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Abstract: Celiac disease is a common immune-related inflammatory disease of the small intestine
caused by gluten in genetically predisposed individuals. This research is a proof-of-concept exercise
focused on using Artificial Intelligence (AI) and an autoimmune discovery gene panel to predict
and model celiac disease. Conventional bioinformatics, gene set enrichment analysis (GSEA), and
several machine learning and neural network techniques were used on a publicly available dataset
(GSE164883). Machine learning and deep learning included C5, logistic regression, Bayesian network,
discriminant analysis, KNN algorithm, LSVM, random trees, SVM, Tree-AS, XGBoost linear, XGBoost
tree, CHAID, Quest, C&R tree, random forest, and neural network (multilayer perceptron). As a
result, the gene panel predicted celiac disease with high accuracy (95–100%). Several pathogenic
genes were identified, some of the immune checkpoint and immuno-oncology pathways. They
included CASP3, CD86, CTLA4, FASLG, GZMB, IFNG, IL15RA, ITGAX, LAG3, MMP3, MUC1, MYD88,
PRDM1, RGS1, etc. Among them, B and T lymphocyte associated (BTLA, CD272) was highlighted
and validated at the protein level by immunohistochemistry in an independent series of cases. Celiac
disease was characterized by high BTLA, expressed by inflammatory cells of the lamina propria. In
conclusion, artificial intelligence predicted celiac disease using an autoimmune discovery gene panel.

Keywords: celiac disease; gluten-sensitive enteropathy; BTLA; autoimmunity; gene expression;
artificial intelligence; machine learning; artificial neural networks; immuno-oncology; immune
checkpoint

1. Introduction

Celiac disease is a frequent type of immune-mediated inflammatory disease of the
small intestine. This gluten-sensitive enteropathy is caused by higher sensitivity of the gut
and immune system to gluten of the diet and to gluten-related proteins [1].

The pathogenesis of celiac disease depends on genetic factors and mucosal immune
response. This immune disorder occurs in genetically predisposed patients after induction
by an environmental factor, which is gluten in the diet, found in cereals. More than 99%
of the patients have HLA DR3-DQ2 and/or the DR4-DQ8 [2–4], but other non-HLA locus
genes may also be involved in the disease pathogenesis, such as TNFAIP3 (A20), REL,
NKG2D, MICA, CTLA4, MMP3, MIF, and etcetera [5–15]. Celiac disease is associated with
several autoimmune disorders, such as type 1 diabetes mellitus and autoimmune thyroid
disease [16,17]. The mucosal immune response also participates in the disease pathogenesis.
An inflammatory reaction develops in response to gliadin fractions, and a result there is
inflammation of the lamina propria and epithelium, with disruption of the epithelial layer
and villous atrophy. Both the innate and adaptive immune responses are activated in celiac
disease, including gliadin reactive T cells, autoantibodies, intraepithelial lymphocytes,
macrophages, monocytes, and dendritic cells.

A detailed description of the pathogenesis of celiac disease is shown in Table 1.
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Table 1. Pathogenesis of Celiac Disease.

Factors Pathophysiology References

Dietary gluten

1© Gluten of wheat, rye, and barley. Gliadins and glutenins are
rich in proline, which makes them resistant to proteolysis by

gastric and pancreatic enzymes. Various long gliadin peptides
activate the immune system (“33mer”). Undigested peptides may

also affect intestinal microbiota.

[18–21]

Genetics

1© Genetic predisposition: HLA-DQ2 and HLA-DQ8 contribute to
20%–40% of the genetic risk. They are class II MHC expressed by

antigen-presenting cells (APCs).
[22–24]

2© Forty-two non-HLA regions have been associated with celiac
disease. It is estimated that they account for 15% of the genetic

risk: IL18R1, IL18RAP, STAT4, CD28, CTLA4, ICOS, CCR4, CCR1,
CCR2, CCR3, CD3E, IL1R1, IL12A, IL2, IL21, TNFAIP3, ELMO1,
PRKCQ, SOCS1, ICOSLG, and IRAK1. These genes belong to

cytokine-cytokine receptor activation, JAK-STAT pathway, T-cell
receptor signaling, intestinal immune network for IgA production,
NF-KB signaling, and cell adhesion molecules. Of note, many of

these genes belong to the immune checkpoint and
immune-oncology pathway.

[22,23,25–28]

Immune

1© Generation of gluten-specific T-cell responses: presence of
gluten-specific CD4-positive T lymphocytes, antibodies against
gliadin and de enzyme TG2, and pro-inflammatory cytokines.

[29,30]

2© Generation of autoantibodies: activation and differentiation
into plasma cells of gluten-specific and TG2-specific B

lymphocytes, generation of autoantibodies that are both
circulating and deposited in the mucosa. These autoantibodies are
responsible for the increased permeability of the epithelial barrier.

[31–33]

3© Cytokines in the intestinal mucosal immune system: IFN
gamma and IL-21 are produced by gluten-specific CD4-positive T

lymphocytes. Secretion of IL-15, IL-18, and inhibition of
FOXP3-positive regulatory T lymphocytes (Tregs).

[34,35]

4© Intraepithelial lymphocytes (IELs): increased in celiac disease
and their amount correlates with mucosal atrophy. IELs display

cytotoxic transformation and induce apoptosis of intestinal
epithelial cells through FAS-L, perforin, granzyme B, and NKG2D.

NKG2D interacts with MICA on epithelial cells.

[36–42]

5© Innate immune activation: dysregulation of the production of
IL-15 and activation of the innate immune response, including the

induction of epithelial stress.
[43,44]

Environmental

1© Microorganisms: intestinal dysbiosis (unbalanced intestinal
microbiota) and increased prevalence of specific microbial

virulence genes isolated from celiac disease patients.
[45–50]

2© Others, such as smoking [51]

The pathogenesis of celiac disease is multifactorial and includes dietary gluten and genetic, immune, and
environmental factors.

Celiac disease has an estimated prevalence of 1% in the general population based
on serologic studies, although in many cases the disease is asymptomatic [52,53]. The
most relevant clinical manifestation is due to malabsorption, and includes diarrhea, weight
loss, anemia, and other metabolic disturbances. Of note is that celiac disease can have
diverse extraintestinal presentations such as delayed puberty, hepatitis, iron-deficiency
anemia, arthralgia and arthritis, peripheral neuropathy, epilepsy and seizures, cerebellar
ataxia, and dermatitis herpetiformis (among others) [1,29]. The diagnosis is made by a
combination of clinical signs and symptoms, serology testing, and small intestine biopsy.
Additional diagnostic tools include HLA typing, quantification of inflammatory cells in the
small intestine biopsy such as increased CD3-positive lymphocytes in the villus tips or the
quantification of intra-epithelial lymphocytes (IELs), and detection of TG2-targeted celiac
IgA isotype autoantibodies in the intestinal mucosa, and detection of gluten-specific T cells
in the circulation by ELISPOT [29].

Celiac disease has associated conditions including selective IgA deficiency, autoim-
mune disease, gastrointestinal disease (reflux disease, eosinophil esophagitis, inflamma-
tory bowel disease, microscopic colitis, liver disease, and pancreatitis), menstrual and
reproductive issues, idiopathic pulmonary hemosiderosis, and cardiovascular and kidney
diseases [1].

Celiac disease is associated with several autoimmune diseases including diabetes
mellitus type 1 [54–57], autoimmune thyroid disease (hypothyroidism) [58,59], and atopic
dermatitis [60,61]. Other manifestations related to serological autoantibodies includes
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neurological disorders (peripheral neuropathy and ataxia) [62], and neurodegeneration via
apoptosis [63].

Patients with untreated celiac disease are at increased risk of lymphoma and gastroin-
testinal cancer [1]. Patients with refractory celiac disease type II may be associated with
enteropathy-associated T-cell lymphoma (EATL) [64–69].

Due to the clinical relevance of this disease, a better understanding of the pathogenesis
is needed, and using non-linear analysis may provide a different approach. This research
was a proof-of-concept exercise to determine whether artificial intelligence analysis was a
feasible approach to model celiac disease using an autoimmune discovery gene panel.

2. Materials and Methods
2.1. Celiac Disease GSE164883 Dataset

A suitable gene expression dataset was searched at the Gene Expression Omnibus (GEO)
database search engine of the National Library of Medicine, National Center for Biotechnology
Information (NIH): https://www.ncbi.nlm.nih.gov/ (last accessed 11 July 2022). A public
dataset from 24 March 2021, the GSE164883, was selected and downloaded [70]. This dataset,
published by Dr. Worf J et al., includes a high-resolution analysis of transcriptomes obtained
from 48 duodenal biopsies of 26 children and adolescents diagnosed with celiac disease, and
22 children without celiac disease as controls. Biopsies were obtained from the descending
duodenum and snap frozen using liquid nitrogen. After homogenization (TissueLyzer, Qiagen,
Hilden, Germany), total RNA was extracted using AllPrep® DNA/RNA Microkit (Qiagen).
The Illumina HumanHT-12 V4.0 gene expression beadchip was used [70].

The clinical characteristics were as follows: in the celiac disease group, the age ranged
from 3 to 17 years, with a median of 9.5, and a mean of 9.0 ± 4.5. Based on the Marsh
classification, the stage was 3 in all cases, A in 6 of 26 (23.1%), B in 13 of 26 (50%), and C in
7 of 26 (26.9%). In the control group, the age ranged from 1 to 17 years, with a median of
12.5, and a mean of 11.4 ± 4.8 years. Based on the Marsh classification, 0 in 19 of 22 (86.4%),
and 1 in 3 of 22 (13.6%) [70].

2.2. GEOR Analysis

The GEO2R software was used to compare two groups of samples (celiac disease
versus control) to identify genes that were differentially expressed across experimental
conditions. The adjustment to the p values was Benjamini & Hochberg (false discovery
rate), apply transformation to the data (auto-detect), no application of limma precision
weights (wooma), no force normalization. The significance level cut-off was set at 0.05. The
software runs in R 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria), Biobase
2.30.0, GEOquery 2.40.0, and limma 3.26.8.

2.3. Transcriptome Panels

The autoimmune discovery transcriptome panel contains 755 genes that are either closely
associated with germline variants across nine different autoimmune diseases or are relevant to
the immune response. The nine autoimmune diseases are celiac disease (n = 249), ulcerative
colitis (n = 201) and Crohn’s disease (i.e., inflammatory bowel disease, n = 253), multiple
sclerosis (n = 104), rheumatoid arthritis (n = 95), systemic lupus erythematosus (n = 55),
type 1 diabetes mellitus (n = 44), psoriasis (n = 48), and ankylosing spondylitis (n = 43). Of
note, some genes overlap in different categories. That panel was curated from studies that
were available from the ImmunoBase database or from genome-wide association (GWAS)
studies. The database can be explored at the following link: https://genetics.opentargets.org/
immunobase; https://www.opentargets.org/; https://docs.google.com/spreadsheets/d/
1YYbxC1NhtbYuBYe2gYZNcxO0a0S4oTxHfoYtZrqKsrM/edit#gid=1589938306 (accessed on
11 July 2022). The list of 755 genes can be accessed at the following link: https://doi.org/10.5
281/zenodo.6976192 (accessed on 9 August 2022).

Additional panels were also included in the analysis, including the metabolic pathways
(n = 751 genes), immune exhaustion (n = 803), human inflammation (n = 250), host response

https://www.ncbi.nlm.nih.gov/
https://genetics.opentargets.org/immunobase
https://genetics.opentargets.org/immunobase
https://www.opentargets.org/
https://docs.google.com/spreadsheets/d/1YYbxC1NhtbYuBYe2gYZNcxO0a0S4oTxHfoYtZrqKsrM/edit#gid=1589938306
https://docs.google.com/spreadsheets/d/1YYbxC1NhtbYuBYe2gYZNcxO0a0S4oTxHfoYtZrqKsrM/edit#gid=1589938306
https://doi.org/10.5281/zenodo.6976192
https://doi.org/10.5281/zenodo.6976192
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(n = 790), autoimmune (n = 756), organ transplantation (n = 765), cancer transcriptomic atlas
(n = 1794), pan-cancer human (n = 755), pan-cancer immune profiling (n = 730), pan-cancer
progression (n = 742), and pan-cancer pathways (n = 730). These panels were previously
used in the mantle cell lymphoma and artificial intelligence project [71].

2.4. Gene Set Enrichment Analysis (GSEA)

The GSEA software (GSEA v4.2.3) was downloaded from the Broad Institute, Inc.,
Massachusetts Institute of Technology, and Regents of the University of California webpage:
http://www.gsea-msigdb.org/gsea/index.jsp (accessed on 11 July 2022).

The following molecular signatures, divided into nine major collections of gene sets
(database v7.5.1), were downloaded: H (hallmark), C1 (positional), C2 (curated), C3 (regula-
tory target), C4 (computational), C5 (ontology), C6 (oncogenic signature), C7 (immunologic
signature), and C8 (cell type signature gene sets).

Four types of files were created, the gene expression dataset (gct), the phenotype
labels (cls), the gene sets (gmx), and the annotations (chip). As parameters, the number of
permutations was set at 1000. Phenotype labels: celiac disease versus control. Collapse
to gene symbols using max. probe. Permutation type: phenotype. Enrichment statistic:
weighted. Metric for ranking genes: sinal2noise. Gene list sorting mode: descending.
Normalization mode: meandiv. Seed of permutation: timestamp. Randomization mode:
no balance. Of note, the autoimmune discovery panel and the other additional panels were
also coded into gmx gene sets.

2.5. Statistical Analyses

All analyses were performed using a desktop equipped with the following hardware:
AMD RyzenTM 9 5900X processor (12 CPU cores, L2 cache 6 MB, L3 cache 64 MB), an
Nvidia GEFORCE RTX 3060 Ti graphic card, and 16.0 GB of RAM.

IBM SPSS version 27.0.1.0 (64-bit edition) was used for the basic statistical analy-
ses (IBM Corporation, New Orchard Road Armonk, New York, NY, USA). Additionally,
several software applications were used for acquisition, processing, analysis, and vali-
dation/confirmation of results. The software included Microsoft excel 2016 (Microsoft
Corporation, One Microsoft Way, Redmond, WA, USA), EditPad Lite (Just Great Software
Co., Ltd., Rawai Phuket, Thailand), GSEA v4.2.3 (UC San Diego, Broad Institute, Merkin
Building, 415 Main St., Cambridge, MA, USA), JMP Pro 14 (JMP Statistical Discovery LLC,
SAS Institute Japan Ltd., Roppongi, Minato-ku, Tokyo, Japan), Minitab 21 (Minitab, LLC,
State College, PA, USA), IBM SPSS modeler 18 (IBM), and RapidMiner Studio 9 (Rapid-
Miner, Inc., Boston, MA, USA). GEO2R ran on R 3.2.3, Biobase 2.30.0, GEOquery 2.40.0, and
limma 3.26.8. All the analyses were performed as previously described in our previous pub-
lications [72–81]. The multilayer perceptron analysis is described in references [72,76,78].
Immunohistochemical procedures are described in references [73–75,77]. Machine learning
techniques are shown in references [75,79,80]. The method of analysis of this research is
equivalent to the one recently published in ulcerative colitis [81].

2.6. Immunohistochemical Analysis of BTLA in an Independent Series

BTLA was analyzed at protein level by immunohistochemistry using an automated
stainer (Leica BOND-MAX) following the manufacturer’s instructions. The primary an-
tibody was obtained from Dr. Giovanna Roncador (Monoclonal Antibodies Laboratory,
Spanish National Cancer Research Institute, CNIO, Madrid, Spain). The primary anti-
body, mouse monoclonal, targeted BTLA (B and T lymphocyte associated protein), clone
name FLO67B. The antigen used was BTLA-HIS recombinant protein (full-length protein
without signal peptide 25–289aa). IgG1 isotype. Species reactivity, human. Localization,
membrane/cytoplasm. Positive control, tonsil. The recommended dilution, 1:5 (super-
natant) or 1:100 (purified antibody, 1 mg/mL). Antigen retrieval, 20 min ER2 (Tris-EDTA).
Antibody incubation, 15 min. The detection system, BOND Polymer Refine Detection
(BOND-MAX, Leica).

http://www.gsea-msigdb.org/gsea/index.jsp
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Immunohistochemistry was performed in 16 celiac disease patients (57 biopsies), and
16 control cases (16 small intestine biopsies). The cases were selected from the Department
of Pathology, Hospital Clinic of Barcelona, Spain. The cases were diagnosed in patients
with positive celiac serology, based on histological criteria using biopsies of the small
intestine: the presence of increased intraepithelial lymphocytes with crypt hyperplasia
(Marsh type 2) or with villous atrophy (Marsh type 3) (Appendix A, Table A1).

3. Results

Summary of the results.

• A conventional analysis using GEO2R highlighted the genes differentially expressed
between celiac disease and control.

• Gene set enrichment analysis (GSEA) identified the gene sets (pathways) that were
associated with celiac disease, including the autoimmune discovery panel.

• Several Machine learning and artificial neural network analyses predicted celiac
disease using the autoimmune discovery panel with high accuracy.

• Celiac disease was characterized by high expression of BTLA both at the gene expres-
sion level, and at protein level by immunohistochemistry in a validation series.

3.1. Gene Expression Analysis Using the GEO2R Software

The differential gene expression across celiac disease and control cases was analyzed
using a conventional method (NCBI GEO2R software), and the result is shown in Figure 1.
In this analysis, all the genes of the Illumina HumanHT-12 V4.0 gene expression beadchip
were used to explore broadly the expression of celiac disease. The most significantly
up-regulated genes in celiac disease were TAP1, HLA-E, HCP5, STAT1, GBP1, STAT1,
LOC100419583, and GBP4 and the down-regulated ones were IDS, PKIB, FBXO2, OXT,
and ADI1.
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Figure 1. The differential gene expression between celiac disease and control cases. The gene
expression of the groups of celiac disease and control samples were compared using GEO2R software.
The up-regulated genes are highlighted in red, the down-regulated in blue, and the non–significant
in black. Left, the volcano plot. Right, mean difference plot.

3.2. Gene Set Enrichment Analysis (GSEA)

To improve the analysis of GEO2R software, a pathway analysis was performed using
the gene set enrichment analysis (GSEA). GSEA is a computational method that determines
whether a priori set of genes shows statistically significant, concordant differences between
two groups.

The analysis using all gene sets of all collections of the Molecular Signatures Database
(MSigDB version 7.5.1) was successful. In the nine major collections, a total of 5600 sets
were significantly enriched at a nominal p value of <1%.
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Among the C2 curated gene sets, one of the most significant was the M16004 KEGG
antigen processing and presentation set (in the leading edge of the core enrichment, TAP1,
HLA-E, RFX5, IFI30, CD8A, etc.) (Figure 2). Other relevant pathways within the C2 set
were the M15615 interferon gamma response (IFNG), M543, M7963, and M16647 cell cycle,
M15381 TCR signaling, M11884 antigen response, and M1060 cytokine signaling.

The GSEA analysis using the autoimmune discovery panel and additional panels
such as the host immune response were also statistically significant and enriched the
celiac disease group (Figure 2). The most significant genes at the leading edge of the core
enrichment of the autoimmune discovery panel were STAT1, GBP1, IFNG, IRF1, RIPK2,
CXCL10, CXCR6, BATF, ITGAL, and GFI. Additional markers relevant to the pathogenesis
(with the immune microenvironment) of celiac disease were also found within the core
enrichment, including LAG3, MICB, RUNX3, CASP3, IL15RA, FASLG, CTLA4, IL10RA,
GZMA, RGS1, IRF4, XBP1, CD69, NFKB1, BTLA, TIGIT, ICOS, CD86, ITGAX, CD274,
TNFAIP3, MMP3, MIF, BTK, and MYD88.
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Figure 2. Gene set enrichment analysis (GSEA). GSEA analysis was performed to identify gene
sets (i.e., pathways) associated with celiac disease. All the sets of the nine major collections of the
Molecular Signatures Databases were tested and 5600 sets were significantly enriched at a nominal
p value of <1%. Among them, the antigen processing and presentation is highlighted (left). The
autoimmune discovery transcriptome panel and additional panels were also tested, and showed an
enrichment (association) toward celiac disease (autoimmune discovery panel, center; host immune
response panel, right).

3.3. Artificial Intelligence Analysis

Based on the autoimmune discovery panel, celiac disease prediction and modeling was
performed using several machine learning and artificial neural networks. In total, 737 genes
from the panel were used as predictors (inputs, fields) of celiac disease (dependent variable:
celiac disease versus control). Among the 15 different techniques, the overall accuracy for
prediction was 100% in 11 (73%), 96% in 2 (13%), 86% in 1 (7%), and 0% in 1 (7%) (Tables 2
and 3, Figures 3 and 4). Of note is that each type of analysis used a specific number of
genes, and the type of information and data interpretation was different. Generally, all
methods managed to highlight genes characteristic of celiac disease, and some genes were
selected in different models. The relevant genes that were identified and that play a role in
the pathogenesis of celiac disease were IFNG, CASP3, MIF, PRDM1, GZMB, LAG3, MUC1,
CD226, BTLA, and BTK (among others).

The artificial neural network was a multilayer perceptron. The network architecture
had three layers. The input layer included the predictors (737 nodes, one for each gene).
The hidden layer had 12 neurons (the number of units was automatically computed). The
stopping rule used was the minimum error ratio achieved. The output layer had two nodes
(celiac disease and control). Other build options were the following: overfit prevention set
(30%), replicate results (true), random seed (229176228), and missing values in predictors
(delete listwise). The accuracy of the model was 100%.

The build settings for each technique are available upon request.
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Table 2. Machine learning and artificial neural network analysis for predicting celiac disease.

Model Overall Accuracy (%) No. Genes (Fields) Used Most Relevant Genes

C5 100 1 IFNG
Logistic regression 100 737 (Refer to Table 3)

Discriminant 100 737 -

LSVM 1 100 737
CASP1, IL18, ARPC2,
CASP3, KLF4, GBP1,

SULT1A1, RNASET2, MIF,
and PIGR

SVM 100 737 -
XGBoost linear 100 737 -
XGBoost tree 100 737 -

CHAID 100 2 BATF, GBP1
C&R tree 100 6 IFNG

Random forest 1 100 737

CXCL10, PRDM1, GZMB,
STAT2, IL12RB1, LAG3,

PTPN22, TMEM50B, IFI35,
PRDX5, GALC, C1QBP,

RIPK2, IFNG, CSF2,
STAT5A, TNPO3, IQCB1,

and DEXI

Neural network 1 100 737
CXCL2, IL7R, PLCH2,
CCL23, MBD2, CSF3R,

MUC1, GPR183, CD226,
and PNMT

KNN algorithm 96 737 -
Quest 96 6 STAT1

Random trees 1 86 737
BTLA, CARD14, CASP10,

CCL13, CCL5, CCR7,
CXCL10, CXCL9, CXCR6,

ELMO1, and EXTL
Bayesian network 58 737 -

1 For LSVM, random forest, neural network and random trees, the genes are in order of importance for predicting
celiac disease.

Table 3. Logistic regression.

Equation for Predicting Celiac Disease

−0.1765 × AAMP + −0.008 × ABHD6 + −0.1178 × ACKR2 + −1.725 × ACOXL + 0.6231 × ACSL6
+ 0.0009441 × ADA + 1.16 × ADAM30 + 0.04882 × ADCY3 + 1.108 × ADCY7 + 0.2923 × AFF3 +
−0.5828 × AGAP2 + 0.6009 × AHI1 + 0.3013 × AHR + −0.002197 × AIRE + −0.7633 × ANKRD55

+ 0.06059 × ANTXR2 + 0.2416 × APEH + 1.215 × APOBEC3G + −2.377 × ARG1 + −0.2806 ×
ARHGAP30 + 0.0796 × ARID5B + −0.0168 × ARPC2 + −0.009025 × ATF4 + −0.08039 × ATG16L1
+ −0.156 × ATG5 + 0.09123 × ATM + 0.003949 × B2M + 0.02826 × B3GNT2 + −0.2021 × BABAM2
+ 1.132 × BACH2 + −0.6567 × BAD + −0.2759 × BANK1 + −0.09905 × BATF + 0.617 × BATF3 +
0.1081 × BCL10 + −0.1113 × BCL3 + 0.2034 × BCL6 + 0.7125 × BID + 0.3596 × BLK + 0.1998 ×

BLNK + −0.4926 × BORCS5 + −3.589 × BSN + 1.291 × BTK + −1.079 × BTLA + −1.254 × BTNL2
+ −0.1576 × C1orf53 + 0.004046 × C1QBP + −49.65

3.4. Differential Gene Expression of BTLA between Celiac Disease and Control Samples

In the GSE164883, BTLA was identified as a relevant marker in several techniques,
including gene set enrichment analysis (GSEA), logistic regression, random trees, and
artificial neural networks. A direct comparison of the gene expression of BTLA between
celiac disease and control was statistically significant: 7.8 ± 4.4 vs. 3.7 ± 2.8 (p < 0.001)
(Figure 5).

3.5. Validation of BTLA by Immunohistochemistry in an Independent Series

BTLA was analyzed at protein level by immunohistochemistry in an independent
series of 16 celiac disease patients (with a total of 57 biopsies) and 16 small intestine controls
(16 biopsies). The digital images of BTLA are uploaded to zenodo platform as a zip file
(https://doi.org/10.5281/zenodo.6837120, accessed on 13 July 2022) (see Supplementary
Materials). In the celiac disease cases, four biopsies were excluded from the analysis as
BTLA expression was completely absent (0% of positive cells in the inflammatory infiltrate
of the lamina propria) without the presence of internal controls.

The BTLA protein expression was evaluated in the inflammatory infiltrate of the
lamina propria, and the percentage of positive cells estimated. The results showed that
celiac disease was characterized by a higher frequency of BTLA-positive cells than controls:
70% ± 22.2 vs. 45.6% ± 12.6, respectively (p < 0.001) (Figures 6 and 7). Additional

https://doi.org/10.5281/zenodo.6837120
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immunophenotipic characterization is shown in Figure 8, which confirmed that BTLA
mainly identified B lymphocytes of the lamina propria.
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Figure 3. Machine learning and artificial neural network analysis for predicting celiac disease. This
figure shows the results of the modeling of celiac disease using an artificial neural network, CHAID,
C5, C & R, and Quest decision trees. The overall accuracy ranged from 96% to 100% using as
predictors the gene expression (transcriptomic) data of the autoimmune discovery panel.
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Figure 4. Prediction of celiac disease using the Bayesian network, random forest and tree, and the
KNN algorithm. This figure shows the results of the modeling of celiac disease using the autoimmune
discovery panel. The Bayesian network shows the genes (nodes) and the probabilistic, or conditional,
independencies between them. The causal relationships may be represented, but the links (arcs) of
the network do not necessarily represent direct cause and effect. The random forest plot and tree
show the genes of the model, ranked according to their predicted importance. The KNN chart is
a lower-dimensional projection of the predictor space, which contains 737 predictors (genes of the
autoimmune discovery panel).
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Figure 5. Differential gene expression of BTLA between celiac disease and control in the series
GSE164883. A direct comparison was statistically significant: 7.8 ± 4.4 vs. 3.7 ± 2.8 (p < 0.001). The
icon “*” corresponds to a far outlier, and the number “47” is the case number (i.e. the BTLA expression
value for case 47 was 23.94).
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Figure 6. BTLA protein expression by immunohistochemistry. Celiac disease cases were characterized
by chronic inflammation of the lamina propria that was BTLA-positive. Using CD3 the T-cell
lymphocytes are highlighted, including the higher presence of intraepitheal lymphocytes (IELs that
characterize celiac disease). BTLA, B and T lymphocyte attenuator, is an inhibitory receptor with
similarities to CTLA and PD-1. BTLA-deficient mice have increased specific antibody responses and
enhanced sensitivity to experimental autoimmune encephalomyelitis (Uniprot).
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Figure 7. BTLA protein expression by immunohistochemistry in the validation series. After BTLA
immunohistochemistry and quantification, celiac disease cases were characterized by high BTLA
protein expression (p < 0.001). The outliers are marked with a circle, next to the icon there is a number
that corresponds to the case number.
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Figure 8. BTLA protein expression by immunohistochemistry in relationship with other markers.
Hematoxylin & Eosin staining confirmed the histological diagnosis of celiac disease, with increased
intraepithelial lymphocytes (IELs) and with villous atrophy. The IELs were CD3+, CD4−, CD8+ and
CD56−. Scarce FOXP3+regulatory T lymphocytes (Tregs) could be identified in the lamina propria.
PD-1 staining was negative. The staining with BTLA was high in the lamina propria, and had a
pattern of B lymphocytes. BTLA, B and T lymphocyte attenuator, is an inhibitory receptor with
similarities to CTLA and PD-1. BTLA-deficient mice have increased specific antibody responses and
enhanced sensitivity to experimental autoimmune encephalomyelitis (Uniprot).

3.6. Differential Gene Expression of LAG3 between Celiac Disease and Control Samples

In the GSE164883, LAG3 was identified as a relevant marker in several techniques, in-
cluding gene set enrichment analysis (GSEA), random forest, and artificial neural networks.
A direct comparison of the gene expression of LAG3 between celiac disease and control
was statistically significant: 30.7 ± 17.9 vs. 4.6 ± 4.9 (p < 0.001) (Figure 9).
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This marker was also analyzed by immunohistochemistry. Despite the fact that the
external and internal histological controls were positive, no staining of LAG3 was found in
the lamina propria of celiac disease cases.

4. Discussion

This research performed a comprehensive analysis of celiac disease. First, artificial
intelligence analysis predicted and modeled celiac disease using gene expression data, and
as a result, several pathogenic candidates were highlighted. Additionally, other known
pathogenic players were identified, which proved the validity of this type of proof-of-
concept approach. Then, one of the highlighted markers was validated at protein level by
immunohistochemistry in an independent series. BTLA was identified as a maker of the
lymphocytes that form part of the chronic inflammatory infiltrate of the lamina propria.

Figure 10 shows a part of the pathogenesis of celiac disease. Despite harboring the ge-
netic susceptibility and gluten (gliadin) consumption, in most cases the disease is latent and
histologically normal. Nevertheless, in around 1% of the cases the patients are diagnosed
because of clear clinical symptoms and histological criteria [1–14]. The immunological
model suggests that gluten-specific CD4+T-cells and cytotoxic intraepithelial T lympho-
cytes (IEL) play a key role in the development of celiac disease [82–84], as defined by the
presence of anti-TG2 antibodies and villous atrophy [85]. TGFB, retinoic acid (RA) and
IL10, mucosal immune regulatory molecules, regulate the lamina propria inflammation
by inducing the generation of regulatory T lymphocytes (Treg), a process regulated by
CD11C (ITGAX)-positive dendritic cells (DC) [1–14]. Thus, Tregs will increase as a response
to dampen the activation of effector mechanisms, both innate and humoral that destroy
the mucosa [86]. Additionally, part of the epithelial damage is mediated by cytotoxic
IELs that express activating NK cell receptors (mediated by IL15), which recognize stress-
and inflammation-induced ligands on intestinal epithelial cells [1–14]. In this research,
celiac disease was characterized by increased expression of BTLA in the lamina propria.
The immunohistochemical pattern was a mixture of T and B lymphocytes. This result
suggests that the immune checkpoint mechanism of BTLA is up-regulated during disease,
and highlights the importance of suppression mechanisms. BTLA, B and T lymphocyte
attenuator, is an inhibitory receptor with similarities to CTLA and PD-1. BTLA-deficient
mice have increased specific antibody responses and enhanced sensitivity to experimental
autoimmune encephalomyelitis (Uniprot).
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Figure 10. The pathogenesis of celiac disease. The pathogenesis of celiac disease depends on genetic
susceptibility and environmental factors (dietary gluten, gliadin). An abnormal immune response
in the lamina propria will lead to the chronic inflammation of the mucosa, increased intraepithelial
lymphocytes (IELs), and disruption of the epithelial layer. BTLA, B and T lymphocyte associated; DC,
dendritic cell; Th, T-helper lymphocyte; IFNG, interferon gamma; Tc, cytotoxic T lymphocyte; tTG,
tissue transglutaminase; Treg, regulatory T lymphocyte.
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Machine learning is a branch of artificial intelligence (AI) that specializes in the
application of data and algorithms to simulate the way that humans learn, gradually
improving its accuracy [87–89]. Presently, machine learning is an important tool in the field
of data science, and is becoming more important in biomedical research. This research
also used artificial neural networks, which are a subfield of machine learning. Neural
networks are composed of node layers, and input, one or more hidden layers, and an output
layer [87–89]. In this study, we used a basic neural network to produce reliable results.
This proof-of-concept exercise based on gene expression of celiac disease highlighted many
markers, some known and other news.

Apart from BTLA, other markers were noted.
CASP3, caspase-3, belongs to the apoptotic signaling process and it is responsible

for executing apoptosis. In celiac disease, apoptosis is an important mechanism for the
epithelial and villous atrophy [90,91].

PRDM1, PR domain zinc finger protein 1, also known as BLIMP-1, is a transcription
factor that mediates the function of T and NK cells in innate and adaptive immune re-
sponses. It also drives the maturation of B lymphocytes into immunoglobulin secreting
cells (plasma cells) [92]. Plasma cells play an important role in the pathogenesis of celiac
disease and are the most abundant gluten peptide MHC-expressing cells [93].

GZMB, granzyme B, is a protease present in the cytosolic granules of cytotoxic T lym-
phocytes (Tc) and natural killer (NK) cells, which activates caspase-independent pyroptosis
into the target cells. In celiac disease, decreased expression of protease inhibitor 9, a GZMB
inhibitor, is a potential mechanism of enterocyte destruction and villous atrophy [94].

LAG3, lymphocyte activation gene 3 protein, is an inhibitory receptor on antigen-
activated T-cells [95]. It is present in type 1 T regulatory (Tr1) cells [96], which play a
role in colitis [97]. Gliadin-specific type 1 regulatory T cells from the intestinal mucosa
of treated celiac patients inhibit pathogenic T cells [98]. Endopeptidase mediated gliadin
degradation by macrophages and concomitant IL-27 production drive differentiation of
splenic gliadin-specific Tr1-like cells [99].

STAT5A, signal transducer and activator of transcription 5A, has dual functions includ-
ing signal transduction and activation of transcription. STAT5A mediates cellular responses
to cytokines and plays a role in homeostasis and in the function of innate lymphoid cells
(ILCs) [100]. During gut inflammation, STAT5 promotes mucosal wound healing [101].

The classic celiac disease or gluten-sensitive enteropathy is clinically characterized
by symptoms of malabsorption or diarrhea, histological changes in the small intestine
consisting of villous atrophy, antibodies against tissue transglutaminase, and resolution
following a gluten-free diet [1,102]. Additionally, there are other terms including atypical
celiac disease, subclinical or asymptomatic disease, potential celiac disease, latent celiac
disease, and refractory celiac disease [1]. The subtype of refractory celiac disease is of
special interest because of the association with Enteropathy-Associated T-cell lymphoma
(EATL) [103]. Nevertheless, this research focused on the “classic” variant or the “not
otherwise specified (NOS)”.

In conclusion, this proof-of-concept exercise managed to model and predict celiac disease
based on an autoimmune discovery panel; and highlighted pathogenic markers. Among
these, we confirmed that celiac disease is characterized by increased BTLA expression.

Supplementary Materials: The following supporting information can be downloaded at https:
//doi.org/10.5281/zenodo.6837120, Histological images of BTLA.
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Appendix A

The clinicopathological characteristics of the cases are shown in the Appendix A
Table A1 including age, sex, biopsy location, diagnosis and the histological grade using the
Marsh-Oberhuber classification [104,105].

Table A1. Clinicopatholgical characteristics.

Age Sex Biopsy Location Diagnosis Marsh-Oberhuber
Classification

70 Male Duodenum Celiac Disease 3a
62 Male Pylorus/duodenum Celiac Disease/Chronic gastritis 2
62 Male Duodenum Celiac Disease 2
78 Female Duodenum Celiac Disease 3b
59 Male Duodenum Celiac Disease 3a
44 Female Duodenum Celiac Disease 2
17 Female Duodenum Celiac Disease 3b
56 Female Duodenum Celiac Disease 3a
54 Female Duodenum Celiac Disease 2
58 Female Duodenum Celiac Disease 3b
61 Female Duodenum Celiac Disease 3c
45 Male Duodenum Celiac Disease 3a
70 Female Duodenum Celiac Disease 2
40 Female Duodenum Celiac Disease 3a
61 Female Duodenum Celiac Disease 3c
44 Female Duodenum Celiac Disease 3a
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