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Abstract: To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to
prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity
through mass vaccination has proven to be a highly effective strategy for preventing the spread of
many infectious diseases, which protects the most vulnerable population groups that are unable
to develop immunity, such as people with immunodeficiencies or weakened immune systems due
to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of
the vaccine potency, transportation, and needle waste generation become major issues. Moreover,
needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of
dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining
the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we
discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the
current literature.

Keywords: COVID-19 vaccine delivery; dissolvable microneedles; immunogenicity; mass vaccination

1. Introduction

One of the greatest public health threats faced by humanity in this century is the
coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1–3]. While the entire world is yearning for relief
from this pandemic, a ray of hope was foreseen via the approval of several COVID-19
vaccines by the Food and Drug Administration (FDA) [4,5] and other national agencies
(e.g., the UK’s the Medicines and Healthcare products Regulatory Agency). However, the
effectiveness of the vaccination programs and the global outreach of the vaccines for the
mass population worldwide are major areas of concern [2,4,5] given the need to vaccinate
billions of people in the shortest period of time. This requires the immense efficiency of
the vaccination programs [6–8]. The vaccines require special storage conditions to remain
viable during transportation and distribution [9–11]. The delivery of the vaccines can only
be done via trained professionals using conventional vaccine delivery using hypodermic
syringes [12,13]. However, the scarcity of trained professionals and the absence of adequate
dosages are two of the key barriers to attaining mass vaccination [14,15]. Moreover, the
vaccination programs would mean mass gatherings at specific places, which is risky, since
they have the potential to facilitate the quick spread of the disease [16–18].

In addition, mass vaccination using hypodermic syringes will produce a massive
amount of biowaste, which would create another area of concern for effective waste manage-
ment [13,19,20]. In this scenario, we have to think about alternatives which would make the
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vaccination program much more efficient and accessible [21–23]. The use of novel vaccine
delivery could be a potential solution to this critical challenge [24–26]. The use of micronee-
dle vaccine delivery mechanisms would allow the vaccines to be delivered in a painless
manner, ensuring the controlled release of drugs via a dissolvable microneedle [27–30].

The use of dissolvable microneedle patches would improve the dosing accuracy,
ensuring the precise delivery of the vaccines [31–33].

The use of biodegradable microneedles for transdermal immunization is a fast-developing
topic of study and application [34–36]. One of the main reasons why most individuals refuse to
be vaccinated is their fear of painful needles [37–39]. As a result, creating a pain-free technique
of immunization utilizing microneedles has been a major research challenge [40–42].

Microneedles contain arrays of micron-sized needles that deliver molecules across the
skin without causing discomfort [43–45]. Microneedles have a number of benefits over
traditional immunization methods (summarized in Table 1), such as intramuscular and
subcutaneous injections, aside from the fact that they are painless [46–48]. Microneedle
vaccinations elicit a strong immune response because the needles, which range in length
from 25 to 1000 µm, may effectively transport the vaccine to the epidermis and dermis, which
contain a large number of Langerhans and dendritic cells [36,49,50]. The microneedle array
resembles band-aid patches and provides the benefits of cold-chain storage avoidance and
self-administration flexibility [49–51]. Microneedles have the benefit of slowing the release of
vaccination antigens [52–54]. Vaccine components in microneedles might be in solution or
suspension, coated in nano or microparticles, or based on nucleic acid [55,56]. Because of the
combined benefits of particulate vaccinations and pain-free vaccination, the use of micronee-
dles to administer particle-based immunizations is growing rapidly [57–59]. The future of
microneedle-based vaccines is bright, but certain constraints, such as dosage insufficiency,
stability, and sterility, must be addressed before microneedles may be successfully used for
vaccine delivery [60–62]. This article summarizes the current developments in COVID-19
medicaments and vaccine delivery in accordance with the field of microneedle-based im-
munization [61,63]. Table 1 shows a brief comparison between the limitations of needle
vaccination and microneedle vaccine delivery systems. It lists the comparative differences
between syringe and microneedle vaccination and shows how it is a viable and better al-
ternative for mass COVID-19 vaccination. Given the aim of this review paper, we restrict
ourselves to reviewing the literature of microneedle-based vaccine delivery methods.

Table 1. Comparison of syringe and MN vaccination.

Syringes and Needles
(Limitations)

Microneedles in Vaccine Delivery
References

Strengths Weaknesses

• Needle use is risky • Painless • Cost of manufacturing is
uncertain [45,64]

• Lower thermal stability • Higher vaccine coverage • Production in bulk [45,65]

• Storage and delivery require
cold chain

• Higher thermal stability
during storge

• The administration capacity
during production [66,67]

• Administration requires
expert personnel

• Higher shelf life at room
temperature

• There is still a long way to
go before FDA approval is
granted and it is
commercially available

[51,68,69]

• Allows self-administration

1.1. Immunological Aspects of COVID-19 Medicaments

Scientists all over the world are still searching to find an effective cure for COVID-19,
which might end the pandemic so that the world can go back to normalized pre-COVID-19
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life [63,69,70]. Unfortunately, the search is still ongoing and will continue until a potent
treatment is discovered [8–10]. Various therapeutic strategies are under development and
are being tested worldwide [11,12]. The outcome of the treatment procedure depends on
the host humoral response and the cellular immunity of the patient due to COVID-19 infec-
tion [13–15]. Table 2 shows the induced immunopathology of the SARS-CoV-2 virus along
with the humoral response in humans. Responses from previous SARS-CoV-2 infections
could act as key determinants in the development of the therapeutics, since the infection
causes the production of anti-SARS-CoV-2 antibodies [16–18]. The antibodies produced via
the immune response from the infection limits replication through the neutralization of
the virus inside the body and plays a major role in controlling the disease [13,20,21]. This
mechanism might also contribute to the development of COVID-19 pathogenesis due to the
involvement of antibody-dependent enhancement [22,23]. Approaches such as convales-
cent plasma and monoclonal antibodies have enabled expeditious development in research
associated with the treatment of COVID-19 in terms of distinguishing the widely varied
clinical features of antibody responses in SARS-CoV-2-infected patients worldwide [24–26].
Clinical outcomes from numerous COVID-19 vaccine candidates have been determined,
as well as the collection and characterization of a wide panel of monoclonal neutralizing
antibodies and early clinical testing [27,28,30]. Figure 1 illustrates the replication process of
SARS-CoV-2 and lists the therapeutic targets during the replication process.

Table 2. SARS-CoV-2-induced immunopathology in humans: symptoms and clinical consequences.

SL No. Organ System Clinical Outcomes Clinical Manifestations References

1. Vascular system

• Cytokine storm
• Lymphocyte count
• Thrombocytopenia-associated

mortality
• ARDS
• Vasculitis and vascular

dysfunction

• Elevated IL-6, TNFα, and IL-1β
• Elevated T helper 17 cells

(TH17), plasma cells, CD8+ T
cell activity, and decreased
regulatory T cells

• Reduced platelet to
lymphocyte ratio

• Elevated levels of ferritin
• Elevated VEGF, IL-10, and IL-8

[72,73]

2. Lungs
• Pneumonia with ARDS and

dyspnea
• Elevated IL-6, TNFα, IL-1β,

IL-10, and IL-8 [69,74]

3. Kidneys • Proteinuria and hematuria • Elevated urea and creatinine
levels [75,76]

4. Liver
• Steatosis and abnormal liver

function
• Elevated AST, ALT, CRP, and

albumin levels [77,78]

5. Heart
• Acute myocardial injury and

chronic CVS damage • Elevated CK and LDH levels [73,79]

6. Intestine
• Microbial infection, diarrhea,

and severe acute ulcerative
colitis

• Reduced T cell and NK cell
count (Lymphopenia) [75,80]

7. Brain
• Encephalopathy, headache,

and ischemic stroke
• Elevated CRP, D-dimer, and

ferritin levels [81,82]

Note: NK—natural killer, LDH—lactate dehydrogenase, CRP—C-reactive protein, AST—aspartate transaminase,
TNF—tumor necrosis factor, IL—interleukin, ALT—alanine transaminase.
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1.2. Structural Considerations of Coronavirus in Vaccine Development

SARS-CoV-2 is a member of the Coronaviridae family’s subgroup, which includes four
species: α, β, γ, and δ. SARS-CoV and Middle East respiratory syndrome (MERS-CoV) are two
more extremely deadly viruses in the Coronaviridae family that produced epidemics in 2002–
2003 and 2013–present, respectively [7,8,11,13]. The spike (S), envelope (E), membrane (M), and
nucleocapsid (N) structural proteins, as well as at least six auxiliary proteins (3a, 6, 7a, 7b, 8, and
10), are all encoded by the SARS-CoV-2 RNA genome [13–16]. The S protein, which consists of
the S1 subunit, S2 subunit, transmembrane, and cytoplasmic domains, infects host cells [22,24,25].
The N-terminal domain (NTD), receptor-binding domain (RBD), subdomain 1 (SD1), and
subdomain 2 (SD2) make up the S1 subunit (SD2) [27,28,30]. The RBD of SARS-S1 CoV-2’s
subunit interacts with the cellular receptor angiotensin-converting enzyme 2. (ACE2) [83–85].
Virus entrance is mediated by CD147. SARS-CoV-2 enters the cytoplasm with its RNA genome
and undergoes intracellular replication cycles before being discharged by exocytosis to infect new
host cells. COVID-19 patients have a significant morbidity and death rate, which necessitates
the rapid development of efficient preventive and treatment measures [82,86,87]. Pneumonia
is the most common complication of SARS-CoV-2 infection. COVID-19 individuals who are
severely sick or dangerously ill have additional organ damage [88,89]. COVID-19 initiation,
amplification, and consummation are three separate stages that patients go through [90–92].
Rapid viral replication and the early production of dominant chemokines define the beginning
stage [74,93,94]. If the viral infection is not effectively suppressed by the host’s humoral defenses,
the patient enters the multiplication stage after developing both humoral and cellular immunity,
during which, they produce more inflammatory mediators and recruit a large number of
inflammatory cells to increase immunopathological processes [95–97]. COVID-19 victims
eventually die as a result of persistent elevations in inflammatory mediators and extensive organ
damage throughout the culmination stage [98–100]. Antibody-mediated humoral immune
responses to SARS-CoV-2 infection are critical in the progression of COVID-19 illness [101,102].
In addition, outcomes from clinical research employing convalescent plasma and intravenous
immunoglobulins (IVIG) to treat COVID-19 patients with passive antibody therapy have been
published [103–105]. A vast number of neutralizing monoclonal antibodies have been identified,
with some of them having undergone clinical testing [106–108]. Clinical effectiveness data from
numerous vaccination studies have been published, which are significant [109–111]. Table 3
shows the various technologies used for the development of COVID-19 vaccines.
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Coronaviruses are single-stranded RNA viruses with an enclosed surface glycopro-
tein spike that facilitates receptor binding and cell penetration during infection [112,113].
Because of its functions in receptor binding and membrane fusion, the spike protein is a
promising vaccination antigen [114–116]. Apart from entire virion-inactivated vaccines,
almost all producers are targeting spike protein as an antigen [117–119]. Instead of incor-
porating the entire pathogen, new-generation vaccinations, such as recombinant protein
vaccines and vector-based vaccines, only include a particular antigen or antigens from
the disease, providing a superior safety profile [120–122]. Detailed knowledge of the
pathogen’s structure and immunopathogenesis is required for the development of an ef-
fective new-generation vaccine [123,124]. Depending on the carrier of the antigen, the
new-generation COVID-19 vaccines may be divided into recombinant protein vaccines
and vector vaccines (for instance, mRNA vaccines, plasmid DNA vaccines, viral vector
vaccines, and bacterial vector vaccines) [125–127]. The structural and pathobiology charac-
teristics of the SARS-CoV-2 virus were used to choose the target antigen for new-generation
vaccination [128–130]. The SARS-CoV-2 genome is a single-stranded, positive-sense RNA.
The S proteins are found on the virus’s outer surface and can bind to ACE2 on the cell
surface, allowing for receptor-mediated viral endocytosis [131–133]. Animal models that
express human ACE2 counterparts should be utilized in challenge experiments to eval-
uate vaccination effectiveness, according to the ACE2-dependent mechanism [134,135].
Although the SARS-CoV S protein can employ CD209 and CD209L as alternative receptors,
it is unknown if SARS-CoV-2 can as well [136–138]. Most COVID-19 vaccine candidates
employ the S protein as the antigen since it plays such an important part in the virus’s life
cycle [139,140]. The use of RNA for vaccine development is a game-changing technique
that requires the adoption of a suitable delivery method to increase the oligonucleotide’s
intracellular stability, and hence, translatability [141,142] The antigen of interest is encoded
by non-replicating mRNA vaccines, but self-amplifying RNA leads to the translation of
both the antigen and the viral replication machinery, allowing intracellular RNA ampli-
fication and protein expression [143–145]. Figure 2 illustrates the different stages of the
pathogenesis of COVID-19 and possible targets for vaccine development.

While it is critical to expedite the development of these immune-mediated treatments,
it is also vital to remember that there are still many unanswered issues about SARS-CoV-2
infection and its influence on host immunity [114,146]. On the one hand, this enhanced
information is essential for elucidating the many processes of the host immune response
involved in viral neutralization and/or the elimination of infected cells [147–149]. On the
other hand, it will also forecast the outcome when used at a large scale in the targeted
demographic [150–152]. As a result, the effect of gender and age on the virus’s ability to
modulate host immune response, as well as the impact of SARS-CoV-2 infection on the
immunity of patients with chronic diseases such as diabetes, hypertension, and chronic
obstructive pulmonary disease (COPD), must be fully addressed [153,154].
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Table 3. Vaccine platforms against SARS-CoV-2.

SL No. Vaccine
Technology Principle Advantage Disadvantage References

1. mRNA-based
Delivery of
modified
mRNA

• Scalable production
• Cytoplasmic
• No vector or foreign DNA
• Two or more antigens
• Self-amplifying mRNAs provide

sustained expression
• Cellular and humoral responses

• Stringent preparation/storage
• Less stable
• Low efficiency of delivery
• Transient expression (except SAM)
• Fortuitous immune response
• Cost

[27,77,156]

2. DNA-based
Vector-based
delivery of a

viral gene

• Easy to generate
• Stable
• Storage at room temperature
• Scalable
• Cellular and humoral responses
• Two or more antigens
• No adjuvant
• Ease of delivery
• Low cost

• Issues associated with vector DNA,
such as immunogenicity and
genomic integration and
pre-existing immunity

• Purity
• Pathogenicity due to recombination

with wild-type virus

[114,157,158]

3. Peptide-based
A fragment of
whole-length
viral peptide

• Non-infectious
• Robust immune response
• Safe
• Ease of delivery

• Challenging manufacturing
• Stability
• Need for adjuvant

[159,160]

4. Live attenuated
virus

De-
optimization

of the genome
(to reduce

pathogenicity)

• Multiple viral antigens
• Strong immune response

• Safety concerns
• Labor intensive [157,161]

5. Inactivated virus

Chemically or
UV-

inactivated
virus

• Relatively simple
• Strong immune response

• Risk of partial inactivation
• Risk of becoming pathogenic [92,162,163]
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1.3. Distribution Concerns of COVID-19 Vaccines

Prior to the COVID-19 pandemic, researchers did not seem to pay regular attention to
the storage temperature for mRNA vaccine candidates that were under the development
process. Small quantities were often frozen at −80 ◦C and then thawed and injected as
needed [162,164,165]. Table 4 shows the current mRNA COVID-19 vaccine stability profile,
dose, and dosing schedule.

Table 4. Current mRNA COVID-19 vaccine Stability profile, dose, and dosing schedule.

Stability Profile
Manufacturer

References
Moderna Pfizer-BioNTech

Frozen State −20 ◦C up to 6 months −80 ◦C to −60 ◦C up to 6 months
[78,89,109,166–168]2–8 ◦C 30 days Up to 5 days

Room Temperature Up to 12 h. Up to 2 h. (up to 6 h. after dilution)
Dose 100 µg (0.5 mL) 30 µg (0.3 mL)

[109,159,169]Dosing Schedule Day 1, Day 29 Day 1, Day 21

In addition to the rising clinical promise of mRNA-based COVID-19 vaccines, there
was a growing concern that storage, transport, and administration under these conditions
would pose a significant problem when hundreds of millions (if not billions) of doses were
to be distributed globally [170,171]. It is critical to understand that the entire undamaged
mRNA molecule is required for the vaccine’s effectiveness [172–174]. Even a small degrada-
tion event anywhere along an mRNA strand might significantly delay or halt that strand’s
normal translation performance, resulting in inadequate antigen expression [175–177]. Ther-
apeutic proteins and protein antigens, on the other hand, may undergo numerous chemical
degradation processes [104,178,179]. The crucial issue of delivering mRNA into cells, as
well as the critical contribution of formulation utilizing diverse delivery vehicles, must be
given special consideration [80,180,181]. To safeguard our communities against worsening
and future epidemics, high COVID-19 immunization rates are critical. Hundreds of millions
of vaccination doses will require tremendous planning and implementation [182,183]. De-
spite the fact that this may be the world’s largest single vaccination attempt, best practices
and lessons learned in pandemic preparedness, supply chain management, distribution,
and clinical practice can help us immunize against SARS-CoV-2 [184–186]. To successfully
manage vaccine delivery and administration to hundreds of millions of people, deliberate
planning and coordination with local and international partners are essential [187–189].
Figure 3 shows the packaging and distribution process of the vaccines from production
to use.Pharmaceutics 2022, 14, 1066 8 of 49 
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1.4. The Need for Novel Vaccine Delivery System

Despite the extreme discomfort involved with injections, expensive prices, and difficult
injection schedules, many vaccinations and medicines need multi-bolus regimens, which
can cause financial and emotional burden for patients [189,191,192]. Because of their
restricted access to healthcare practitioners, people in underdeveloped nations face a
greater challenge [77,163,193]. Low patient compliance, as well as other needle-and-syringe-
related concerns, have been identified in several global health studies as major barriers
to worldwide vaccination against deadly infectious illnesses including pneumococcal
pneumonia [188,194]. The idea of a single-injection vaccine, which is acknowledged by the
World Health Organization (WHO) as a preferred immunization method, has been studied
for many years [195,196]. Furthermore, biohazards and the potential of disease transmission
from the billions of needles/syringes discarded each year continue to be major problems
with injection-based systems [155,197]. As a result, a novel medication and vaccine delivery
strategy that is injection-free and only requires a single dose is urgently needed [198,199].

1.5. Microneedles in Transdermal Drug and Vaccine Delivery

Transdermal microneedles, which are painless and simple to use, have been shown to
be an enhanced drug-delivery technique that allows for the less invasive administration
of medicinal substances [159,200]. Transdermal microneedles are useful for vaccination
because the presence of a significant number of immune cells (Langerhans cells) in the
dermal layer of the skin improves immunogenicity [201,202]. However, microneedles
only offer either rapid or sustained release, which limits their application in vaccine
administration [203–205]. Due to the continual presence of the vaccine antigen inside
the body, immediate-release versions may cause the formation of immunological tolerance
against the vaccination, whereas sustained-release variants may induce the development
of immune tolerance against the vaccine [206,207]. A transdermal microneedle device
with programmable delayed burst release across prolonged time periods is required to
replicate the traditional immunization process’s numerous bolus injections [208–210] This
limitation is primarily due to a lack of a manufacturing technology capable of producing
microneedles with core–shell or reservoir-based microstructures, which are required to
provide pulsatile or delayed burst release with various desired lag times to mimic the drug-
release pattern of multiple injections [10,211,212]. Recent advances in lithography-based
methods and 3D printing have made it possible to construct drug-delivery devices with
unique drug-release kinetics. Current lithography-based techniques can only generate two-
dimensional structures, while current three-dimensional (3D) printing significantly relies on
potentially hazardous impurities (such as ultraviolet-curing agents) [213–215]. Dissolving
microneedles result in further advantages, both for the people who are vaccinated and for
logistics, through providing tiny storage and disposal sizes, low-cost manufacture, and
convenience of use, allowing for self-administration at home.

2. Dissolving Microneedles in Immunization

Dissolving microneedles (DMNs) are miniature needles made of polymers such as
polylactic-co-glycolic acid (PLGA), polylactic acid (PLA), and polyglycolic acid (PGA) that
dissolve in the skin to deliver encapsulated medicines, leaving no sharp waste [56,216]. DMN
arrays are now overlaid onto patches to aid in their implantation into the skin [10,217]. The
arrays produced on the patch are often not completely implanted, and significant amounts
of loaded materials are not supplied due to substantial differences in skin elasticity and the
amount of hair on the skin [213,218,219]. Drugs are most commonly delivered orally or by
parenteral injection, among the numerous delivery methods available [60,61,220,221]. Thus,
dissolving microneedles poses a suitable vaccine delivery system and is a worthy alternative
for replacing traditional needle vaccination methods. The bioavailability of many orally
administrable drugs is considerably decreased because of first-pass metabolism that can be
affected by varied physiological elements such as the activity of enzymes, the level of serum
protein, and the gastrointestinal motility of the drug in the body, although the oral dosage
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form is the most convenient method for drug administration [2,31,68,222]. For delivering
medicines directly into the bloodstream, hypodermic injection is more convenient and can
avoid the mentioned side effects [223–225]. However, there are several disadvantages to
hypodermic injection, including the high degree of competence necessary to deliver an
injection, the trypanophobia of some patients, and the danger of infection acquired by
needle sticks on occasion [37,69]. Several researchers developed microneedle (MN)-mediated
drug-delivery devices to overcome these restrictions, allowing patients to self-administer
therapeutic micro- and macromolecule medicines without discomfort [226–228].

Dissolving microneedles (DMNs) are tiny needles made of polymeric materials that con-
tain medications. The medication is released for systemic or local administration when DMNs
are injected into the skin and catalyze the breakdown of the polymeric molecule [63,229,230].
DMNs are completely biocompatible and do not produce biohazardous sharp waste, unlike
hypodermic injections [231,232]. Furthermore, as compared to subcutaneous vaccinations,
DMNs have been found to be more dose-effective [233–235].

Currently, the only DMN application technique is to superimpose an array of microneedles
onto patches, which allows for easier microneedle insertion and maintenance [41,236,237].
Patches are commonly employed as supports in DMN applications, although the efficacy of
drug administration that may be obtained with patches is typically considerably decreased
owing to excessive skin elasticity, which can result in inadequate DMN insertion [238,239].
Furthermore, the chemicals utilized in patch materials can cause skin irritation and/or allergic
responses; other patch delivery drawbacks include difficulty sticking to flexible body joint
regions and hairy skin [240–242]. Furthermore, before the patch can be removed, patients
must wait for the DMNs to entirely disintegrate [222,243,244]. Table 5 shows the usefulness of
dissolving microneedles in the vaccination procedures based on several criteria. Table 6 shows
the different animal models for the use of dissolving microneedles for vaccination.

Table 5. Extent of utility of DMN in vaccination.

SL No. Criteria DMN Array Patch (Score)

1. Manufacturing cost **
2. Mass production ***
3. Self-administration *****
4. Wear time ***
5. Material biocompatibility ***
6. Accurate dosage delivery ***
7. Aseptic process ***
8. Stability against humidity **
9. Waste generation *****

Note: *****—highest, ***—moderate, **—lowest.

2.1. Fabrication of Dissolving Microneedles

Dissolving MNs are typically made by pouring liquid mixture into a previously
prepared MN mold. In most cases, a silicon wafer is used as the starting material for
the mold. The wafer is then oxidized at 1000 degrees Celsius. Lithography is utilized to
create a needle geometry, followed by RIE, and CVD is used to coat a wafer. A liquid
polymeric solution is put into the molds that have been produced. Air gaps are eliminated
with a vacuum or centrifuge after a liquid polymeric solution is put into the prepared
molds. After that, the mold is dried in an oven, and the MNs are removed after they have
cooled. The advantages of this technique are that it produces MNs in a reasonably easy
and cost-effective manner at room temperature.
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Table 6. Model animals and vaccines for dissolving microneedle array patches (DMAP).

SL No. Types of Vaccine Animal Model References

1. Influenza (inactivated) Mouse [245,246]
2. Hepatitis B (recombinant subunit) Mouse [78,159]
3. HIV (recombinant vector) Mouse [247,248]
4. Dengue virus (live attenuated) Mouse [63]
5. Ebola (DNA) Mouse [249,250]
6. Enterovirus (VLPs) Mouse [63]
7. Rotavirus (inactivated) Mouse [67]
8. Polio virus (inactivated) Mouse [128,251]
9. Streptococcus (inactivated) Mouse [63]
10. Staphylococcus (recombinant subunit) Mouse [63,166]
11. Shigella (BLP) Mouse [46,63]
12. Clostridium (toxoid) Mouse [46,63]
13. BCG (live attenuated) Mouse [107,252]
14. Neisseria gonorrhea (inactivated) Mouse [63,229,253,254]
15. Pseudomonas aeruginosa (inactivated) Mouse [64,253,254]

16. Orientia tsutsugamushi (recombinant
subunit) Mouse [64,253,254]

17. Malaria (recombinant subunit) Mouse [63,253,255]

18. Influenza, DT, tetanus toxoid
(inactivated) Rat [58,256]

19. BCG (live attenuated) Mouse [257]
20. Influenza (inactivated) Guinea pig [40,245]
21. Hepatitis B (recombinant subunit) Pig [258,259]
22. Hepatitis C (VLPs) Mouse [196,260]
23. Rabies (DNA) Dog [63,156]
24. IPV (inactivated) Monkey [261,262]
25. Measles (live attenuated) Mouse [63,128]
26. Hepatitis B (recombinant subunit) Mouse [258,259]
27. Tetanus toxoid (inactivated) Pregnant mouse [256,263]
28. Measles, rubella (live attenuated) Infant monkey [264,265]

Note: IPV stands for inactivated poliovirus vaccine; VLPs stands for virus-like particles; BCG stands for Bacille
Calmette–Guerin; HIV stands for human immunodeficiency virus; DT stands for diphtheria and tetanus vaccine;
BLP stands for bacterium like particles.

The core–shell microstructure of the dissolving microneedles is created by assembling
three separate components of the microneedles, including a microneedle shell, a micronee-
dle cap, and a dry drug or vaccine core, utilizing a 3D manufacturing method [46,55,266].
The cap and base layer, which are composed of the same biodegradable polymer, poly(d,l-
lactide-co-glycolide) (PLGA), encase the medication or vaccine core [212,216]. The drug
release may be precisely regulated by adjusting the PLGA shell’s disintegration [217,219].
The microneedles may easily be implanted and thoroughly lodged into the dermal layer
following fast skin healing due to their small points and smooth shape [267,268]. In theory,
numerous sets of microneedles with various PLGA shells may be inserted into the skin
of patients at the same time in the clinical environment to produce multiple burst release
across different time periods, comparable to multiple bolus injections [61,269].

When different kinds of sugars are used as the matrix for dissolving microneedles,
drugs or vaccines are usually released quickly in vivo [33,68]. For example, Ito et al.
(2013) [254] reported that insulin was released from microneedles very quickly, with al-
most all the formulated insulin being released within 1 h when dextrin was used as the
matrix [36,270]. Nonetheless, in some cases, a continuous release of medicines or vacci-
nations is necessary [271–273]. A prototype of DMNs was constructed by Lee et al. [274],
in which therapeutic material was encapsulated merely as a backing layer that aided as
a reservoir for the controlled release of therapeutic molecules by protruding it with inter-
stitial fluid, which prolonged the molecule diffusion into the skin through the channels
formed by DMNs [63,226,275]. Figure 4 shows the strategy of the fabrication of a dissolving
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microneedle array via micromolding, and Figure 5 shows different fabrication methods of
dissolving microneedles.
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The manufacturing approach for fabricating dissolving MNAs with new microneedle
shapes is visually depicted in Figure 5. This six-step strategy takes advantage of AM
and micromolding to generate dissolving undercut MNAs while also accomplishing high-
throughput fabrication: (1) MNA design in 3D CAD; (2) the direct production of a master
MNA from the CAD drawing by 3D direct laser writing using a non-dissolvable resin
(IP-S); (3) the high-fidelity replication of master MNA by micromolding with UV-curable
resin (VeroWhite); (4) the creation of MNA master molds consisting of multiple master
MNA replicas on 3D-printed MNA holders; (5) the manufacturing of elastomer (PDMS)
micromolding of MNA production molds; and the spin-casting of tip-loaded, dissolving
MNAs with undercut microneedles containing a vaccine or other biocargo in a water-
soluble biocompatible substance (e.g., carboxymethylcellulose (CMC) and trehalose). The
final step of the process varies depending on the biocargo in question, but it usually involves
spin-casting cargo (e.g., vaccine) into the tip of the PDMS production molds, followed by
spin-casting a dissolvable hydrogel (e.g., CMC/trehalose) into the production molds to
serve as the structural material.
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Figure 5. dMN manufacturing methods (taken from [277]) Micromolding with a polydimethyl-
siloxane (PDMS) mold is the most prevalent method for producing dMNs. Drawing lithography
operates by extending two-dimensional polymeric material into a three-dimensional shape. Longi-
tudinal extension of molten polymer by pillaring higher moving plate. In soft lithography, dMNs
are produced by (A) heating a polymer sheet and a mold with microcavities. (B) The filled mold
is then heated and placed on a flexible, water-soluble substrate. After mold detachment, a dMN
patch remains on the substrate. Droplet-born air blowing (DAB) applies a (A) polymer solution and
(B) a drug solution to two plates. (C) The upper plate is lowered until the droplets meet, (D)then
withdrawn a distance equal to the two dMN lengths of the lower and top plates. (E) Drying the
polymer solutions results in a dMN patch on each plate. (F) In addition, fabrication at moderate
temperatures (4–25 degrees Celsius) minimizes medication and polymer waste. dMN on an electro-
spun pillar array (DEPA) is a variant of DAB. (A) The flat plate is replaced with a columnar array
covered in a fibrous layer. (B) A PDMS slab is then utilized to draw and stretch polymer formulation
droplets, resulting in microneedles. (C) Finally, the movement of air dries off the elongated droplets
to form dissolving microneedles.

Biodegradable microneedles, which are made up of various biodegradable poly-
mers such as polylactic acid, chitosan, polyglycolic acid, or poly(lactide-co-glycolide)
(PLGA), break down in the skin after use, allowing the release of integrated medicines to
be continued for months [230–232]. A recent study showed that these biodegradable mi-
croneedles might be used as a patient-friendly alternative to traditional sustained-delivery
techniques [70,278,279]. However, to properly use the biodegradable polymer’s break-
down property, these microneedles must be implanted and left in the skin for several
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days [41,237,242]. The notable disadvantages of the fabrication of dissolving microneedles
include manufacturing demanding the use of technical competence and time for the sub-
stance to dissolve. Microneedle separation into the skin was shown by Kim et al. [254] to
be mediated by hydrogel swelling in reaction to contact with bodily fluid after the needles
were introduced into the skin [243,280,281]. The hydrogel particles immediately absorbed
water, causing the microneedles to break owing to the differential volume expansion be-
tween the needle–matrix polymer and the hydrogel particles [253,282,283]. The enlarged
particles completely disintegrated the microneedles, leaving the microneedle tips in the
skin of a porcine cadaver in vitro and a hairless mouse in vivo [284–286]. Figure 6 shows
the fabrication of dissolving microneedle arrays with the PDMS micromolding technique.
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Figure 6. Fabrication of novel dissolving MNAs with undercut microneedles. (A) Finished items
according to each stage of the production plan outlined. The scale bar measures 10 mm. (B–I). Optical
stereomicroscopy was used to verify the geometric quality of the produced MNAs. The scale bars
are 250 m in length. (B) Three-dimensional direct laser writing was used to generate the master
MNA. (C) A two-stage micromolding approach was used to generate a replica of the master MNA
(elastomer molding combined with UV-curable micromolding). (D) Wells formed like microneedles
in an MNA manufacturing mold. (E) Dissolving CMC/trehalose MNA in the final stage, including
a multicomponent vaccine (OVA + Poly(I:C)). (F) A closer look at a single undercut microneedle
on the 3D-printed master MNA (as in B). (G) Magnification of an individual undercut microneedle
on a master MNA replica at higher magnification (as in C). (H) Dissolving PVP/PVA microneedle
tip filled with Alexa680-labeled OVA at the end. (I) A final dissolving CMC/trehalose microneedle
tip filled with doxorubicin, a red-colored, chemotherapeutic, small-molecule medication, is shown.
(Taken from [276]).

2.2. Biodegradation Kinetics of Dissolvable Microneedles

Through considering the biodegradation kinetics of a DMN array as a mathematical
model, the need for exploratory in vitro experiments during the design of new biodegrad-
able matrix-based therapeutics can be reduced [287]. The development of such a model
will allow key parameters such as DMN height, shape, and patch size to be optimized in
a faster and more cost-effective way than by running laboratory experiments. However,
the mechanism of degradation for a particular polymer is complex, as it depends on the
properties of its polymer matrix such as its chemistry, molecular weight, and morphol-
ogy [141]. It also depends on both the external environment, the payload property, and the
skin property, as shown in Figure 7.
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It is desirable to achieve a zero-order kinetics release profile during drug delivery to
result in sustained release, which is independent of the concentration of the dissolved drug,
and to prevent the drug concentration falling below minimum effective levels or rising
above maximum safety levels [288].
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However, this has been reported as idealized and difficult to achieve, with the majority
of drug release profiles from polymeric drug-delivery systems resulting in a triphasic
profile [289]. Although the release profile of each polymeric microneedle system should be
evaluated on a case-by-case basis, some previous efforts to model degradation-controlled
release, such as from a DMN, are outlined below.

2.3. Loading Capacity of Dissolvable Microneedles

Temperature-sensitive medicines such as peptides, antibiotics, and vaccines, as well as
any temperature-labile treatment, may be bulk loaded into microneedle structures using
room-temperature and aqueous-based micromolding [236,290]. Adjusting the postpro-
cessing parameters of the microneedle structures, particularly the silk protein secondary
structure, allows for the controlled release of a model drug [243,291].

Due to the bulk loading of dissolvable or biodegradable systems, microneedles ef-
ficiently bypass the epidermal barrier to provide this route as a viable option to the
oral and parenteral administration of therapeutics, and relatively high dosages may be
given [292,293] However, there are still a number of issues to be resolved. The skin’s barrier
function, for example, varies from one location to the next on the same individual, from
person to person, and with age [222,294,295]. Because the variation in individual skin and
the penetration depth of microneedles are related to stress on the skin, an applicator may be
necessary to produce a consistent penetration depth during each microneedle administra-
tion [63,296]. Furthermore, prolonged drug or vaccine release is more difficult than bolus
release, and the kinetics should be researched and confirmed [232,297]. If microneedles
are used often, it is also important to evaluate if dissolved or degraded matrices have any
adverse effects [298–300] Microneedle vaccination elicited immune responses that were
equivalent to those elicited by intramuscular injection in some cases but were greater in
others [222,301,302]. Overall, microneedle immunization resulted in higher recall cellular
immune responses, more antibody-secreting cells, and, most importantly, more effective
viral clearance [33,70]. Figure 8 shows vaccine delivery into skin and induced immunity
in mice.
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2.4. Significance of Novel Transdermal Vaccination

Most vaccines are administered through injection, either intramuscularly or subcu-
taneously, which can be unpleasant and uncomfortable for individuals who are scared
of needles [46,68]. Additionally, the hypodermic needles used to administer the vaccine
in these methods generate hazardous waste, which might result in injuries and infection
when needles are reused [243,290]. Infectious diseases such as Hepatitis B and AIDS can
be transmitted through the latter, particularly in underdeveloped countries [46,55,266].
Moreover, the use of new vaccine delivery techniques may give a variety of other ad-
vantages, such as antigen thermal stability, fewer booster doses, and, as a consequence,
greater vaccination adherence and a lower burden on healthcare personnel [236,239,290].
Both these advantages would be especially beneficial in large-scale vaccination operations,
such as in the case of an outbreak, where feasible and rapid immunization procedures
are necessary [56,63,249]. Because the skin is an immune-competent organ that is also
easily accessible, dermal vaccination delivery seems intriguing [41,45,50]. In the viable
epidermis and dermis, many antigen-presenting cells (APCs) such as Langerhans cells
(LCs) and dermal dendritic cells may be detected (dDCs) [254,303,304]. Antigen-presenting
cells gather antigens and subsequently transport them to draining lymph nodes, where
they transfer the antigen to T cells, activating Ag-specific T cells and B cells for a systemic
immune response [41,220,286]. Microneedles penetrate the skin barrier and underneath
tissue to transfer the antigen into the epidermis or dermis while staying short enough
to avoid pain receptors, therefore preventing pain sensation [261,305]. Additionally, MN
vaccination may not require the employment of health practitioners and will not result in
sharp needle waste after immunization [37,53,305,306].

2.5. Mathematical Modeling of Microneedles

The mathematical modeling of microneedles for vaccine delivery is key in optimizing
the MN performance. Currently, there are few publications involving the modeling and
optimization of DMN arrays when compared with solid or hollow microneedles. Conse-
quently, this section aims to summarize the drug-delivery mechanisms discussed within
these papers along with the key parameters that have been found to affect the drug release
rate from the microneedle array and the microneedle penetration depth with a view to
learn the key lessons from these publications. To date, the method chosen by most studies
to model DMNs was the finite element method (FEM) [158]. This is because this method
is able to produce detailed diffusion or force distribution profiles [304,306,307]. Figure 9
shows a finite element analysis of the surface von Mises stress on a single microneedle.
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2.5.1. MN Delivery Mechanisms

This section discusses the fundamental principles used to derive the DMN mathemati-
cal models reported within the literature to date. To successfully deliver a drug, a DMN
system must be applied to the skin to puncture the stratum corneum and permeate the
upper dermal layers. Once the needles are “wetted” by moisture in the skin, they will
dissolve to release drug molecules which are eventually adsorbed into the circulation [307].
Typically, Fick’s law can be used to simulate the diffusion profile of the drug molecules in
microneedle-treated skin. Fick’s first law is used to describe steady state diffusion. Fick’s
second law is used to describe transient diffusion [158].

The value of diffusion coefficient used in Fick’s law can be calculated using various
methods, described in detail by Yadav et al. [141]. Chavoshi et al. [308] also reported that
the drug diffusion coefficient will increase as polymer degradation occurs. Despite this,
many models of DMNs assume that the drug concentration in the skin layer is uniform
because the rate of diffusion is rapid compared to the dissolution of the microneedle or
elimination into the bloodstream [309,310].

Ronnander et al. [309] developed a mathematical model to show the in vitro dis-
solution and release of sumatriptan succinate from PVP-based microneedles shaped as
pyramids. To do this, governing equations were derived using material balances to relate
the microneedle pyramid height and drug concentration in the skin over time.

Kim et al. [310] used a similar approach to predict the amount of drug (fentanyl)
delivered into the skin via the dissolution of a water-soluble (sucrose) microneedle. More
recently, this approach was used by Zoudani and Soltani [311] to create a numerical
simulation of a dissolution process of a DMN in porous medium. However, Kim et al. [310];
Ronnander et al. [307]; Zoudani and Soltani [311] assumed that the ratio of needle height to
the base radius remains constant throughout the dissolution process. This may not always
be true; therefore, a more accurate model would consider these variables independently.

When creating their numerical simulations, Zoudani and Soltani [311] introduced a
hindrance factor to investigate the effect of a drug’s molecular radius on a drug’s effective
diffusion coefficient in the skin. This was not considered in the studies completed by Kim
et al. [310] or Ronnander et al. [307].

2.5.2. Effect of Polymer Type

To date, there have been various studies completed to optimize the polymer used in a
DMN array [306,309,312–314]. Each study has been undertaken with the aim of providing
a formulation with optimum values for Young’s modulus, Poisson’s ratio, ultimate tensile
stress, dissolution kinetics, and polymer adsorption rate. Moreover, there are a good
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number of articles (e.g., [47,222,315–317]) that discuss the varied types of materials usually
used to fabricate MNs.

To study the traits of sugar MNs, Loizidou et al. [306] used finite element analyses
which was the first initiative undertaken with the objective of optimizing the polymer. They
evaluated the effects of sugar composition on MNs’ capability to penetrate and dispatch
therapeutic materials through the skin. MNs made from CMC/maltose were found to be
better than those made from CMC/trehlose and CMC/sucrose in terms of their mechanical
strength and ability to deliver drugs. Loizidou et al. [306] also stated that the main mode of
microneedle failure is buckling, which is positively correlated to the Young’s modulus of
the microneedle array.

Amodwala et al. [318] completed a similar study to optimize the ratios of PVA to PVP
and the solid content of a matrix to achieve maximum microneedle strength. The optimum
patch was found to contain a 9:1 PVA to PVP ratio with 50% solid content. This formulation
showed a maximum needle fracture force of 0.9N and was found to release 100% of the
encapsulated drug (meloxicam) in 60 min [312]. Similarly, Ronnander et al. [309] looked
at different ratios of water, sumatriptan succinate, and PVP within a DMN array and
found that the formulation affects the drug release rate and time needed for the polymeric
microneedle to dissolve.

Suriyaamporn et al. [314] used computer-aided rational design to optimize the formu-
lation of Gantrez- and hyaluronic-acid-based DMNs as a potential ocular delivery system.
The optimal DMN formulation was found to be 20.06% Gantrez +5% hyaluronic acid +1%
Fluorescein Sodium, as it gave the optimum combination of dissolution time, insertion
force, and insertion depth.

However, the simulations of drug delivery using DMN can be advanced through
looking at the interactions between the polymer and drug in the microneedle structure.
Hao Feng et al. [313] used molecular dynamic simulations to model the binding energy and
electronegativity differences between polymer and drug molecules. This study is essential
for determining compatibility between the polymer and loaded drug, therefore allowing
for efficient drug delivery and minimal wastage of drugs.

2.5.3. Effect of Microneedle Array Geometric Parameters

In a microneedle array, properties such as the needle length, tip radius, base diameter,
center-to-center spacing between two microneedles, the number of microneedles, and the
distribution of microneedles in an array work together as a synergetic system. The needle
geometry, thickness, and density are also parameters which will affect the concentration of
active pharmaceutical ingredients in the blood [157].

Various publications have shown that increasing the pitch width between microneedles
in an array will reduce the level of drug in the dermal layer of skin [311,312]. However,
it has been further suggested that the effect of microneedle pitch on skin permeation is
non-linear, and decreasing the pitch size has no significant effect on dissolution time [309].
Despite these findings, during their study on the amount of drug delivered into the skin
via the dissolution of a water-soluble microneedle, Kim et al. [310] neglected the effect of
the pitch and needle geometry on the deformation of skin. Therefore, these effects need to
be considered to increase the accuracy of this model.

Chen et al. [319] found that polymeric microneedles with a longer length presented
higher TDD efficiency. The drug used in this study was insulin, and the microneedle
lengths varied between 124 µm and 445 µm. These results can be explained by considering
the microneedle volume present in the viable epidermis and dermis layers of skin, which
have increased transport properties when compared to the stratum corneum [320]. As the
needle length increased, the percentage of needle volume present in the viable epidermis
and dermis increased, leading to an increased release of insulin. Despite these findings,
the author noted that using longer polymeric microneedles may not be optimal, as shorter
lengths would significantly reduce the pain due to skin piercing. Gomaa et al. [321]
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also found that longer microneedles may require a greater insertion force for their use to
be effective.

Zoudani and Soltani [311] proposed a new approach called array in array theory, a cone
with an array of hemispherical convexities located in the second half of the microneedle,
as shown in Figure 10. According to the numerical simulation of this design, the drug
concentration left in the tissue was double the concentration left from a conical design;
however, the time taken for the needle to be fully dissolved was unaffected. Therefore, the
new configuration led to a more effective and economic method of drug delivery through a
DMN array [322]. Despite this, a much more complicated fabrication procedure is expected
for such devices.
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2.5.4. Effect of Skin Properties

Skin has a viscoelastic property, which must be considered when modeling the in-
sertion behavior of a DMN array [158]. Skin thickness, Young’s modulus, porosity, and
viscoelasticity are important parameters that may affect the DMN penetration depth.

As aforementioned, Loizidou et al. [306] performed experimental and finite element
analyses to study the mechanical properties of sugar microneedles when inserted into skin,
as shown in Figure 10. However, there are fewer publications on the insertion behavior
of DMN compared to solid or hollow MNs. Although polymeric microneedles are soft
compared to solid microneedles, the principles of microneedle insertion into skin remain
the same.

3. Dissolving Microneedles: Some Satisfactory Aspects

Transdermal medication has become a very popular, effective, and promising adminis-
tration route for drug delivery, and the concept of microneedles has intensified this [55,323].
Researchers have successfully established vaccination delivery via MNs through numerous
studies [39,261,265,324–328], and now, DMNs have attracted immense attention for COVID-
19 vaccine delivery. Researchers are optimistic about using DMNs for mass vaccination for
COVID-19 due to the reasons outlined in Figure 11.

Research works that support the dissolvable-MN-patch-mediated COVID-19 vaccina-
tion system are displayed in Table 7.
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Table 7. Research works carried out to establish MN-mediated vaccine delivery.

Targeted
Molecule Disease Causing Microorganisms

Nucleic Acid Rabies [330] BCG [331] Ebola [250] Hepatitis B virus [258] Porcine circovirus type 2 [332]

Viral Vector SARS-CoV-2 [142] Zika [333] HIV
[247,334,335]

Protein-Based
or VLP

SARS-CoV-2
[336] HIV [337]

Influenza
[33,233,245,

338–348]

Hepatitis B
[259,260,349]

Diphtheria
[256,305,350] HPV [65] Tetanus

[263,306,350] Malaria [256]

Inactivated or
Live

Attenuated

Influenza
[66,246,351–

354]

Polio virus
[261,355]

Rubella
[325,356]

Adenovirus
[33,357]

Streptococcus
[358]

BCG
[257]

Measles
[325,356,359] Rotavirus [67]

3.1. Patient Compliance

MNs are safe therapeutic devices that do not require highly experienced or properly
trained caregivers to administer them [360]. MN patches can be used to self-administer
vaccinations [59,246]. MNs are the best possible suitable vaccination option for people with
needle phobias [54]. In addition, MNs do not cause irritation after administration and are
less painful than conventional syringes [34,42,298,361–364]. DMNs are the best possible
substitute and hold the potential to be better than conventional syringes [346] because of
the following reasons:

3.2. Overall Vaccination Cost Reduction

As DMNs are fabricated from dissolvable polymers, they have the potential to elimi-
nate the manufacturing cost of syringe and vials [163,170,329,365]. DMNs also have the
potential to reduce the storage, distribution, and overall manufacturing cost of COVID-19
vaccinations. Table 8 summarizes how DMNs will reduce the total cost of COVID-19
mass vaccination.
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Table 8. Comparison between DMNs and conventional syringes regarding cost reduction.

SL No. Sections Where Huge Amounts of Costs Can Be Reduced Dissolving MNs Patch Conventional Syringes

1. Maintenance cost of cold chain system for storage after
manufacturing vaccine ×

√

2. Cold chain system cost during distribution of vaccine ×
√

3. Syringes and vials’ manufacturing cost ×
√

4. Sharp waste disposal procedure cost ×
√

5. Plastic and glass waste management cost ×
√

6. Training cost (training up the caregivers for syringe and vial
handling, disposal, etc.) ×

√

Note:
√

= yes, and × = no.

4. Preclinical and Stability Studies of MN Vaccination
4.1. Stability Studies of MN Vaccination

Most immunizations are currently accessible in fluid form, which must be kept refrig-
erated to guarantee antibody quality [342,352]. Due to this tight temperature prerequisite,
immunization administration by and large utilizes a cold chain, which may be a set of tem-
perature limitations that happen amid immunization travel, capacity, and dissemination
from the point of fabricating to the point of utilization [12,87,366]. Indeed, a well-established
cold chain, be that as it may, cannot guarantee immunization quality, since any accidental
introduction to warmth or the unintended solidifying of immunizations amid travel and
capacity can cause damage [239,249,277,361]. Due to the colossal cost of keeping up the cold
chain and adapting to its issues, antibodies with thermostability that do not require refrig-
eration are significantly sought after [49,63,345]. Thermally steady immunizations could be
distributed to populaces in nations with restricted cold-chain frameworks, and more pro-
ductive and far-reaching immunization dissemination could be achieved through drugstore
and mail-in techniques to combat regular and widespread episodes of maladies such as
COVID-19 [233,344,355]. Table 9 shows stability studies regarding dissolving microneedles
used in vaccination. Changing fluid antibodies to a dry powder frame is one approach
to improve immunization toughness [232,341,350]. In terms of drying, vacuum drying,
drying with a desiccant, and lyophilization are all methods of drying biopharmaceuticals
such as immunizations [78,100,102]. The prescribed procedure for drying biopharmaceu-
ticals is lyophilization [33,40,339,367]. Amid the freeze-drying process, be that as it may,
the immunization particles and proteins are exposed to a number of possibly damaging
stresses, including solidifying and drying stresses, which can cause changes within the
antibody proteins’ auxiliary and tertiary structure as well as physical changes such as
conglomeration (e.g., due to solidifying concentrations) [33,46,55,236,332]. Sugar has been
utilized in studies regarding antibodies to protect immunizations against the previously
mentioned types of damage during lyophilization, as often as possible within the frame of
sugar glass [41,284,368,369]. In spite of the fact that the most popular way of conveying
immunizations is infusion with hypodermic needles, this strategy is not favorable and our
understanding of it is limited [37,67,370]. In numerous developing nations, it was assessed
that more than half of all infusions are performed utilizing dangerous infusion strategies,
which may be a major source of bloodborne pathogen transmission [338,368]. Microneedles,
alternatives to infusion, tackle these concerns by giving a more patient-friendly and more
secure conveyance strategy that infuses immunizations into the epidermis and shallow
dermis layers of the skin, utilizing an easy-to-apply alternative [63,156,239,332,345]. Pa-
tients lean toward the microneedle alternative since it is easy and simple to apply, and it is
more secure, since microneedles may be fabricated from secure, water-soluble excipients
that break down within the skin and leave no sharp waste [46,49,55,371]. In addition,
microneedle patches can be stored and dispersed in a dry, solid-state and are broken down
within the skin’s interstitial liquid when utilized [63,77,345]. Further examinations have
found that skin immunization is more immunogenic than muscle immunization, owing to
the nearness of Langerhans and dermal dendritic cells within the skin [233,341,344].
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Table 9. Stability studies of vaccine DMAP.

SL No. Vaccine Stabilizer Temperature Period References

1. Influenza (inactivated) Trehalose 4 ◦C, 25 ◦C, 37 ◦C 3 months [40,69]
2. Influenza (inactivated) Trehalose 40 ◦C 6 months [40,69]
3. Influenza (inactivated) Trehalose 35 ◦C 12 months [40,69]
4. Rabies (DNA) Sucrose 4 ◦C 3 weeks [61,67,372]
5. Hepatitis B (recombinant subunit) - 4 ◦C 3 months [258,260]
6. Hepatitis B (recombinant subunit) Sucrose 45 ◦C 6 months [258,260]

7. Influenza (subunit) Arginine +
heptagluconate

25 ◦C
Freeze–thawing 24 months5 cycles [32,326]

8. BCG (live attenuated) - 25 ◦C 2 months [252]

9. Tetanus toxoid/Diphtheria toxoid
(divalent subunit) - 4 ◦C 24 weeks [256,263]

10. Scrub typhus (recombinant subunit) - 25 ◦C 4 weeks [63]

4.2. MN Patch Packaging and Storage

In a previous study [352], three alternative packing conditions were used to preserve
microneedle patches carrying vaccinations [195,357,373]. The initial set of microneedle
patches were put in open glass vials that were exposed to the building’s ambient air and
humidity [239,351,374]. The remaining microneedle patches were put in glass vials with
1 g of desiccant (calcium sulfate, Drierite, Xenia, OH). These vials were securely capped
and then parafilm-sealed. The third batch of microneedle patches was likewise packed
in glass vials with desiccant and nitrogen gas instead of air [55,156,233]. Microneedle
patches were kept at 4 ◦C in the fridge, 25 ◦C on a lab bench drawer, and 37 ◦C or 45 ◦C
in temperature-controlled incubators [33,40,342]. At the four temperatures, fluid arrange-
ments of inactivated flu infection in vials were kept indistinguishably with and without
desiccant and oxygen [33,249,277,284,355]. After 0, 1, 7, 14, 30, 60, and 90 days, the mi-
croneedle patches and immunization arrangements were expelled, and their solidness
was tested [163,355,369,370]. Table 10 shows the analytical methods used to monitor and
determine the quality attributes and to test the quality attributes of mRNA vaccines.

Table 10. Analytical methods to determine and monitor quality attributes and stability of mRNA
vaccine bulk drug substance and final drug product.

SL No. Assay Purpose References

1. Characterizing DNA templates and RNA transcripts

• DNA template sequencing/mRNA sequencing identification of mRNA Identification of mRNA [74,159]

• UV spectroscopy (A260 nm, A260/A280, A260/A230) Quantification—purity
dependent Quantification—purity dependent [203]

• Fluorescence-based assays (e.g., residual DNA) Quantification—purity assessment [13]

• Agarose/acrylamide electrophoresis Molecular mass, RNA integrity, and
quantification [77]

• Reverse transcriptase qPCR Identification and quantification of mRNA [375]

• Blot for dsRNA Quality assessment [139]

• mRNA capping analysis Quality assessment [159]

• mRNA polyadenylated tail analysis Quality assessment [13]

• Chromatographic assays Quantity and quality assessment [77]

2. Characterizing mRNA-encoded translation products

• In vitro translation—cell-free medium Translation into target protein [156]

• mRNA evaluation using various cell-based systems Translation product analysis and potential
toxicity assay [35,91]
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Table 10. Cont.

SL No. Assay Purpose References

3. Characterizing mRNA-lipid/protein complexes

• Light scattering Particle size (distribution) [72]

• (Gel) electrophoresis Assessing bound/unbound mRNA
and surface charge [107]

• Laser Doppler electrophoresis Zeta potential [77]

• Chromatographic assays/mass spectrometry Quantification and integrity of carrier
lipids/protein [72]

• Fluorescent dyes Encapsulation efficiency [372]

4. General pharmaceutical tests Appearance, pH, osmolality,
endotoxin concentration, and sterility [107]

4.3. Preclinical Studies of Vaccine MN Array Patch

Mice were utilized in the study conducted in the article [352] to assess the viability of
most immunization MAPs, whereas a monkey was utilized as an animal model in preclini-
cal examinations of distinctive immunization MAPs [63,370]. An aluminum-type adjuvant
was tested among the adjuvants; in any case, it did not illustrate high proficiency for the
MAP14 immunization since it produced destitute T-cell interceded resistant reactions and
was not fitting for intradermal (ID) utilization [50,63,74,202]. Nanoparticles (NPs), which
can work as a station and are more effectively taken up by dendritic cells, have as of late
been respected as valuable adjuvants. Bacillus anthracis inoculation NP Outlines evoked a
more capable resistant reaction than an Outline without NP detailing [50,63,144,200]. Ebola
immunization studies indicated a comparable advancement [63,376,377]. The Hepatitis B
DNA antibody was typified in another polymer NP detailing made from pluronic-modified
polyethyleneimine [63,370]. Compared to DNA MAPs, DNA NP MAPs created more
prominent humoral and cellular resistance [50,63,74,202]. Utilizing an embedded Outline,
the resistant reaction was upgraded by a persistent discharge of inoculation and antigen
presentation to lymphoid organs [140,145,325,377]. The silk network was utilized to form a
D-MAP for HIV that controlled the antigen discharge rate for two weeks, occurring in a 1300-
fold increment in serum IgG titer compared to a conventional organization [33,203,303,368].
The chitosan Outline, which has an immune-enhancing impact, was utilized to extend the
discharge of flu inoculation [33,97,140,156,200,325,376].

5. Microneedle Array Patch Vaccination: Clinical Trials and Human Studies
5.1. Microneedle Vaccination Clinical Trials

To address the limits and present drawbacks of hypodermic needle injection, vaccines
can incorporate MAP’s innovation in stability, bioavailability, potency, and less adverse
effects [74,150,208]. Using the keyword “microneedle vaccination” as a search term, seven
studies were discovered on Clinical Trial.gov that used the vaccine MAP. In the registered
trials, many types of MAPs were employed, and these studies were performed to assess
the viability of MAP vaccination in clinical practice for some of the most severe infectious
illnesses [22,68,83,208].

5.2. Vaccine Coated MN Array for Human Studies

In multiple human trials, C-MAP (NanopatchTM), a vaccine, has shown promise as a
technique for effective drug delivery [63]. In a previous study [63], uncoated and excipient-
coated NanopatchTM vaccines were given to 18 healthy persons for 2 min of insertion and
removal [33,368,370]. On a scale of 0 to 10, 78 percent of participants reported 0 on a pain
range of 0 to 10, with an average score of less than 1 on a pain scale of 0 to 10 [58–373].
NanopatchTM had no unexpected adverse effects, and the expected erythema response
faded between three and seven days after vaccination [56,61,249]. When healthy people



Pharmaceutics 2022, 14, 1066 23 of 47

were administered a NanopatchTM containing 15 g of inactivated influenza virus (H1N1),
the side effects were low to moderate, and more than half of the people (55%) preferred
the NanopatchTM method over intramuscular injection (IM) [58,209,249]. Interestingly,
when employing a NanopatchTM, the antibody response was comparable to when using
standard IM injection [33,56,61,368,370,373].

5.3. Vaccine Dissolvable MAP for Human Studies

There was no pain, edema, or erythema when research participants in a number of
studies [63,326,368] were administered a D-MAP patch, and only mild erythema was re-
stricted to the patch application site [35,326]. Furthermore, the great majority of participants
were either somewhat or totally confident in their ability to self-administer [35,50,290,326].
As a consequence, D-MAPs were given to participants in a phase 1 research after the
influenza vaccine was encapsulated in a polymer matrix [33,35,38,340]. The D-MAP that
was self-administered generated antibody responses that were comparable to IM ther-
apy [51,260,354]. Another D-MAP for the treatment of influenza was created using Mi-
croHyala TM, a hyaluronic acid MAP [63,64]. There were hardly any significant local or
systemic adverse effects, and the immunological efficacy was comparable to IM [41,43,284].

5.4. Concerns about Vaccination via MAP
5.4.1. Commercialized MAP

A few pharmaceutical companies have developed MAP devices for medication de-
livery systems. These companies are summarized in Table 11. OnvaxTM (a BD busi-
ness) is made up of a series of plastic microprojections that stand about 200 microm-
eters tall [222,353]. The vaccine is transported into the epidermal layer as a result of
the skin injury induced by such devices [33,43,63,326]. Vaxxas created NanopatchTM,
which is a strong power microprojection grid with an influenza vaccine composition on
top [50,222,353]. A spring-loaded applicator is used to apply a 250 m long NanopatchTM
needle. The ZP MAP system from Zosano Pharma contains 1300 microneedles distributed
out across a 2 cm2 area [36,46,63,232]. The medicine is deposited on a 190 m MAP and given
through a refillable arm applicator. This technique accomplishes the intended outcome by
delivering the drug formulation to the skin’s outer layers. CosMED Pharmaceutical Ltd.
created a D-MAP that is built on hyaluronic acid [222,353].

Table 11. Companies developing microneedles for vaccine delivery.

SL No. Company Type of Microneedle Disease

1. Micron Biomedical Dissolving microneedle Inactivated rotavirus
2. 3M (Kindeva) Hollow microneedle Cancer vaccines
3. BD Technologies (BS Soluvia) Stainless steel microneedle Influenza
4. Flugen Metal microneedles Influenza
5. Debiotech Hollow microneedles COVID-19
6. Vendari (Vaxipatch) Stainless steel microneedle Influenza and COVID-19

7. Nanopass (MicrojetTM) Silicon microneedles Influenza, Polio, Varicella-Zoster, cancers,
Hepatitis B, and COVID-19

8. BioSeren Tach Inc. Dissolving microneedles Vaccine

9. Sorrento Therapeutics (Solusa) Nanotopographical imprinted
microneedles (coated) Immuno-oncology

10. Vaxxas (NanopatchTM) Coated microneedles array patch Influenza, COVID-19
11. Quadmedicine Dissolving microneedles Influenza, Canine Influenza
12. Vaxess Dissolving microneedles Influenza, COVID-19, and skin cancer
13. Raphas Dissolving microneedles HPV, Polio, T dap, HBV, IPV, and Hepatitis B

5.4.2. Manufacturing Issues

Dosage consistency, reasonable price, mass fabricating, and manufacturing in agree-
ment with GMP benchmarks are all concerns in attaining successful DMN vaccination
procedures [44,55,222]. In terms of cost and versatility, MAPs require the foundation of
large-scale fabricating apparatus and methods [43,58,276,324]. At the beginning of mass
generation, noteworthy use is required to manufacture, cast, and shape MAPs [32,68]. Once
these early stages are complete, the fabrication expenses of DMNs are anticipated to be
lower than that of injectables [32,33,37,46,50]. The polymer-based MAP casting technique
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might be low-cost since different polymers, such as cellulose derivatives, engineering plas-
tics, and sugars, are typically affordable [41,46,66,304,369]. Scaling up handling processes,
however, can be challenging due to the reliance on master molds and the necessary multi-
step filling process [50,56,69,225]. Additionally, temperatures may rise due to the drying
process utilized in the manufacturing of vaccine MAP [63,254,378,379]. As a result, making
thermosensitive antigens may need a low-temperature technique. Special packaging or
desiccants may be required to improve storage stability, although the addition of moisture-
resistant material may increase package prices [36,233,236]. In addition, sterilization is
essential for MAP immunization. Despite MAP’s low bioburden, the cost of the aseptic
technique should be considered. The assessment of immunization MAP products should
be considered in terms of cost [33,251,326]. The consistency of MAPs is also necessary for
quality assurance in the marketing and production processes. Companies must establish
and execute an effective pharmaceutical quality assurance system that combines GMPs and
quality risk management [63,145,249]. Ultimately, for effective vaccine MAP production,
current standards for conventional medications, as well as specific needs for each type of
MAP, are necessary [33,63,326].

5.4.3. Regulatory Issues

An immunization Outline, agreeing to the latest report from the US Food and Drug
Administration (FDA), could be an item that combines an organic item with a mechanical
device [78,116,376,377]. Two or more administrative units such as the organic item and
the mechanical device are combined to make up an item. This sort of item incorporates
prefilled syringes, autoinjectors, and Outline patches preloaded with natural items (21 CFR
3.2e) [9,156,158,175,305]. Due to the benefits of Outline, an inoculation Outline has been
focused on. Antibody and Outline were combined into one commerce [88,305,372]. The
security and viability concerns related to each constituent portion and the item as an entirety
ought to be considered within the direction of an immunization Outline (21 CFR Portion
4 Subpart A: Section 4.4 (b)). To move from the research facility to clinical utilization, an
immunization Outline must moreover meet current GMP and post-marketing security
benchmarks [61,88,163,305,370,378].

6. Challenges in Ensuring Global Access to COVID-19 Vaccines and Socio-Economic Factors
6.1. Vaccine Hesitancy

Vaccine hesitancy is defined as the delay in receiving or the refusal to receive vaccines
in spite of the availability of a vaccine facility [379]. The severity of the COVID-19 pandemic
cannot be minimized until communities agree to get vaccinated [380]. According to some
researchers, people who prefer to receive complementary and alternative medicines (CAMs)
are more prone to become vaccine hesitant [381].

In this ongoing pandemic, one of the reasons people are showing hesitancy towards the
vaccine is that the COVID-19 vaccine development time period was faster than usual [153].
This has led to a fearful doubt regarding the long-term effect of the vaccine [82].

Despite this, reasons for vaccine hesitancy may vary according to country, socio-
economic factors, one’s confidence towards the vaccine, and other factors [152,382]. More-
over, a lack of proper vaccination campaigning, ignorance of vaccination, and media
communication have a substantial effects on people [148,205,383–385]. Numerous sur-
veys have been carried out to identify the exact reason for vaccine hesitancy, and each of
them included a considerable number of participants who lacked knowledge concerning
the COVID-19 vaccine [5,81,89,386,387]. Media coverage regarding the adverse effect of
AstraZeneca’s vaccine also led many people towards vaccine hesitancy [116,385].

To tackle the growing percentage of vaccine hesitancy during the COVID-19 pandemic,
the first and foremost step is to increase awareness among the public. This involves
disseminating information, educating people about the importance of vaccines, and fighting
disinformation with scientific-data-based information [130,148].



Pharmaceutics 2022, 14, 1066 25 of 47

Researchers have suggested the five Cs strategy to combat vaccine hesitancy, which
covers: 1. Confidence, 2. Complacency, 3. Convenience, 4. Communications, and 5. Con-
text [151].

MNs can play a vital role in reducing the percentage of vaccine-hesitant people world-
wide. Because it is now proven that delivery through MNs can increase the effectiveness of
a medication, not only that will lead to confidence in vaccine-hesitant people, but it also
has the potential to deal with the other four components of the five Cs (see Figure 12).
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6.2. Needle Phobia

A needle phobia can be defined as the intense fear of medical approaches that involve
needles or injections, to such extent where it causes a transformed and unaccommodating
response [388]. The intensity of this phobia can reach to an extent where a patient might
even refuse to accept life-saving medical help [389].

A needle-phobic human usually goes through a series of phenomena, initially starting
with anxiety-associated tachycardia, and subsequently bradycardia, hypotension, diaphore-
sis, and shock. Eventually, all these incidents can lead a needle-phobic towards vasovagal
syncope. Unfortunately, this fear of vasovagal syncope leads a treatment receiver to ex-
perience more severe needle-phobic responses than usual [389–391]. All these medical
conditions discourage people with needle phobias to get vaccinated despite the long-term
beneficial effect of vaccines.

To convince people with needle phobias to get vaccinated, the following methods
could be applied:

1. Desensitization: Desensitization therapy is the most commonly applied and effec-
tive; however, it is a time-consuming technique that requires hours of compliance. In this
therapy, the patient is steadily exposed to needles in a regulated and circumspect setting
that eventually helps the needle-phobic to allow themselves to handle needles [390,392].

2. Topical anesthetics: The use of topical anesthetics before the administration of
transdermal medications is the best possible method in the management of needle phobias,
which can temporarily solve the associated issues within the shortest possible time. Local
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anesthetics that are cream-based mixtures have shown more efficacy in the management of
needle phobias [389,393].

3. Vaccination through MNs: MNs have become popular therapeutic devices [36]
for vaccine delivery due to their distinctively unique advantages [14], which can play a
paramount part in alleviating the fear of needles in people. MNs are tiny, micron-sized
needles that deliver the drug molecule by creating microchannels through the stratum
corneum [46,364] without stimulating pain nerves [360,394]. They can penetrate the skin
without pain and vasovagal reactions, making them a suitable transdermal delivery system
for needle-phobic people [31,47,395].

6.3. Availability

As it has already been almost 2 years since the beginning of the COVID-19 pandemic
and only 10.91% of people have been fully vaccinated as of 1 June 2021 [396], it is a challenge
to fully vaccinate the rest of the 89.09% unvaccinated people (Figure 13) worldwide in spite
of the remarkably rapid development of COVID-19 vaccines.
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Figure 13. Percentage of unvaccinated people worldwide as of 1 June 2021.

Based on the report of an internal investigation, the amount of vaccines supplied
altogether by 37 members of the DCVMN (Developing Countries Vaccine Manufacturers
Network) was about 3.5 billion doses annually [95].

According to the latest published article on 9 June, around 20 million people per day
had been getting a vaccine shot manufactured by Sinopharm and Sinovac in China [397].

AstraZeneca agreed to deliver 3 billion doses of its vaccine this year; however, it
was only able to deliver 40 million of the 90 million doses it had promised to provide
the European Union (EU) for the first quarter of 2021 [398]. Figure 14 depicts a general
estimation of the COVID-19 vaccine manufacturing capacity of leading manufacturers
worldwide by the end of 2021.

The COVID-19 pandemic has given rise to a humanitarian crisis throughout the world.
Developing and underdeveloped countries have always been at the bottom of the priority
list in the case of both technological and medical advancements, which also include vaccines
and drugs [130]. For instance, the world’s poorest nations in Africa only received 0.2%
of the 700 million COVID-19 vaccine doses by April 2021, whereas more than 87% of the
global vaccine doses has been supplied to developed countries [176].
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However, a variety of agreements with manufacturers has been launched by the
COVAX Facility regarding the supply of COVID-19 vaccines, which it believes will be
sufficient enough to hit its target of producing two billion doses by the end of 2021, around
50 percent of which will be reserved for distribution in developing countries [400]. Canada,
France, Norway, and the UK have agreed to donate leftover vaccines from their national
vaccination campaigns [398].

The pervasiveness of vaccine nationalism is a barrier to equitable vaccine distribution [400].
In an endeavor to reconcile the different perspectives, some people think that no

conflict exists in terms of an even distribution of vaccines and national partiality. Having
said that, it is not allowed to violate civil rights and aggravate the worldwide poverty
situation. Furthermore, it is both the right and duty of each government to ensure their
citizens get priority access to the COVID-19 vaccine [127].

Available Vaccines and Variants of Concern

SARS-CoV-2 is susceptible to genetic evolution that results in multiple variants that
possibly have distinct characteristics in comparison to its hereditary strains. In the past year,
multiple variants of SARS-CoV-2 have been originated, of which a few are considered to be
a variants of concern (VOCs) [401] because of their potential to cause enhanced virulence,
reduced naturalizing capacity by the help of innate immunity or vaccination, the ability
to elude the detection, or the decreased effectiveness of therapeutics or vaccination [136].
Each EUA vaccine available on the market evinces a different potency and time span of
effectiveness depending on the design of antigen, adjuvant molecules, vaccine delivery
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platforms, and immunization technique [114]. The efficacy of EUA vaccines present on the
market for the different variants is as follows:

BNT162b2 vaccine: The roughly calculated effectiveness of the BNT162b2 vaccine
was 89.5% (95% confidence interval (CI), 85.9 to 92.3) and 75.0% (95% CI, 70.5 to 78.9),
against infection with the B.1.1.7 and B.1.351 variant, respectively, at the 14th or more
day after the administration of the second dose [84,101,103,402–404]. BNT162b2 efficiently
neutralized all SARS-CoV-2 variants in the in vitro analysis of 20 serum samples attained
from 15 participants from the BNT162b2 clinical efficacy trial. The neutralization of the
B.1.1.7 variant and P.1 was unceremoniously identical. The neutralization of B.1.351 was
stronger but lower compared to the hereditary strain of SARS-CoV-2 [109,401,405].

Ad26.COV2.S vaccine: A single course of the vaccine offers protection from the P.2
and B.1.135 variants of COVID-19, though data have not been reported yet. It is notable
that the efficacy [406] of the vaccine in the US was higher by a factor of 1.3 in comparison
to South Africa, which was 72% and 57%, respectively [407].

mRNA-1273 vaccine: The percentage of effectiveness of the mRNA-1273 vaccine
against the SARS-CoV-2 variants is not clear yet [27,167,169,408]. The in vitro experiment
of serum samples collected from members who participated in the mRNA-1273 vaccine’s
clinical efficacy trial shows that the mutations affecting the receptor-binding domain (RBD)
of the B.1.1.7 strain had no remarkable effect on neutralization by serum collected from
participants who received the mRNA-1273 vaccine. On the contrary, the analysis also
demonstrated a reduction in titers of neutralizing antibodies against the B.1.351, B.1.1.7 +
E484K, P.1, and B.1.427/B.1.429 variants. The decrease in neutralizing titers was notably
lower in the B.1.351 variant [409].

ChAdOx1 nCoV-19 vaccine: A two-course [410] unit of the ChAdOx1 nCoV-19 vac-
cine did not give protection against the B.1.351 variant by low to moderate COVID-19
SARS-CoV-2 vaccines, according to the obtained data from a double-blind, multicenter, ran-
domized control trial with a total of 33725432 participants. Data from another randomized
control trial in regard to the ChAdOx1 nCoV-19 vaccine demonstrated that in vitro neutral-
ization activity against the B.1.1.7 variant was decreased in comparison to a non-B.1.1.7
variant, and the clinical effectiveness of the vaccine was 70.4% and 81.5% for B.1.1.7 and
non-B.1.1.7 variants, respectively [86,171].

The spike (S) protein of SARS-CoV-2 plays a vital role in the receptor recognition and
cell membrane fusion process [336]. The fundamental role of the S protein in viral infection
indicates that it is a potential target for vaccine development, antibody-blocking therapy,
and small-molecule inhibitors (see Figure 15). Vaccines targeting various SARS-CoV-2
proteins are under development [198].
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The mutation of the aspartate (D) at position 614 to glycine (G614) results in an
intensified infective strain of SARS-CoV-2 [3,411,412], which makes it more difficult to
develop antibodies or vaccines that target non-conservative regions.

To effectively prevent disease, combinations of different mAbs that identify different
epitopes on the SARS-CoV-2 S surface can be assessed to neutralize a wide range of isolates,
including escape mutants [413].
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To avoid severe adverse events in safe and effective vaccine development, preclin-
ical trials play a crucial role, which need to be carried out with caution. Furthermore,
international organizations i.e., the WHO, CEPI, GAVI, and the Bill and Melinda Gates
Foundation, need to be more cooperative with each other to ensure generous funding for
vaccine development [140].

6.4. Affordability

Self-procuring middle-income countries are buying EUA (Emergency Use Authoriza-
tion) vaccines with the median value of USD 5.30 (IQR 0.79–18.30), and self-procuring
high-income countries are buying EUA vaccines with the median value of USD 16.3 (IQR
6.5–22.0) [153].

Countries covered by Gavi (Global Alliance for Vaccines and Immunization), which is
a major buyer of vaccines for low-income countries, have paid the lowest prices per dose
median value of USD 0·57 (IQR 0.16–1.90), followed by countries covered by UNICEF with
the median value of USD 0.80 (IQR 0.16–2.80) and the Pan American Health Organization
(PAHO) with the median value of USD 3.50 (IQR 0.87–13.0). The premarket purchasing
costs of EUA vaccines (see Table 12) currently account for pandemic pricing, which might
be changing [153].

Table 12. Overview of leading companies with premarket price range [399].

SL No. Company Current R&D Stage Price Range
per Course Platform Technology

1. AstraZeneca/Oxford
University Phase II/III

USD 6-USD 8 Non-replicating viral vector

2. Pfizer/BioNTech USD 37-USD 39 mRNA

3. Johnson &
Johnson/Janssen

Phase III

USD 20 Non-replicating viral vector

4. Moderna USD 30-USD 74 mRNA
5. Novavax USD 6-USD 32 Protein subunit
6. SinoVac Undisclosed Inactivated

7. Discussion

Preclinical studies of the vaccine MAP have employed animal models ranging from ro-
dents to primates. The MAP approach has been used to test a variety of vaccines, including
novel outbreak pandemic vaccines, and has been demonstrated to elicit equal or superior
immune responses when compared to IM and other immunization techniques. Clinical tests
have been conducted to determine the vaccine MAP’s stability, safety, and immunological
efficacy, with good and comparable results when compared to IM administration. However,
difficulties such as mass manufacturing, pricing, an aseptic process, and reproducible
quality remain. Because vaccine microneedles are an immunization product, the same
standards that apply to vaccine manufacturing processes also apply to vaccine microneedle
production. As a result, developing the final clinical outcome of vaccine microneedles
will take a while. A suitable immunization MAP injector, as well as extra vaccine MAP
packaging, are additional cost considerations. Several microneedle manufacturers with
large-scale capabilities, on the other hand, have already partnered with vaccine makers to
generate vaccine MAPs, with improved immunological results reported. If the restrictions
mentioned above are solved, several vaccines will be combined into a microneedle system
and given using MAPs. MAPs, as well as syringes and needles, will be used. In the near
future, they will be used as a vaccine delivery method.

The benefits of DMN vaccination include dose reduction, painless immunization, and
the avoidance of needle injuries. Furthermore, by increasing vaccine stability, lowering vac-
cine waste, and minimizing the burden on trained personnel, it has the potential to enhance
vaccination coverage in disadvantaged countries. Therefore, many more advances in differ-
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ent areas of DMN development are needed before regulatory approval and commercial
scale-up can be accomplished.

Fabrication methods must be enhanced even further to ensure minimal antigen loss,
which is often promised but seldom verified in the literature and has yet to be shown
on a standard laboratory level of output. Analytical challenges include potency testing
and stability testing during production and storage, as well as the quantification and
repeatability of antigen/adjuvant dose administered in the skin. Furthermore, the relevance
of the applicator device should not be disregarded, as it has the potential to standardize
DMN administration and vaccine dispersion into the skin, whereas manual application
is preferred in logistical situations. DMN immunization exhibited comparable or higher
antibody and cellular responses in preclinical studies than conventional vaccinations.
Furthermore, cellular immune responses were evoked more strongly by sustained antigen
release from nanoparticles or cross-linked structures in DMNs than by fast release from
DMNs or liquid solution. While prolonged DMN delivery did not enhance the immune
responses any more than rapid DMN release, further study is needed to back up this
conclusion. To enhance DMN vaccination, further systematic study, such as the discovery
of optimal adjuvants and the evaluation of the impact of DMN geometry, may be necessary
in the future. Although the ideal DMN patch has yet to be found, substantial progress
has been made. To transform DMNs into products that are safe, effective, inexpensive,
and widely used, more testing is needed. To get microneedles on the market, the proper
type of microneedle must be selected for (trans)dermal drug delivery (e.g., hollow, solid,
geometry, material, density, and length). Microneedle application devices should also
be used to provide adequate and reproducible punctures, as well as the ability to self-
administer. Consequently, for each kind of vaccine formulation, new microneedle-based
solutions for (trans)dermal drug administration should comprise the medicine, a stable
vaccine formulation, appropriate microneedles, and a microneedle application device all
in one package. Microneedle-based skin vaccination has been proven to be more dose-
effective than traditional intramuscular and subcutaneous immunization in both human
and animal studies. Various microneedle-based drug-delivery techniques have been used
to deliver therapeutic proteins; however, protein structure was only partially explored
in the articles listed above. Nothing is known about the immunological side effects of
microneedle-based protein delivery. Protein structure preservation is significantly more
important for therapeutic proteins than it is for vaccines during manufacture, storage,
and use. Any reshaping of novel therapeutics, for example, might diminish drug efficacy
while simultaneously compromising safety. However, undesirable immunogenicity may
result in the full loss of a protein’s therapeutic effect owing to neutralizing antibodies,
the depletion of endogenous proteins, or the collapse of the immune regulation to self-
antigens. Because the skin is such a powerful immunologic organ, the latter is perhaps
the most severe safety issue. This emphasizes the need to thoroughly analyze protein
aggregates and subvisible particles that may be present in and released from transdermal
microneedle-based formulations, since they are known to be major risk factors for undesired
protein immunogenicity. However, no reports regarding the undesired immunogenicity of
therapeutic protein delivery by microneedles have been published to our knowledge, and
research in this area is critically needed to advance this field. This necessitates a thorough
examination of protein structure in order to ensure its integrity throughout manufacturing
and release, as well as immunogenicity tests in appropriate animal models. The microneedle
array patch vaccines are still undergoing stability testing, although there is evidence in
the literature that vaccine components, including proteins, are stable. Integration into the
matrix of the polymers used in the microneedle array patch is usually used to stabilize
the product, and as shown by maintenance, maintain their conformational configurations
binding role of antibodies. At 25 ◦C, recombinant adenovirus vaccinations maintained their
immunogenicity for at least a month. As a result, the vaccines delivered via the dissolvable
microneedles array patch could minimize the expenses associated with the distribution
and delivery of vaccines that require extreme low temperatures to maintain their viability
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e.g., the mRNA-based formulation in the coronavirus vaccines. Overall, microneedle-based
(trans)dermal drug delivery may have a significant influence on future medicine, both for
COVID-19 vaccination and for therapeutic drug delivery.

8. Conclusions

The use of dissolving microneedles for transdermal drug delivery has gained a lot of
attention. This is because these devices can include medicines in polymeric matrices that
break down in the skin when applied, releasing chemicals that are then delivered into the
bloodstream. The requirement to impart mechanical strength while enabling rapid start
of action, depending on the individual chemical being delivered, drives the diversity of
designs. Micro-molding is the most common manufacturing technology, while drawing
lithography and droplet-born air blowing (DAB) are becoming more popular. In this review,
the progress achieved in several laboratories on the use of dissolving microneedles for
the transdermal administration of a wide range of vaccinations for various illnesses was
presented, including the possibility for mass immunization for COVID-19. The greatest
advancements are always created at the most critical periods of adversity. Hence, to defeat
this pandemic and to keep it under our control, the entire idea of mass vaccination might
change due to the implementation of dissolvable microneedles for COVID-19 vaccination.
Ideally, this novel vaccine delivery system will have a global outreach, and billions of
people will be vaccinated to finally attain herd immunity.

Author Contributions: Conceptualization, M.J.U. and D.B.D.; resources, M.J.U. and D.B.D.; writing—original
draft preparation, J.H., C.H. and T.A.; writing—review and editing, J.H., C.H., T.A., M.J.U. and D.B.D.; supervi-
sion, M.J.U. and D.B.D.; project administration, M.J.U. and D.B.D.; funding acquisition, M.J.U. and D.B.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: There are no additional raw data for this paper. The paper only uses
secondary data from published papers, and all credits to these data have been made via citations and
copyright permissions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Der Li, Y.; Chi, W.Y.; Su, J.H.; Ferrall, L.; Hung, C.F.; Wu, T.C. Coronavirus Vaccine Development: From SARS and MERS to

COVID-19. J. Biomed. Sci. 2020, 27, 104. [CrossRef]
2. Gaziano, L.; Giambartolomei, C.; Pereira, A.C.; Gaulton, A.; Posner, D.C.; Swanson, S.A.; Ho, Y.L.; Iyengar, S.K.; Kosik, N.M.;

Vujkovic, M.; et al. Actionable Druggable Genome-Wide Mendelian Randomization Identifies Repurposing Opportunities for
COVID-19. Nat. Med. 2021, 27, 668–676. [CrossRef]

3. Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley,
B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus. Cell 2020,
182, 812–827.e19. [CrossRef] [PubMed]

4. Baker, D.; Roberts, C.A.K.; Pryce, G.; Kang, A.S.; Marta, M.; Reyes, S.; Schmierer, K.; Giovannoni, G.; Amor, S. COVID-19 Vaccine-
Readiness for Anti-CD20-Depleting Therapy in Autoimmune Diseases. Clin. Exp. Immunol. 2020, 202, 149–161. [CrossRef]
[PubMed]

5. Sun, S.; Lin, D.; Operario, D. Interest in COVID-19 Vaccine Trials Participation among Young Adults in China: Willingness,
Reasons for Hesitancy, and Demographic and Psychosocial Determinants. Prev. Med. Rep. 2021, 22, 101350. [CrossRef] [PubMed]

6. Redhead, M.A.; Owen, C.D.; Brewitz, L.; Collette, A.H.; Lukacik, P.; Strain-Damerell, C.; Robinson, S.W.; Collins, P.M.; Schäfer, P.;
Swindells, M.; et al. Bispecific Repurposed Medicines Targeting the Viral and Immunological Arms of COVID-19. Sci. Rep. 2021,
11, 13208. [CrossRef]

7. Jeong, H.J.; Min, S.; Chae, H.; Kim, S.; Lee, G.; Namgoong, S.K.; Jeong, K. Signal Amplification by Reversible Exchange for
COVID-19 Antiviral Drug Candidates. Sci. Rep. 2020, 10, 14290. [CrossRef]

http://doi.org/10.1186/s12929-020-00695-2
http://doi.org/10.1038/s41591-021-01310-z
http://doi.org/10.1016/j.cell.2020.06.043
http://www.ncbi.nlm.nih.gov/pubmed/32697968
http://doi.org/10.1111/cei.13495
http://www.ncbi.nlm.nih.gov/pubmed/32671831
http://doi.org/10.1016/j.pmedr.2021.101350
http://www.ncbi.nlm.nih.gov/pubmed/33816087
http://doi.org/10.1038/s41598-021-92416-4
http://doi.org/10.1038/s41598-020-71282-6


Pharmaceutics 2022, 14, 1066 32 of 47

8. Güven, M.; Gültekin, H. The Effect of High-Dose Parenteral Vitamin D3 on COVID-19-Related Inhospital Mortality in Critical
COVID-19 Patients during Intensive Care Unit Admission: An Observational Cohort Study. Eur. J. Clin. Nutr. 2021, 75, 1383–1388.
[CrossRef]

9. Yang, B.; Fan, J.; Huang, J.; Guo, E.; Fu, Y.; Liu, S.; Xiao, R.; Liu, C.; Lu, F.; Qin, T.; et al. Clinical and Molecular Characteristics of
COVID-19 Patients with Persistent SARS-CoV-2 Infection. Nat. Commun. 2021, 12, 3501. [CrossRef]

10. Ita, K. Coronavirus Disease (COVID-19): Current Status and Prospects for Drug and Vaccine Development. Arch. Med. Res. 2021,
52, 15–24. [CrossRef]

11. Cantudo-Cuenca, M.D.; Gutiérrez-Pizarraya, A.; Pinilla-Fernández, A.; Contreras-Macías, E.; Fernández-Fuertes, M.; Lao-
Domínguez, F.A.; Rincón, P.; Pineda, J.A.; Macías, J.; Morillo-Verdugo, R. Drug–Drug Interactions between Treatment Specific
Pharmacotherapy and Concomitant Medication in Patients with COVID-19 in the First Wave in Spain. Sci. Rep. 2021, 11, 12414.
[CrossRef]

12. Prieto Curiel, R.; González Ramírez, H. Vaccination Strategies against COVID-19 and the Diffusion of Anti-Vaccination Views.
Sci. Rep. 2021, 11, 6626. [CrossRef]

13. Wang, J.; Peng, Y.; Xu, H.; Cui, Z.; Williams, R.O., III. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine
Formulation. AAPS PharmSciTech 2020, 21, 225. [CrossRef]

14. Korkmaz, E.; Balmert, S.C.; Sumpter, T.L.; Carey, C.D.; Erdos, G.; Falo, L.D. Microarray Patches Enable the Development of
Skin-Targeted Vaccines against COVID-19. Adv. Drug Deliv. Rev. 2021, 171, 164–186. [CrossRef]

15. Spencer, A.J.; McKay, P.F.; Belij-Rammerstorfer, S.; Ulaszewska, M.; Bissett, C.D.; Hu, K.; Samnuan, K.; Blakney, A.K.; Wright, D.;
Sharpe, H.R.; et al. Heterologous Vaccination Regimens with Self-Amplifying RNA and Adenoviral COVID Vaccines Induce
Robust Immune Responses in Mice. Nat. Commun. 2021, 12, 2893. [CrossRef]

16. Brady, E.; Oertelt-prigione, S. Lack of consideration of sex and gender in COVID-19 clinical studies. Nat. Commun. 2021, 12, 4015.
[CrossRef]

17. Rahman, M.M.; Bodrud-Doza, M.; Griffiths, M.D.; Mamun, M.A. Biomedical Waste amid COVID-19: Perspectives from
Bangladesh. Lancet Glob. Health 2020, 8, e1262. [CrossRef]

18. Xu, S.; Liu, Y.; Ding, Y.; Luo, S.; Zheng, X.; Wu, X.; Liu, Z.; Ilyas, I.; Chen, S.; Han, S. The Zinc Fi Nger Transcription Factor, KLF2,
Protects against COVID-19 Associated Endothelial Dysfunction. Signal Transduct. Target. Ther. 2021, 6, 266. [CrossRef]

19. World Bank Fast-Tracks $100 Million COVID-19 (Coronavirus) Support for Bangladesh. Available online: https://www.
worldbank.org/en/news/press-release/2020/04/03/world-bank-fast-tracks-100-million-covid-19-coronavirus-support-for-
bangladesh (accessed on 18 July 2021).

20. Watson, O.J.; Alhaffar, M.; Mehchy, Z.; Whittaker, C.; Akil, Z.; Brazeau, N.F.; Cuomo-Dannenburg, G.; Hamlet, A.; Thompson,
H.A.; Baguelin, M.; et al. Leveraging Community Mortality Indicators to Infer COVID-19 Mortality and Transmission Dynamics
in Damascus, Syria. Nat. Commun. 2021, 12, 2394. [CrossRef]

21. Banerji, A.; Wickner, P.G.; Saff, R.; Stone, C.A.; Robinson, L.B.; Long, A.A.; Wolfson, A.R.; Williams, P.; Khan, D.A.; Phillips, E.;
et al. mRNA Vaccines to Prevent COVID-19 Disease and Reported Allergic Reactions: Current Evidence and Suggested Approach.
J. Allergy Clin. Immunol. Pract. 2021, 9, 1423–1437. [CrossRef]

22. Kim, J.H.; Marks, F.; Clemens, J.D. Looking beyond COVID-19 Vaccine Phase 3 Trials. Nat. Med. 2021, 27, 205–211. [CrossRef]
23. Le, B.L.; Andreoletti, G.; Oskotsky, T.; Vallejo-Gracia, A.; Rosales, R.; Yu, K.; Kosti, I.; Leon, K.E.; Bunis, D.G.; Li, C.; et al.

Transcriptomics-Based Drug Repositioning Pipeline Identifies Therapeutic Candidates for COVID-19. Sci. Rep. 2021, 11, 12310.
[CrossRef] [PubMed]

24. Lu, L.; Zhang, H.; Zhan, M.; Jiang, J.; Yin, H.; Dauphars, D.J.; Li, S.Y.; Li, Y.; He, Y.W. Antibody Response and Therapy in
COVID-19 Patients: What Can Be Learned for Vaccine Development? Sci. China Life Sci. 2020, 63, 1833–1849. [CrossRef] [PubMed]

25. Dispinseri, S.; Secchi, M.; Pirillo, M.F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M.L.; Baratella, M.; Bazzigaluppi, E.;
Venturi, G.; et al. Neutralizing Antibody Responses to SARS-CoV-2 in Symptomatic COVID-19 Is Persistent and Critical for
Survival. Nat. Commun. 2021, 12, 6–17. [CrossRef] [PubMed]

26. Saha, S. Coming to Terms with COVID-19 Personally and Professionally in Bangladesh. Lancet Glob. Health 2021, 9, e1471–e1473.
[CrossRef]

27. DiPiazza, A.T.; Leist, S.R.; Abiona, O.M.; Moliva, J.I.; Werner, A.; Minai, M.; Nagata, B.M.; Bock, K.W.; Phung, E.; Schäfer, A.;
et al. COVID-19 Vaccine MRNA-1273 Elicits a Protective Immune Profile in Mice That Is Not Associated with Vaccine-Enhanced
Disease upon SARS-CoV-2 Challenge. Immunity 2021, 54, 1869–1882.e6. [CrossRef]

28. Rahi, M.; Sharma, A. Mass Vaccination against COVID-19 May Require Replays of the Polio Vaccination Drives. EClinicalMedicine
2020, 25, 100501. [CrossRef] [PubMed]

29. Usherwood, T.; LaJoie, Z.; Srivastava, V. A Model and Predictions for COVID-19 Considering Population Behavior and Vaccination.
Sci. Rep. 2021, 11, 12051. [CrossRef]

30. Yang, J.; Marziano, V.; Deng, X.; Guzzetta, G.; Zhang, J.; Trentini, F.; Cai, J.; Poletti, P.; Zheng, W.; Wang, W.; et al. Despite
Vaccination, China Needs Non-Pharmaceutical Interventions to Prevent Widespread Outbreaks of COVID-19 in 2021. Nat. Hum.
Behav. 2021, 5, 1009–1020. [CrossRef]

31. Amani, H.; Shahbazi, M.A.; D’Amico, C.; Fontana, F.; Abbaszadeh, S.; Santos, H.A. Microneedles for Painless Transdermal
Immunotherapeutic Applications. J. Control. Release 2021, 330, 185–217. [CrossRef]

http://doi.org/10.1038/s41430-021-00984-5
http://doi.org/10.1038/s41467-021-23621-y
http://doi.org/10.1016/j.arcmed.2020.09.010
http://doi.org/10.1038/s41598-021-91953-2
http://doi.org/10.1038/s41598-021-85555-1
http://doi.org/10.1208/s12249-020-01744-7
http://doi.org/10.1016/j.addr.2021.01.022
http://doi.org/10.1038/s41467-021-23173-1
http://doi.org/10.1038/s41467-021-24265-8
http://doi.org/10.1016/S2214-109X(20)30349-1
http://doi.org/10.1038/s41392-021-00690-5
https://www.worldbank.org/en/news/press-release/2020/04/03/world-bank-fast-tracks-100-million-covid-19-coronavirus-support-for-bangladesh
https://www.worldbank.org/en/news/press-release/2020/04/03/world-bank-fast-tracks-100-million-covid-19-coronavirus-support-for-bangladesh
https://www.worldbank.org/en/news/press-release/2020/04/03/world-bank-fast-tracks-100-million-covid-19-coronavirus-support-for-bangladesh
http://doi.org/10.1038/s41467-021-22474-9
http://doi.org/10.1016/j.jaip.2020.12.047
http://doi.org/10.1038/s41591-021-01230-y
http://doi.org/10.1038/s41598-021-91625-1
http://www.ncbi.nlm.nih.gov/pubmed/34112877
http://doi.org/10.1007/s11427-020-1859-y
http://www.ncbi.nlm.nih.gov/pubmed/33355886
http://doi.org/10.1038/s41467-021-22958-8
http://www.ncbi.nlm.nih.gov/pubmed/33976165
http://doi.org/10.1016/S2214-109X(21)00227-8
http://doi.org/10.1016/j.immuni.2021.06.018
http://doi.org/10.1016/j.eclinm.2020.100501
http://www.ncbi.nlm.nih.gov/pubmed/32835187
http://doi.org/10.1038/s41598-021-91514-7
http://doi.org/10.1038/s41562-021-01155-z
http://doi.org/10.1016/j.jconrel.2020.12.019


Pharmaceutics 2022, 14, 1066 33 of 47

32. Koutsonanos, D.G.; Vassilieva, E.V.; Stavropoulou, A.; Zarnitsyn, V.G.; Esser, E.S.; Taherbhai, M.T.; Prausnitz, M.R.; Compans,
R.W.; Skountzou, I. Delivery of Subunit Influenza Vaccine to Skin with Microneedles Improves Immunogenicity and Long-Lived
Protection. Sci. Rep. 2012, 2, 357. [CrossRef]

33. Vrdoljak, A.; Allen, E.A.; Ferrara, F.; Temperton, N.; Crean, A.; Moore, A.C. Induction of Broad Immunity by Thermostabilised
Vaccines Incorporated in Dissolvable Microneedles Using Novel Fabrication Methods. J. Control. Release 2016, 225, 192–204.
[CrossRef]

34. Panda, A.; Sharma, P.K.; McCann, T.; Bloomekatz, J.; Repka, M.A.; Murthy, S.N. Fabrication and Development of Controlled
Release PLGA Microneedles for Macromolecular Delivery Using FITC-Dextran as Model Molecule. J. Drug Deliv. Sci. Technol.
2021, 68, 102712. [CrossRef]

35. Koh, K.J.; Liu, Y.; Lim, S.H.; Loh, X.J.; Kang, L.; Lim, C.Y.; Phua, K.K.L. Formulation, Characterization and Evaluation of
MRNA-Loaded Dissolvable Polymeric Microneedles (RNApatch). Sci. Rep. 2018, 8, 11842. [CrossRef]

36. Jeong, S.Y.; Park, J.H.; Lee, Y.S.; Kim, Y.S.; Park, J.Y.; Kim, S.Y. The Current Status of Clinical Research Involving Microneedles: A
Systematic Review. Pharmaceutics 2020, 12, 1113. [CrossRef]

37. McGrath, M.G.; Vucen, S.; Vrdoljak, A.; Kelly, A.; O’Mahony, C.; Crean, A.M.; Moore, A. Production of Dissolvable Microneedles
Using an Atomised Spray Process: Effect of Microneedle Composition on Skin Penetration. Eur. J. Pharm. Biopharm. 2014,
86, 200–211. [CrossRef]

38. Frydman, G.H.; Olaleye, D.; Annamalai, D.; Layne, K.; Yang, I.; Kaafarani, H.M.A.; Fox, J.G. Manuka Honey Microneedles for
Enhanced Wound Healing and the Prevention and/or Treatment of Methicillin-Resistant Staphylococcus Aureus (MRSA) Surgical
Site Infection. Sci. Rep. 2020, 10, 13229. [CrossRef]

39. Schipper, P.; van der Maaden, K.; Groeneveld, V.; Ruigrok, M.; Romeijn, S.; Uleman, S.; Oomens, C.; Kersten, G.; Jiskoot, W.;
Bouwstra, J. Diphtheria Toxoid and N-Trimethyl Chitosan Layer-by-Layer Coated PH-Sensitive Microneedles Induce Potent
Immune Responses upon Dermal Vaccination in Mice. J. Control. Release 2017, 262, 28–36. [CrossRef]

40. Choi, H.J.; Yoo, D.G.; Bondy, B.J.; Quan, F.S.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Stability of Influenza Vaccine Coated
onto Microneedles. Biomaterials 2012, 33, 3756–3769. [CrossRef]

41. Zhuang, J.; Rao, F.; Wu, D.; Huang, Y.; Xu, H.; Gao, W.; Zhang, J.; Sun, J. Study on the Fabrication and Characterization of
Tip-Loaded Dissolving Microneedles for Transdermal Drug Delivery. Eur. J. Pharm. Biopharm. 2020, 157, 66–73. [CrossRef]

42. Dillon, C.; Hughes, H.; O’Reilly, N.J.; McLoughlin, P. Formulation and Characterisation of Dissolving Microneedles for the
Transdermal Delivery of Therapeutic Peptides. Int. J. Pharm. 2017, 526, 125–136. [CrossRef] [PubMed]

43. Mishra, R.; Pramanick, B.; Maiti, T.K.; Bhattacharyya, T.K. Glassy Carbon Microneedles—New Transdermal Drug Delivery Device
Derived from a Scalable C-MEMS Process. Microsyst. Nanoeng. 2018, 4, 38. [CrossRef] [PubMed]

44. Leone, M.; Priester, M.I.; Romeijn, S.; Nejadnik, M.R.; Mönkäre, J.; O’Mahony, C.; Jiskoot, W.; Kersten, G.; Bouwstra, J.A.
Hyaluronan-Based Dissolving Microneedles with High Antigen Content for Intradermal Vaccination: Formulation, Physicochem-
ical Characterization and Immunogenicity Assessment. Eur. J. Pharm. Biopharm. 2019, 134, 49–59. [CrossRef] [PubMed]

45. Kim, N.W.; Kim, S.Y.; Lee, J.E.; Yin, Y.; Lee, J.H.; Lim, S.Y.; Kim, E.S.; Duong, H.T.T.; Kim, H.K.; Kim, S.; et al. Enhanced Cancer
Vaccination by in Situ Nanomicelle-Generating Dissolving Microneedles. ACS Nano 2018, 12, 9702–9713. [CrossRef]

46. Menon, I.; Bagwe, P.; Gomes, K.B.; Bajaj, L.; Gala, R.; Uddin, M.N.; D’souza, M.J.; Zughaier, S.M. Microneedles: A New Generation
Vaccine Delivery System. Micromachines 2021, 12, 435. [CrossRef]

47. Zhang, L.; Guo, R.; Wang, S.; Yang, X.; Ling, G.; Zhang, P. Fabrication, Evaluation and Applications of Dissolving Microneedles.
Int. J. Pharm. 2021, 604, 120749. [CrossRef]

48. Steinbach, S.; Jalili-Firoozinezhad, S.; Srinivasan, S.; Melo, M.B.; Middleton, S.; Konold, T.; Coad, M.; Hammond, P.T.; Irvine,
D.J.; Vordermeier, M.; et al. Temporal Dynamics of Intradermal Cytokine Response to Tuberculin in Mycobacterium Bovis
BCG-Vaccinated Cattle Using Sampling Microneedles. Sci. Rep. 2021, 11, 7074. [CrossRef]

49. Kim, Y.-C.; Quan, F.-S.; Compans, R.W.; Kang, S.-M.; Prausnitz, M.R. Formulation and Coating of Microneedles with Inactivated
Influenza Virus to Improve Vaccine Stability and Immunogenicity. J. Control. Release 2010, 142, 187–195. [CrossRef]

50. Tran, K.T.M.; Gavitt, T.D.; Farrell, N.J.; Curry, E.J.; Mara, A.B.; Patel, A.; Brown, L.; Kilpatrick, S.; Piotrowska, R.; Mishra, N.; et al.
Transdermal Microneedles for the Programmable Burst Release of Multiple Vaccine Payloads. Nat. Biomed. Eng. 2020, 5, 998–1007.
[CrossRef]

51. Chen, Y.H.; Lai, K.Y.; Chiu, Y.H.; Wu, Y.W.; Shiau, A.L.; Chen, M.C. Implantable Microneedles with an Immune-Boosting Function
for Effective Intradermal Influenza Vaccination. Acta Biomater. 2019, 97, 230–238. [CrossRef]

52. Ita, K. Dissolving Microneedles for Transdermal Drug Delivery: Advances and Challenges. Biomed. Pharmacother. 2017, 93, 1116–
1127. [CrossRef]

53. Zhu, Z.; Ye, X.; Ku, Z.; Liu, Q.; Shen, C.; Luo, H.; Luan, H.; Zhang, C.; Tian, S.; Lim, C.Y.; et al. Transcutaneous Immunization via
Rapidly Dissolvable Microneedles Protects against Hand-Foot-and-Mouth Disease Caused by Enterovirus 71. J. Control. Release
2016, 243, 291–302. [CrossRef]

54. Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; Du Toit, L.C.; Modi, G.; Pillay, V. Current Advances in the Fabrication of
Microneedles for Transdermal Delivery. J. Control. Release 2014, 185, 130–138. [CrossRef]

55. Kim, Y.-C.; Park, J.-H.; Prausnitz, M.R. Microneedles for Drug and Vaccine Delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547.
[CrossRef]

http://doi.org/10.1038/srep00357
http://doi.org/10.1016/j.jconrel.2016.01.019
http://doi.org/10.1016/j.jddst.2021.102712
http://doi.org/10.1038/s41598-018-30290-3
http://doi.org/10.3390/pharmaceutics12111113
http://doi.org/10.1016/j.ejpb.2013.04.023
http://doi.org/10.1038/s41598-020-70186-9
http://doi.org/10.1016/j.jconrel.2017.07.017
http://doi.org/10.1016/j.biomaterials.2012.01.054
http://doi.org/10.1016/j.ejpb.2020.10.002
http://doi.org/10.1016/j.ijpharm.2017.04.066
http://www.ncbi.nlm.nih.gov/pubmed/28461268
http://doi.org/10.1038/s41378-018-0039-9
http://www.ncbi.nlm.nih.gov/pubmed/31057926
http://doi.org/10.1016/j.ejpb.2018.11.013
http://www.ncbi.nlm.nih.gov/pubmed/30453025
http://doi.org/10.1021/acsnano.8b04146
http://doi.org/10.3390/mi12040435
http://doi.org/10.1016/j.ijpharm.2021.120749
http://doi.org/10.1038/s41598-021-86398-6
http://doi.org/10.1016/j.jconrel.2009.10.013
http://doi.org/10.1038/s41551-020-00650-4
http://doi.org/10.1016/j.actbio.2019.07.048
http://doi.org/10.1016/j.biopha.2017.07.019
http://doi.org/10.1016/j.jconrel.2016.10.019
http://doi.org/10.1016/j.jconrel.2014.04.052
http://doi.org/10.1016/j.addr.2012.04.005


Pharmaceutics 2022, 14, 1066 34 of 47

56. Deng, Y.; Chen, J.; Zhao, Y.; Yan, X.; Zhang, L.; Choy, K.; Hu, J.; Sant, H.J.; Gale, B.K.; Tang, T. Transdermal Delivery of SiRNA
through Microneedle Array. Sci. Rep. 2016, 6, 21422. [CrossRef]

57. Martin, A.; McConville, A.; Anderson, A.; McLister, A.; Davis, J. Microneedle Manufacture: Assessing Hazards and Control
Measures. Safety 2017, 3, 25. [CrossRef]

58. Carey, J.B.; Vrdoljak, A.; O’Mahony, C.; Hill, A.V.S.; Draper, S.J.; Moore, A.C. Microneedle-Mediated Immunization of an
Adenovirus-Based Malaria Vaccine Enhances Antigen-Specific Antibody Immunity and Reduces Anti-Vector Responses Com-
pared to the Intradermal Route. Sci. Rep. 2014, 4, 6154. [CrossRef] [PubMed]

59. Norman, J.J.; Arya, J.M.; McClain, M.A.; Frew, P.M.; Meltzer, M.I.; Prausnitz, M.R. Microneedle Patches: Usability and Acceptabil-
ity for Self-Vaccination against Influenza. Vaccine 2014, 32, 1856. [CrossRef]

60. Than, A.; Liu, C.; Chang, H.; Duong, P.K.; Cheung, C.M.G.; Xu, C.; Wang, X.; Chen, P. Self-Implantable Double-Layered
Micro-Drug-Reservoirs for Efficient and Controlled Ocular Drug Delivery. Nat. Commun. 2018, 9, 4433. [CrossRef]

61. Van Der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle Technologies for (Trans) Dermal Drug and Vaccine Delivery. J. Control.
Release 2012, 161, 645–655. [CrossRef]

62. Chang, H.; Chew, S.W.T.; Zheng, M.; Lio, D.C.S.; Wiraja, C.; Mei, Y.; Ning, X.; Cui, M.; Than, A.; Shi, P.; et al. Cryomicroneedles
for Transdermal Cell Delivery. Nat. Biomed. Eng. 2021, 5, 1008–1018. [CrossRef] [PubMed]

63. Nguyen, T.T.; Oh, Y.; Kim, Y.; Shin, Y.; Baek, S.K.; Park, J.H. Progress in Microneedle Array Patch (MAP) for Vaccine Delivery.
Hum. Vaccines Immunother. 2020, 17, 316–327. [CrossRef]

64. Rodgers, A.M.; McCrudden, M.T.C.; Vincente-Perez, E.M.; Dubois, A.V.; Ingram, R.J.; Larrañeta, E.; Kissenpfennig, A.; Donnelly,
R.F. Design and Characterisation of a Dissolving Microneedle Patch for Intradermal Vaccination with Heat-Inactivated Bacteria:
A Proof of Concept Study. Int. J. Pharm. 2018, 549, 87–95. [CrossRef] [PubMed]

65. Ali, A.A.; McCrudden, C.M.; McCaffrey, J.; McBride, J.W.; Cole, G.; Dunne, N.J.; Robson, T.; Kissenpfennig, A.; Donnelly, R.F.;
McCarthy, H.O. DNA Vaccination for Cervical Cancer; a Novel Technology Platform of RALA Mediated Gene Delivery via
Polymeric Microneedles. Nanomedicine 2017, 13, 921–932. [CrossRef] [PubMed]

66. Nakatsukasa, A.; Kuruma, K.; Okamatsu, M.; Hiono, T.; Suzuki, M.; Matsuno, K.; Kida, H.; Oyamada, T.; Sakoda, Y. Potency of
Whole Virus Particle and Split Virion Vaccines Using Dissolving Microneedle against Challenges of H1N1 and H5N1 Influenza
Viruses in Mice. Vaccine 2017, 35, 2855–2861. [CrossRef]

67. Resch, T.K.; Wang, Y.; Moon, S.S.; Joyce, J.; Li, S.; Prausnitz, M.; Jiang, B. Inactivated Rotavirus Vaccine by Parenteral Administra-
tion Induces Mucosal Immunity in Mice. Sci. Rep. 2018, 8, 561. [CrossRef]

68. Alimardani, V.; Abolmaali, S.S.; Yousefi, G.; Rahiminezhad, Z.; Abedi, M.; Tamaddon, A.; Ahadian, S. Microneedle Arrays
Combined with Nanomedicine Approaches for Transdermal Delivery of Therapeutics. J. Clin. Med. 2021, 10, 181. [CrossRef]

69. Sullivan, S.P.; Koutsonanos, D.G.; Del Pilar Martin, M.; Lee, J.W.; Zarnitsyn, V.; Choi, S.O.; Murthy, N.; Compans, R.W.; Skountzou,
I.; Prausnitz, M.R. Dissolving Polymer Microneedle Patches for Influenza Vaccination. Nat. Med. 2010, 16, 915–920. [CrossRef]

70. Trautmann, A.; Roth, G.L.; Nujiqi, B.; Walther, T.; Hellmann, R. Towards a Versatile Point-of-Care System Combining Femtosecond
Laser Generated Microfluidic Channels and Direct Laser Written Microneedle Arrays. Microsyst. Nanoeng. 2019, 5, 6. [CrossRef]

71. Silveira, M.M.; Moreira, G.M.S.G.; Mendonça, M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci. 2021,
267, 118919. [CrossRef]

72. Simpson, C.R.; Shi, T.; Vasileiou, E.; Katikireddi, S.V.; Kerr, S.; Moore, E.; McCowan, C.; Agrawal, U.; Shah, S.A.; Ritchie, L.D.; et al.
First-Dose ChAdOx1 and BNT162b2 COVID-19 Vaccines and Thrombocytopenic, Thromboembolic and Hemorrhagic Events in
Scotland. Nat. Med. 2021, 27, 1290–1297. [CrossRef]

73. Yokoyama, M.; Chihara, N.; Tanaka, A.; Katayama, Y.; Taruya, A.; Ishida, Y.; Yuzaki, M.; Honda, K.; Nishimura, Y.; Kondo, T.;
et al. A Biodegradable Microneedle Sheet for Intracorporeal Topical Hemostasis. Sci. Rep. 2020, 10, 18831. [CrossRef]

74. Cardozo, T.; Veazey, R. Informed Consent Disclosure to Vaccine Trial Subjects of Risk of COVID-19 Vaccines Worsening Clinical
Disease. Int. J. Clin. Pract. 2021, 75, e13795. [CrossRef]

75. Florindo, H.F.; Kleiner, R.; Vaskovich-Koubi, D.; Acúrcio, R.C.; Carreira, B.; Yeini, E.; Tiram, G.; Liubomirski, Y.; Satchi-Fainaro, R.
Immune-Mediated Approaches against COVID-19. Nat. Nanotechnol. 2020, 15, 630–645. [CrossRef]

76. Rysz, S.; Al-Saadi, J.; Sjöström, A.; Farm, M.; Campoccia Jalde, F.; Plattén, M.; Eriksson, H.; Klein, M.; Vargas-Paris, R.; Nyrén, S.;
et al. COVID-19 Pathophysiology May Be Driven by an Imbalance in the Renin-Angiotensin-Aldosterone System. Nat. Commun.
2021, 12, 2417. [CrossRef]

77. Yang, R.; Deng, Y.; Huang, B.; Huang, L.; Lin, A.; Li, Y.; Wang, W.; Liu, J.; Lu, S.; Zhan, Z.; et al. A Core-Shell Structured COVID-19
MRNA Vaccine with Favorable Biodistribution Pattern and Promising Immunity. Signal Transduct. Target. Ther. 2021, 6, 213.
[CrossRef]

78. Neurath, M.F. COVID-19: Biologic and Immunosuppressive Therapy in Gastroenterology and Hepatology. Nat. Rev. Gastroenterol.
Hepatol. 2021, 18, 705–715. [CrossRef]

79. Cho, J.; Lee, Y.J.; Kim, J.H.; Kim, S.S.; Choi, B.S.; Choi, J.H. Antiviral Activity of Digoxin and Ouabain against SARS-CoV-2
Infection and Its Implication for COVID-19. Sci. Rep. 2020, 10, 16200. [CrossRef]

80. Ahmed, M.H.; Hassan, A. Dexamethasone for the Treatment of Coronavirus Disease (COVID-19): A Review. SN Compr. Clin.
Med. 2020, 2, 2637–2646. [CrossRef]

81. Batty, G.D.; Deary, I.J.; Fawns-Ritchie, C.; Gale, C.R.; Altschul, D. Pre-Pandemic Cognitive Function and COVID-19 Vaccine
Hesitancy: Cohort Study. Brain. Behav. Immun. 2021, 96, 100–105. [CrossRef]

http://doi.org/10.1038/srep21422
http://doi.org/10.3390/safety3040025
http://doi.org/10.1038/srep06154
http://www.ncbi.nlm.nih.gov/pubmed/25142082
http://doi.org/10.1016/j.vaccine.2014.01.076
http://doi.org/10.1038/s41467-018-06981-w
http://doi.org/10.1016/j.jconrel.2012.01.042
http://doi.org/10.1038/s41551-021-00720-1
http://www.ncbi.nlm.nih.gov/pubmed/33941895
http://doi.org/10.1080/21645515.2020.1767997
http://doi.org/10.1016/j.ijpharm.2018.07.049
http://www.ncbi.nlm.nih.gov/pubmed/30048778
http://doi.org/10.1016/j.nano.2016.11.019
http://www.ncbi.nlm.nih.gov/pubmed/27979747
http://doi.org/10.1016/j.vaccine.2017.04.009
http://doi.org/10.1038/s41598-017-18973-9
http://doi.org/10.3390/jcm10020181
http://doi.org/10.1038/nm.2182
http://doi.org/10.1038/s41378-019-0046-5
http://doi.org/10.1016/j.lfs.2020.118919
http://doi.org/10.1038/s41591-021-01408-4
http://doi.org/10.1038/s41598-020-75894-w
http://doi.org/10.1111/ijcp.13795
http://doi.org/10.1038/s41565-020-0732-3
http://doi.org/10.1038/s41467-021-22713-z
http://doi.org/10.1038/s41392-021-00634-z
http://doi.org/10.1038/s41575-021-00480-y
http://doi.org/10.1038/s41598-020-72879-7
http://doi.org/10.1007/s42399-020-00610-8
http://doi.org/10.1016/j.bbi.2021.05.016


Pharmaceutics 2022, 14, 1066 35 of 47

82. Robertson, E.; Reeve, K.S.; Niedzwiedz, C.L.; Moore, J.; Blake, M.; Green, M.; Katikireddi, S.V.; Benzeval, M.J. Predictors of
COVID-19 Vaccine Hesitancy in the UK Household Longitudinal Study. Brain. Behav. Immun. 2021, 94, 41–50. [CrossRef]
[PubMed]

83. Amani, B.; Khanijahani, A.; Amani, B. Hydroxychloroquine plus Standard of Care Compared with Standard of Care Alone in
COVID-19: A Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2021, 11, 11974. [CrossRef] [PubMed]

84. Maneikis, K.; Šablauskas, K.; Ringelevičiūtė, U.; Vaitekėnaitė, V.; Čekauskienė, R.; Kryžauskaitė, L.; Naumovas, D.; Banys, V.;
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