & Peng, 2002;

Kosciessa, Kloosterman, & Garrett, 2020), which is the preeminent

method for characterizing signal complexity. We chose four different

scale factors, that is, m = 64, 41, 25, and 11 as MSE coarse-grain scale

(Gao, Hu, Liu, & Cao, 2015). The order of permutation is set to 2 and

the noise threshold is 0.5 relative to the STDEV of each band. Based

on the MSE measures, we computed a complexity index (Costa,

Goldberger, & Peng, 2005; Kang & Dingwell, 2016), that is, the area

under the MSE curve, which indicates the amount of entropy over a

range of time scales. We did not compute entropy in rs-fMRI data,

due to its limited bandwidth.

2.4.3 | fMRI-EEG ratio

In prior literature, the relationship between EEG and fMRI signal

amplitudes has been used to assess neurovascular coupling (Mullinger,

Cherukara, Buxton, Francis, & Mayhew, 2017). In aging, the ratio

between the fMRI and EEG task responses has been found to

decrease, potentially reflecting changes in neurovascular coupling

(Fabiani et al., 2014). Inspired by these prior works, we applied the

same principle to the resting state to assess the effect of aging. The

ratio of the rs-fMRI and EEG signal fluctuations is taken between sig-

nal pairs across the two fMRI frequency bands and four EEG bands.

This measurement is intended to produce a surrogate of the vascular-

neuronal fluctuation ratio in the resting state and is examined in the

two fMRI frequency bands separately, as metric that could help pro-

vide context for the age and sex effect on fMRI signal frequency.

2.5 | Statistical methods

To investigate age and sex effect, EEG STDEV, peak frequency and

complexity index from each 115 ROIs were examined by nonparamet-

ric analyses of covariance (ANCOVAs, type III) after outliers (data

points outside of the 1.5-interquartile range) were removed. The sig-

nificance of group differences was further tested by Tukey's honest

significant difference (HSD) post hoc comparisons with a significance

threshold of .05. All analyses were implemented in Matlab (The

MathWorks Inc.).

BOLD fMRI central frequency and STDEV were tested for effects

of age and sex with the ANOVA by used generalized linear model

(GLM) implemented in FSL (Jenkinson et al., 2012) with significance

threshold .05, corrected for multiple comparisons using randomize. In

the age comparisons, sex was covaried, while in sex comparison, age

was covaried. Subcortical region STDEV and central frequency were

also examined by nonparametric analyses of covariance (ANCOVAs,

type III) and Tukey's HSD post hoc comparisons to better investigate

age and sex effects in these ROIs. Furthermore, effect sizes were cal-

culated with Hedges' approach (Hedges, 1981) and threshold with sig-

nificant region.

Two statistical approaches were used to probe the relationship

between BOLD fMRI central frequency and EEG. The first approach

used nonparametric analysis of covariance (ANCOVAs, type III) and

Tukey's HSD post hoc test to analyze the age and sex effects on

fMRI-EEG STDEV ratio. The second is a set of mediation analyses, as

shown in Figure 2.

Based on the physiological relationship between neural activity

and cerebral blood flow (Buxton, Wong, & Frank, 1998), the causality

between electrophysiological and fMRI data can be reasonably

established, which permits EEG variables to be used as mediators of

fMRI variables even for cross-sectional data (Fairchild &

McDaniel, 2017). Specifically, mediation pathway analysis

(Hayes, 2013) was applied to investigate the association between

EEG frequency and BOLD frequency, EEG STDEV and BOLD STDEV,

as well as EEG complexity and BOLD frequency/amplitude in terms of
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age and sex effects. The models, summarized in Figure 2, were built in

Matlab (The MathWorks Inc.) with the variational Bayesian analysis

(VBA) toolbox (Daunizeau, Adam, & Rigoux, 2014). EEG parameters

were set as a mediator while age or sex and BOLD parameters were

the independent and dependent variables, respectively. The model

was first built through Baron an Kenny's three-step mediation analysis

(Baron & Kenny, 1986), and then examined by the Sobel test

(Sobel, 1982) to determine whether the relationship between the

independent variable and dependent variable is significantly reduced

when including the mediator. The significance was declared when the

p value from the Sobel test was lower than .05, corrected for false-

discovery rate. Besides mediation analysis, correlation analysis was

done between EEG STDEV and fMRI STDEV, EEG frequency and fMRI

frequency as well as EEG complex index and fMRI frequency. Correla-

tion results were threshold with the significant level .05 and corrected

with FDR correction.

3 | RESULTS

3.1 | fMRI findings

3.1.1 | fMRI frequency versus age and sex

From Figure 3, it is evident that young adults have lower fMRI frequen-

cies than older adults. The central frequency for the 0.01–0.1 Hz BOLD

signal band is significantly higher in older adults in the superior frontal

gyrus, insula, and superior temporal cortex for the cortical region, while

the central frequency for the 0.1–0.3 Hz BOLD signal band significantly

higher in older participants in more cortical regions (Figure 4). In the sub-

cortical regions, older participants have higher rs-fMRI central frequency

in the thalamus, caudate, putamen, pallidum, and hippocampus than

younger participants, but only in the 0.1–0.3 Hz band (Figure 5a). More-

over, females have higher central frequencies in the occipital and parietal

lobes (Figure 7) as well as the caudate (Figure 6) in the lower frequency

component of the BOLD signal.

3.1.2 | fMRI amplitude versus age and sex

From Figure 3, it is evident that young adults have qualitatively higher

fMRI signal amplitudes (as reflected by STDEV) and lower fMRI fre-

quencies than older adults. Moreover, older adult STDEV maps display

lower inter-regional variability than those of younger adults. rs-fMRI

signal fluctuation amplitude is also significantly lower in older adults.

For the lower-frequency BOLD signal (0.01–0.1 Hz), younger

adults show higher STDEV in the cingulate, superior frontal gyrus,

middle frontal gyrus, and lingual gyrus for the cortical region

(Figure 4). Compared with the 0.01–0.1 Hz BOLD signal, the BOLD

signal at 0.1–0.3 Hz is associated with significant age effects in more

ROIs, covering most of the cortical regions. For the subcortical

regions, both frequency ranges show a significant age effect on the

putamen (Figure 5b). Concerning the sex effect, only the lower-

frequency BOLD showed higher amplitude in females in the frontal

lobe (Figure 7). Lastly, spatial coregistration using linear and nonlinear

methods yielded identical results. We did not assess age–sex interac-

tions on the fMRI data, as the effect of sex on fMRI metrics was found

to be negligible.

F IGURE 2 Models for the mediation
analyses. We investigate the mediating
effects of electroencephalograph (EEG)
frequency (Model 1), complexity (Model
2), and amplitude (Model 3) on resting-
state functional magnetic resonance
imaging (rs-fMRI) frequency. The
mediation coefficients a, b, and c
represent indirect and direct effects. The

independent variables are age and sex
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3.1.3 | The role of head motion and physiological
noise

It has been suggested that sex and age differences of both fMRI

STDEV and frequency could be attributed to differences in physiologi-

cal confounds and motion effects between age and sex groups (van

Dijk, Sabuncu, & Buckner, 2011). Concerning motion effects, we per-

formed age and sex comparisons (ANCOVA with Tukey HSD post hoc

test) on the magnitude and frequency with framewise motion esti-

mates and did not find significant differences in our data (results not

shown). Likewise, in regard to physiological confounds, we performed

age and sex comparisons (ANCOVA with Tukey HSD post hoc test) to

frequency and STDEV of white matter (WM) and cerebrospinal fluid

(CSF) signals and found no significant age effect on the WM and CSF

signals. We did, however, find that females have higher WM signal

STDEV but lower frequency than males.

F IGURE 3 Mean resting-state functional magnetic resonance imaging (rs-fMRI) frequency and amplitude maps in young and old groups. The
amplitude is given by the STDEV in units of %ΔBOLD. Cortical regions show higher STDEV than subcortical regions. Also young adults (a–d) have
higher amplitude but lower frequency than older adults (e–h)
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3.2 | EEG findings

3.2.1 | EEG power versus age and sex

Tukey's HSD post hoc comparison shows that younger subjects

exhibit lower EEG signal STDEV in the delta, theta, and alpha bands.

The graphical distribution of the significant cortical age effects is

shown in Figure 8. Older adults show lower EEG STDEV than younger

adults in the alpha, theta, and delta bands. Significant main effects for

the delta band are in the majority of cortical regions, more spatially

restricted for the theta band. The beta band shows a different trend

than the other three bands. Concerning the sex effect, females have

F IGURE 4 Resting-state functional magnetic resonance imaging (rs-fMRI) frequency and amplitude versus age. Only significantly different
regions are shown in color. fMRI fluctuation frequency is higher in the older adults, also more extensively in the 0.1–0.3 Hz band. For reference,
fMRI fluctuation amplitude is given as STDEV and is higher in the younger adults in both the 0.01–0.1 Hz and the 0.1–0.3 Hz bands, also with the
0.1–0.3 Hz band showing more widespread differences. All cases show significant differences in the cingulate cortex and paracentral cortex.
Effect sizes range from 0.1 (small effect) to 1.5 (large effect)

F IGURE 5 Resting-state functional magnetic resonance imaging (rs-fMRI) frequency and amplitude versus age: subcortical regions. (a) The
fMRI frequency is higher in the older adults in all subcortical structures, but only in the 0.1–0.3 Hz band. (b) For reference, the fMRI signal
amplitude is given as the STDEV and shows significant age effects (young > old) in the putamen in both fMRI frequency bands. Significance is
indicated by asterisks (*)
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higher EEG STDEV than males in the beta, theta, and delta bands. See

Figure 8 for detailed spatial distribution.

3.2.2 | EEG frequency versus age and sex

The graphical distribution of the significant cortical age effects includes

those in the delta, theta, and the beta bands in the cortex (see Figure 9

for details). Delta band central frequency shows a significant reduction in

the older adults, whereas theta and beta bands show significantly higher

frequency in older adults. EEG central frequency only exhibits a signifi-

cant age effect in cortical regions. The delta band is the only one that

shows a significant sex effect for EEG frequency—females have higher

frequency than males in the left and right frontal gyrus.

3.2.3 | EEG complexity versus age and sex

As shown in Figure 10, the multiscale EEG complexity index (CI) is

lower in older adults in a wide swath of brain regions. It is also lower

in females, which is most significant in the parietal lobe and in the left

hemisphere than right hemisphere (Figure 10).

3.3 | Combining fMRI and EEG: The fMRI-EEG
ratio

For the fMRI-EEG STDEV ratio, the distribution of ROIs showing sig-

nificant age effects is shown in Figure 11. Statistical analysis reveals

that the fMRI-alpha STDEV ratio in the 0.1–0.3 Hz fMRI frequency

band is significantly higher in younger adults. Young adults also have

higher fMRI-beta ratios in both the 0.01–0.1 Hz and 0.1–0.3 Hz bands

and in more brain regions than for the fMRI-alpha ratio. The age effect

is negligible for the fMRI-delta STDEV ratio in the 0.01–0.1 Hz band

(one ROI, medial frontal cortex), the fMRI-alpha band in the 0.01–

0.1 Hz frequency band (four ROIs in frontal and parietal regions), and

the fMRI-theta STDEV ratio.

The spatial distribution showing significant sex effects is shown in

Figure 12. Females are associated with significantly lower BOLD-EEG

STDEV ratios than males in all frequency combinations (two fMRI fre-

quencies vs. four EEG frequencies). Significant sex effects

(female < male) are found in the STDEV ratios corresponding to all

EEG bands, spanning the frontal, occipital, and paracentral regions.

The effects are greatest for the beta band and more widespread for

the 0.1–0.3 Hz fMRI-beta ratio.

Illustrated in Figure 13 is a side-by-side comparison of the fMRI

frequency and fMRI-EEG STDEV ratio differences between young

and old groups, to facilitate associations. Only the beta-band fMRI-

EEG ratio is shown, as this is the band showing the most extensive

age effects. For both parameters, age effects are more pronounced at

higher frequency (0.1–0.3 Hz), and the majority of the effects are in

the frontal part of the brain.

F IGURE 6 Resting-state functional magnetic resonance imaging
(rs-fMRI) frequency and amplitude versus sex: subcortical regions.
fMRI fluctuation frequency is higher in women only in the caudate's

0.01–0.1 Hz signal band. Significance is indicated by asterisks (*)

F IGURE 7 Resting-state functional magnetic resonance imaging (rs-fMRI) frequency and amplitude versus sex. All differences correspond to
female minus male, and only statistically significant results are shown in color. There is minimal difference in rs-fMRI frequency between men and
women
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F IGURE 8 EEG STDEV versus age and sex. (a) All differences correspond to young minus old, and only statistically significant results are
shown in color. Electroencephalograph (EEG) power is directly reflected by STDEV. (b) All differences correspond to females minus males, and
only statistically significant results are shown in color. EEG power is computed as the signal STDEV

F IGURE 9 Electroencephalograph (EEG) frequency versus age and sex. (a) All differences correspond to young minus old, and only
statistically significant results are shown in color. (b) All differences correspond to young minus old, and only statistically significant results are
shown in color. There is minimal difference in EEG frequency between men and women (in the frontal gyrus)
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F IGURE 10
Electroencephalograph (EEG)
complexity index (CI): age and sex
effects. (a) Across all four EEG
bands, EEG complexity is lower in
the older adults, and the age
effects are found across cortical
regions. (b) Women are
associated with lower EEG

complexity in only one region of
the brain (left parietal lobe)

F IGURE 11 Resting-state functional magnetic resonance imaging (rs-fMRI)-electroencephalograph (EEG) STDEV ratio versus age segregated
by fMRI frequency band. The fMRI-to-beta STDEV ratio exhibits the greatest age effects (young > old) (f, h). The effects are most pronounced in
the 0.1–0.3 Hz range, and the affected regions span nearly the entire anterior cortex, also including subcortical regions such as the putamen and

pallidum. The fMRI-to-theta ratio is lower in the young subjects in only the paracentral cortex

F IGURE 12 rs-fMRI-EEG STDEV ratio versus sex segregated by fMRI frequency band. Significant sex effects (female < male) are found in the
ratios corresponding to all EEG bands, spanning the frontal, occipital and paracentral regions. The effects are greatest for the beta band, and more
widespread for the 0.1–0.3 Hz fMRI-to-beta ratio
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The results of EEG and fMRI correlation analyses are summarized

in Figure 14. Alpha and delta band EEG SD show positive correlations

with SD in the 0.01–0.1 Hz fMRI band in the cingulate and occipital

regions (Figure 14a,c), while the SD of the delta band is also correlated

with SD in the higher fMRI frequency band (Figure 14b). Only in the

EEG theta band are fMRI and EEG frequencies positively correlated,

over the entire cortex with the exception of the middle-inferior fron-

tal cortex (Figure 14d). Lastly, the EEG complexity index (Figure 14e)

shows the most extensive significant correlation, being negatively cor-

related with SD in the higher fMRI frequency band.

3.4 | EEG mediation of fMRI frequency

3.4.1 | Mediation Model 1: EEG frequency
mediating the age or sex differences in fMRI frequency

There is no evidence that the EEG peak frequency mediates the age

or sex differences in the BOLD central frequency.

3.4.2 | Mediation Model 2: EEG complexity
mediating the age or sex differences in fMRI frequency

The EEG complexity index (CI) is found to significantly mediate the

age effect on BOLD frequency in both the 0.01–0.1 Hz and the 0.1–

0.3 Hz bands. Regions involved include the insula, the cingulate gyrus,

the operculum, the putamen, and the thalamus. For sex differences,

EEG CI significantly mediates across wide swaths of the brain (see

Table S1). This is despite there being minimal sex differences in EEG

CI (Figure 9). Nonetheless, the mediation proportion remains lim-

ited (<2%).

3.4.3 | Mediation model 3: EEG STDEV mediating
the age or sex differences in fMRI frequency

There is largely no evidence that EEG power (STDEV) mediates the

age effect on the BOLD central frequency (see Table S3), except for

the cuneal region, which shows partial mediation effect between EEG

alpha band and fMRI 0.1–0.3 frequency band. For sex differences,

EEG beta band power partially mediates four ROIs with BOLD fre-

quency in 0.01–0.1 Hz bands and 0.1–0.3 Hz band, while the mediat-

ing effect by other EEG bands is negligible. (see Table S2).

4 | DISCUSSION

It is widely assumed that fMRI signal fluctuations represent neuronal

fluctuations, but there is still limited work to clarify the neuronal con-

tribution to fMRI signal variability. In particular, while most studies

investigate rs-fMRI signal fluctuation amplitude (herein represented

by STDEV), the frequency of the rs-fMRI signal, also rich in informa-

tion, has been largely overlooked. In this study, we found that:

1. To address research question 1:

a. The rs-fMRI frequency is lower in younger adults and in

women.

b. The rs-fMRI amplitude is greater in younger adults predomi-

nantly in the frequency >0.1 Hz.

2. To address research question 2:

a. The rs-fMRI-EEG STDEV ratio is higher in the young adults and

lower in women.

b. The age and sex effects found in rs-fMRI fluctuation frequency

are significantly mediated by EEG entropy.

3. To address research question 3:

F IGURE 13 Comparison between rs-fMRI-EEG STDEV ratio versus age and fMRI frequency. The fMRI fluctuation frequency is higher in the
older adults while the fMRI-to-beta STDEV ratio is higher in the younger adults. Age effects in both metrics are more pronounced in the 0.1–
0.3 Hz frequency band, but both frequencies implicate the cingulate gyrus
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a. Fourier-based metrics are also able to reflect power-spectral

changes previously reported using the Hilbert transform.

4.1 | fMRI frequency versus age and sex

The significance of BOLD fluctuation frequency has been largely

uninvestigated. To date, the most relevant study is by Yang et al., who

found aging-related IMF frequency increases in IMFs 2–5, which cor-

respond to frequencies ranging below 0.087 Hz (Yang et al., 2018).

This is consistent with our findings (for the 0.01–0.1 Hz band), dem-

onstrating that Fourier-based metrics are able to reproduce frequency

shifts previously shown in Hilbert-transform. However, we also found

significant and widespread aging-related increases in the 0.1–0.3 Hz

band, which is typically associated with an increased contribution

from physiological processes (Yang et al., 2018). Interestingly, the

most significant fMRI amplitude and frequency age effects, though in

opposite directions, converge in the cingulate cortex.

We failed to detect a sex effect on fMRI frequency. Also, consis-

tent with Kumral et al., we found no significant effect of sex on fMRI

amplitude (Kumral et al., 2019). Conversely, the apparent increase in

fMRI frequency with age, given the observation that overall fMRI sig-

nal fluctuation amplitude decreases with age in both frequency bands,

point to a reduced contribution of low-frequency fluctuations to fMRI

in older adults. In the 0.01–0.1 Hz band, the low-frequency contribu-

tions include arterial carbon dioxide (CO2) fluctuations, respiratory

variability and heart-rate variability (HRV) (Attarpour et al., 2021;

Chang & Glover, 2009). Very-low frequency vascular oscillations mea-

sured using near-infrared spectroscopy have been found to decline in

amplitude with age (Schroeter, Schmiedel, & von Cramon, 2004) and

coincide in frequency with the resting vascular response to arterial

CO2 fluctuations (0.02–0.04 Hz) (Golestani et al., 2015; Liu

et al., 2017). Also, low-frequency HRV, spanning 0.04–0.15 Hz, is

found to decrease in aging (Rizzo et al., 1999), particularly in women

(Moodithaya & Avadhany, 2012). Interestingly, the fMRI central-

frequency increase for the 0.01–0.1 Hz band is restricted to the cin-

gulate and frontal cortex, which are the very regions of reduced cere-

brovascular reactivity reported in older adults (McKetton et al., 2018).

The CVR-associated decrease of low-frequency hemodynamic

response is consistent with our finding of an increase in fMRI central

frequency. The 0.1–0.3 Hz band likely contains remnants of the neu-

ronally driven fluctuations centered at 0.1 Hz. This is the frequency

band typically used for functional-connectivity mapping, and a reduc-

tion in fMRI signal amplitude in this range would be consistent with

the finding of lower EEG amplitude in older adults. Also in this fre-

quency band are vasomotion and Mayer waves (Attarpour

et al., 2021; Julien, 2006), which are found to decline in aging as well,

consistent with reduced vascular smooth-muscle activity and

increased vascular stiffening (Schroeter et al., 2004). Age-associated

reductions in the frequency of vasomotion, which is found around

0.1 Hz, could also shift the vasomotion signal from the lower part of

0.1–0.3 Hz band to the higher part of 0.01–0.1 Hz band, giving the

appearance of a higher central frequency of both bands (Vermeij,

Meel-van den Abeelen, Kessels, van Beek, & Claassen, 2014).

Older adults are likely to express higher head motion (van Dijk

et al., 2011), adding to the age-related shift of the fMRI signal toward

higher frequency content. Nonetheless, we found no age effect

(or sex effect) in the amplitude or frequency of head-motion

F IGURE 14 Correlations between fMRI and EEG metrics. Correlation results are threshold with the significance level .05 and corrected with
FDR correction. SD, standard deviation
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estimates. Nor did we find such effects in the amplitude and fre-

quency of WM and CSF signals. Thus, the observed age differences

are not expected to be driven by motion and physiological noise but

are rather likely to indicate an age dependence on the neuronal contri-

bution to the rs-fMRI signal. This is a finding that cannot be discerned

from examining the rs-fMRI signal amplitude alone, as the amplitude

metric does not distinguish contributions by different frequencies.

4.2 | fMRI signal amplitude versus age and sex

The BOLD signal fluctuation amplitude has been well studied in aging

(Garrett, Kovacevic, McIntosh, & Grady, 2011; Garrett, McIntosh, &

Grady, 2011; Guitart-Masip et al., 2016) and is thus not the focus of

this study. Most studies of this kind, including the Kumral study, focus

on the 0.01–0.1 Hz range, as it is most relevant to resting-state con-

nectivity analysis. In this regard, our results echo the previous findings

(Kumral et al., 2019): (a) a significant reduction in rs-fMRI signal ampli-

tude in older adults across the cortical mantle; (b) no significant effect

of sex. Also, like Grady and Garret (Grady & Garrett, 2014), we show

that older adults have subdued inter-regional variability in their fMRI

fluctuation amplitudes across the cortex as well as in the putamen,

which has been associated with reduced cognitive performance and

slower transition from rest to task states (Grady & Garrett, 2014).

The reproduction of the majority of Kumeral et al.'s findings on

fMRI power is significant in establishing the plausibility of our other

findings, especially given differences in our preprocessing pipelines. In

our study, in addition to the typically studied 0.01–0.1 Hz frequency

band, we also studied the 0.1–0.3 Hz band. This is inspired by the pre-

vious study by Yang et al. (Yang et al., 2018), whereby the rs-fMRI sig-

nal was categorized into high (0.087–0.2 Hz), low (0.045–0.087 Hz),

and very low (0.045 Hz) frequency bands using the Hilbert–Huang

Transform. In the “low-frequency band, Yang et al. found reduced

fMRI amplitude in older adults. This is similar to our findings. As we

found the fMRI signal in the 0.1–0.3 Hz frequency band to not pro-

duce the robust functional-connectivity patterns typically produced

using the 0.01–0.1 Hz band (Yuen et al., 2019), we conclude, like Yang

et al., that this high-frequency band is dominated by non-neuronal

effects such as respiration and head motion. However, it is also worth

noting that the rs-fMRI amplitude difference could be caused by both

neuronal factors and physiological factors (e.g., neurovascular

coupling).

4.3 | Age–sex interactions

Kumral et al. reported that older adults show higher beta EEG power,

driven by the female subjects. As we used data from a very similar

cohort, we expected the same finding. However, we found that men

exhibit more age-related differences than women in the beta band,

whereas women exhibit more age differences in the theta and delta

bands. Conversely, in the beta and delta bands, older adults exhibit

greater sex differences than young adults. Considering there is

negligible rs-fMRI-related sex effect reported in our study with both

frequency and amplitude metrics, it may be the case that rs-fMRI met-

rics display less age–sex interaction than EEG metrics. Nonetheless,

the frontal region (Figure 7) shows sex differences in the 0.01–0.1 Hz

band, warranting further investigation. Taken together, these results

indicate the importance of considering the sex dependence of the

aging process in EEG and fMRI studies. The differences with previous

results could be attributed to differences in definitions of the EEG fre-

quency bands. In Kumral et al.'s work, delta and beta bands are

defined as 1–3 Hz and 15–25 Hz, respectively, whereas in our

approach, delta is 1–4 Hz and beta is 12–30 Hz. The choice of a

broader beta band is prompted by the large amount of beta power

that still exists above 25 Hz, which may underlie the greater age dif-

ference in men and will require further investigation in our

future work.

4.4 | Resting-state fMRI-EEG associations

4.4.1 | fMRI frequency versus EEG frequency and
power

One might assume that resting-state fMRI and EEG frequency to be

associated, given the consensus that fMRI signal and evoked EEG

potentials can be associated through a hemodynamic response func-

tion (de Munck et al., 2007; Goldman et al., 2002). The EEG delta and

theta bands exhibited higher and lower frequency in young adults,

respectively. These observations are in part consistent with findings

by Knyazeva et al., whereby low-frequency oscillations originating

from the occipito-temporal regions in young adults move anteriorly

with age (Knyazeva, Barzegaran, Vildavski, & Demonet, 2018). The

beta band shows the strongest age effects (higher in older adults) in

the cingulate and precuneus areas, which are generally associated

with the default-mode network. The aging-related beta frequency ele-

vation is consistent with the possible shift of sensory processing to

high-frequency stimuli, leading to an increase in high-beta oscillations

in older adults (Christov & Dushanova, 2016). Moreover, regions

showing beta frequency increases appear to not overlap at all with

regions showing beta power increase in aging. Chiang et al. reported

frontal-occipital alpha frequency differences (lower alpha frequency in

the frontal lobe) that may be altered by aging (Chiang, Rennie, Robin-

son, van Albada, & Kerr, 2011), which, as Knyazeva et al. described,

amounts to a merging of high- and low-frequency alpha peaks in aging

(Knyazeva et al., 2018). However, this did not translate into a fre-

quency shift for alpha.

fMRI SD shows significant correlation with EEG SD in the alpha

and delta bands, particularly in posterior brain regions (Figure 14). This

could suggest the age-related variations in fMRI central frequency in

these regions is a mixed effect of vascular and neuronal factors.

Despite the neurovascular-coupling assumption, we found the media-

tion effect of EEG (amplitude or frequency) on fMRI fluctuation fre-

quency to be negligible. An alternative determinant of fMRI

frequency, as indicated by the study of Tsvetanov et al., could be
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vascular reactivity (Tsvetanov et al., 2015). Based on observations in

mild-cognitive impairment, aging is likely to be associated with a lower

and slower vascular response (Richiardi et al., 2015). Moreover, arte-

rial dysfunction has been observed in early stages of aging in the

mouse model (Balbi et al., 2015). Nonetheless, Garrett et al. demon-

strated that the age effect on the rs-fMRI signal is not solely due to

vascular differences between age groups (Garrett et al., 2017). Thus,

we conclude that the rs-fMRI frequency is a potential imaging marker

that contains unique effects of aging and could be further helpful for

improving rs-fMRI preprocessing.

4.4.2 | fMRI frequency versus EEG complexity

Interestingly, EEG complexity is found to significantly mediate age

and sex effects on fMRI frequency. This is despite EEG complexity

having no bearing on fMRI amplitude, albeit it is linked to functional

connectivity (Wang et al., 2018). The complexity index, as a measure

of entropy in the signal, is an additional dimension that does not fully

covary with the amplitude and frequency measures, although recent

work has suggested entropy can be inversely biased by signal power

(Kosciessa et al., 2020). Our findings suggest that instead of EEG fre-

quency or amplitude, a likely link between EEG and rs-fMRI is EEG

complexity. More interestingly, this link is not observable through rs-

fMRI amplitude but through its frequency dimension. Furthermore,

the correlation maps shown in Figure 14 also confirms the significant

association between fMRI frequency and EEG complexity index (albeit

a negative association) in numerous brain regions. To the best of our

knowledge, this possible complexity-frequency coupling has not been

reported previously and opens the avenue for further applications of

fMRI signal frequency content.

4.4.3 | fMRI frequency versus fMRI-EEG ratio

The fMRI-EEG STDEV ratio can help to enhance differences in the

fMRI or EEG STDEV measures alone, and as mentioned earlier, can

reflect certain aspects of neurovascular coupling. Younger adults are

found to have higher fMRI-EEG STDEV ratios, analogous to findings

based on the task response (Fabiani et al., 2014). The effects are most

pronounced for the beta band, and the affected regions span nearly

the entire anterior cortex as well as the putamen and pallidum, but

not in the occipital region. This could be caused by the low prevalence

of beta EEG power in posterior brain regions. Moreover, the age

effect on the STDEV ratio is more pronounced in the 0.1–0.3 Hz

range than in the 0.01–0.1 Hz range. This can be potentially inter-

preted as: (a) the neurovascular coupling ratio is known to be lower in

older adults (Tarantini, Tran, Gordon, Ungvari, & Csiszar, 2017), con-

sistent with the resting fMRI-EEG STDEV ratio being higher in young

adults; (b) the age-difference in the fMRI STDEV (lower in older

adults) is more pronounced in the 0.1–0.3 Hz band, likely driving the

age effect in the fMRI-EEG STDEV ratio. Despite previous literature

indicating higher noise content in the 0.1–0.3 Hz band, we did not

find age effects in the WM-CSF and head-motion signals, suggesting

that the age effects on the ratio may be attributed to factors such as

vascular stiffness. Nonetheless, the age effects on the fMRI-EEG

STDEV ratios overlap highly between the 0.01–0.1 Hz and 0.1–0.3 Hz

bands, and one possible reason for this is that age-related fMRI

STDEV reductions at 0.02–0.04 Hz (due to vascular reactivity decline)

and reductions at 0.1 Hz (due to neural-activity decline) can coexist.

Some similarities are noted for the age effects on fMRI frequency

and the fMRI-EEG STDEV ratio (for beta band EEG). In both cases,

the age effects are more pronounced at higher frequencies (0.1–

0.3 Hz), and the majority of the effects are in the frontal portion of

the brain. This led us to explore possible connections between fMRI

frequency and vascular reactivity in fMRI. As beta activity amplitude

increases with age, so does the fMRI-EEG ratio. Is this mediated by

high-frequency vascular oscillations (up to 0.3 Hz in our case)? The

mechanisms underlying the fMRI frequency rise with age will be the

focus of our future work.

4.5 | Limitations

As the LEMON EEG data do not contain gamma-band EEG, we limited

our analysis to alpha, beta, delta, and theta bands. Moreover, the EEG

and fMRI data were not acquired simultaneously. While this ensured

superior data quality of both modalities, it precluded us from some

interesting dynamic analyses. Furthermore, although EEG complexity

is the strongest mediating factor for age effects among all EEG met-

rics, the mediation proportion is still modest (Table S1 and S2), war-

ranting further investigations in larger samples. Finally, the sex ratios

are different between young and old groups (age ratios are different

between male and female groups). Nonetheless, we performed sex-

specific age analysis (and age-specific sex analysis) to address sex-

and age-related biases.

Moreover, it is increasingly recognized that physiological and psy-

chological variability contribute to rs-fMRI and resting EEG signal

(Anderson, Campbell, Amer, Grady, & Hasher, 2014; Tian, Chen, Xu,

Yu, & Lei, 2020). Since EEG and fMRI data were acquired during dif-

ferent sessions, these sources of variability may play into intersubject

variability in our observations.

5 | CONCLUSIONS

To conclude, the resting-state fMRI signal frequency is higher in older

adults across different frequency bands. This does not appear to be

mediated by EEG power or frequency. However, EEG complexity is

found to significantly mediate age and sex effects in fMRI fluctuation

frequency. Finally, the fMRI-EEG STDEV ratio shares many of the age

effects observed in the fMRI signal frequency, and can be an interest-

ing marker of the physiological process involved in brain aging, espe-

cially given its selective age sensitivity to the beta EEG band.
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