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� Texture features differed significantly between high-compared to low-volume cervical tumors (p < 0.02).
� In low-volume tumors predicting recurrence from ADC-radiomics was superior to T2W-radiomics or clinico-pathologic features.
� Combining ADC-radiomics and clinico-pathologic features together improved recurrence prediction further.
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a b s t r a c t

Background: Textural features extracted from MRI potentially provide prognostic information additional
to volume for influencing surgical management of cervical cancer.
Purpose: To identify textural features that differ between cervical tumors above and below the volume
threshold of eligibility for trachelectomy and determine their value in predicting recurrence in patients
with low-volume tumors.
Methods: Of 378 patients with Stage1e2 cervical cancer imaged prospectively (3T, endovaginal coil), 125
had well-defined, histologically-confirmed squamous or adenocarcinomas with >100 voxels (>0.07 cm3)
suitable for radiomic analysis. Regions-of-interest outlined the whole tumor on T2-W images and
apparent diffusion coefficient (ADC) maps. Textural features based on grey-level co-occurrence matrices
were compared (Mann-Whitney test with Bonferroni correction) between tumors greater (n ¼ 46) or less
(n ¼ 79) than 4.19 cm3. Clustering eliminated correlated variables. Significantly different features were
used to predict recurrence (regression modelling) in surgically-treated patients with low-volume tumors
and compared with a model using clinico-pathological features.
Results: Textural features (Dissimilarity, Energy, ClusterProminence, ClusterShade, InverseVariance,
Autocorrelation) in 6 of 10 clusters from T2-W and ADC data differed between high-volume (mean ± SD
15.3 ± 11.7 cm3) and low-volume (mean ± SD 1.3 ± 1.2 cm3) tumors. (p < 0.02). In low-volume tumors,
predicting recurrence was indicated by: Dissimilarity, Energy (ADC-radiomics, AUC ¼ 0.864); Dissimi-
larity, ClusterProminence, InverseVariance (T2-W-radiomics, AUC ¼ 0.808); Volume, Depth of Invasion,
LymphoVascular Space Invasion (clinico-pathological features, AUC ¼ 0.794). Combining ADC-radiomic
(but not T2-radiomic) and clinico-pathological features improved prediction of recurrence compared
to the clinico-pathological model (AUC ¼ 0.916, p ¼ 0.006). Findings were supported by bootstrap re-
sampling (n ¼ 1000).
Conclusion: Textural features from ADC maps and T2-W images differ between high- and low-volume
tumors and potentially predict recurrence in low-volume tumors.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Stage 1 cervical cancer is primarily treated with hysterectomy,
although less radical surgical options (cone biopsy, trachelectomy)
are considered where fertility preservation is desirable [1e4]. De-
cisions regarding the type and extent of surgery and the subsequent
need for adjuvant therapy depend on tumor resectability and the
risk of recurrence. Biomarkers that predict recurrence, therefore,
are of paramount importance for selecting the most appropriate
treatment options. In tumors >2 cm in longest dimension, pre-
operative tumor volume is a powerful adverse prognostic factor
associated with reduced overall survival [5,6]. Other prognostic
factors, such as tumor type, grade, lymphovascular space invasion
(LVSI) and depth of stromal invasion are derived from a biopsy
[7e10], and therefore may not represent the tumor in its entirety.
Prognostic biomarkers derived from imaging would be more
representative of the whole tumor and would enable selection of
the optimal surgical management at the outset in Stage 1 disease.

Magnetic Resonance imaging is routinely used to detect and
stage cervical cancer, where T2-W and diffusion-weighted (DW)
imaging form the mainstay of diagnostic sequences [11,12]. Deri-
vation of an apparent diffusion coefficient (ADC) from the DW
images [13] and analysis of first order histogram distribution of ADC
values has been shown to predict histological subtype [14,15],
staging [16], parametrial invasion [17], LVSI [18] the response to
chemo-radiotherapy [19] and to aid surgical decision-making [20].
However, these first-order statistical quantitative imaging data
remain limited in their prediction of likely recurrence [21]. It is
possible to refine image analysis and convert the T2-W [22] and
DW [23] imaging data into a high-dimensional feature space using
algorithms to extract a more extensive set of statistical features
within the data. This type of analysis, referred to as “radiomics”,
requires that the data have a high signal-to-noise ratio to reduce
error in the analysis from image noise; this is achievable in cervical
cancer using an endovaginal MRI technique [24]. The purpose of
this study was to identify radiomic features of cervical cancers on
endovaginal MRI that differed between tumors below and above
the volume threshold of eligibility for trachelectomy (less or greater
than 4.19 cm3, equivalent to a 2 cm diameter spherical tumor vol-
ume) and to determine their value in predicting recurrence in pa-
tients in the low-volume tumor group.
2. Methods

2.1. Study design

This single-institution, prospective, pilot cohort study included
patients with histologically confirmed cervical cancer, presumed
Stage 1 or 2 (FIGO 2009 [25], referred for endovaginal MRI between
March 2011 and October 2018 and potentially suitable for surgical
management (trachelectomy or hysterectomy). This was part of an
on-going institutional review board (IRB) approved research study
documenting imaging features of cervical cancer indicative of poor
outcome (NCT01937533). All patients gave their written consent for
use of their data. All patients were treated with curative intent with
either surgery or chemoradiation following MRI and staging in-
vestigations. Surgical options included cold-knife cone, trache-
lectomy or hysterectomy depending on their suitability for fertility
preservation and their desire for continued fertility. A pelvic lym-
phadenectomy was performed in all cases.

Clinico-pathological metrics recorded in each case were tumor
volume, type, grade, LVSI, parametrial invasion, Depth of Invasion
and lymph node metastasis. Patients were followed up for median
of 35 months (3-92). Median time to recurrence was 7 months (3-
62 months).
2.2. Study participant selection

378 consecutive patients were imaged over the defined study
period. In 98 cases, tumor was not identified on MRI while in 127
cases tumor was poorly identified and volume was <0.07 cm3, (62
of these had negative histology). Of the remaining 153 patients, 10
had non-cervical origin tumors on histology, 12 had histology other
than squamous or adenocarcinoma (clear cell or neuroendocrine
histology), 2 had metastatic disease, in 3 the whole tumor was not
within the imaged field-of-view, and 1 did not have a diffusion-
weighted images (Supplementary data, Fig. S1). These 28 exclu-
sions resulted in 125 patients with histologically confirmed resid-
ual squamous-or adeno carcinomas that could be defined on MRI
and were therefore eligible for analysis. No patients had to be
excluded on the grounds of image artefact degrading the data. In
patients who underwent primary surgery, the post-operative his-
tological diagnosis was taken as the gold-standard. In those who
received chemoradiation therapy, their pre-treatment histological
diagnosis was taken as the gold-standard. In assessing lymph node
status, surgical pathology was the reference gold-standard in those
undergoing surgery, and imaging (MRI or PET-CT) was the refer-
ence gold-standard in those treated with chemoradiation.
2.3. MRI protocol

All scans were performed on a 3.0 T Philips Achieva (Best, The
Netherlands) with a dedicated in-house developed 37 mm ring-
design solenoidal receiver coil that has been previously described
[20, 21, 24]. Cervical position was determined at vaginal examination,
after which the coil was inserted and placed around the cervix. Image
distortion from susceptibility artefacts were reduced by aspiration of
vaginal air via a 4 mm diameter tube (Ryles; Pennine Healthcare,
London, England). The administration of Hyoscine butyl bromide
(Buscopan) 20 mg IM decreased artefacts from bowel peristalsis.

T2-W images were obtained in three planes orthogonal to the
cervix: TR/TE 2750/80 ms (coronal and axial) and 2500/80 ms
(sagittal); field of view (FOV) 100 mm � 100 mm; acquired voxel
size 0.42 � 0.42 � 2 mm; reconstructed voxel size
0.35 � 0.35 � 2 mm; slice thickness 2 mm; slice gap 0.1 mm; 24
coronal and 22 sagittal slices; number of signal averages (NSA) 2.
Additionally, matched Zonal Oblique Multislice (ZOOM) diffusion-
weighted images (DWI) were acquired: TR/TE 6500/54 ms; b-
values 0, 100, 300, 500, 800 s/mm2; FOV 100 � 100 mm; acquired
voxel size 1.25 � 1.25 � 2 mm; reconstructed voxel size
0.45 � 0.45 � 2 mm; slice thickness 2 mm, slice gap 0.1 mm; 24
slices, NSA 1. ADC maps were automatically generated by the
scanner software. These were compared with T2-W images to
identify the presence and extent of a tumor within the cervix.
Mass-lesions disrupting the normal cervical epithelial architecture
that were intermediate signal-intensity on T2-W images with cor-
responding restriction on the ADC maps were recognized as tumor.
2.4. MRI analysis: extraction of texture features

Scans were anonymised (DicomBrowser, Neuroinformatics
Research Group, Washington University, St Louis, MO) and trans-
ferred to an XNAT [26,27] image repository. Images were imported
into OsiriX (Pixmeo SARL, Bernex, Switzerland) and 2D regions-of-
interest (ROI) were drawn by a radiologist, (25 years’ experience)
on the coronal T2-W and ADC maps on every slice demonstrating
tumor (Fig. 1). 2D ROI contours were aggregated using a custom
Python script, integrated into OsiriX via pyOsirix [28] and exported
as a single 3D volume (VOI) in DICOM RT-STRUCT format, which
was then uploaded to XNAT. Custom in-house software (MATLAB,
MathWorks, Natick, MA) was used to extract Grey Level Co-



Fig. 1. T2-W (a) and ADC map (b) in a 33- year old patient with a 0.8 cm3 volume tumor that had high dissimilarity (0.808). Regions-of-interest delineate the tumor. The inter-
mediate signal-intensity tumor on the T2-W imaging is restricted in diffusion on the ADC maps. Tumor was confined to the cervix, and the patient remains disease-free following
trachelectomy. T2-W (c) and ADC map (d) in a 26 year old patient with a 0.9 cm3 volume tumor that had low dissimilarity (0.489). The intermediate signal-intensity tumor on the
T2-W imaging (c) is restricted in diffusion on the ADC maps (d). Regions-of-interest delineate the tumor. Tumor was confined to the cervix, but despite negative nodes on surgical
histology, the patient recurred centrally after 9 months.
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occurrence Matrix (GLCM) features (Haralick texture analysis
[29,30]) from the both the T2-W images and ADC maps.

2.5. Statistical analysis

Statistical analysis was performed with R (R Core Team (2019),
Vienna, Austria. http://www.R-project.org/). Correlations between
features indicated 10 distinct feature clusters by creating a dissimi-
larity measure from a distance matrix (Supplementary data, Fig. S2).
Several of the texture features were very highly correlated
(r ¼ 0.97e1) and were successfully clustered. The feature with the
greatest dynamic range from each cluster was selected for investi-
gation (Table S1): thesewere Dissimilarity, Contrast, Energy, Entropy,
ClusterProminence, ClusterShade, InverseVariance, Correlation,
Autocorrelation and InformationalMeasureCorrelation2. Contrast
and Entropy, although not clustered with Dissimilarity and Energy
respectively, were highly correlated (R > 0.9), and were removed.

A Shapiro-Wilk test revealed that features did not have a normal
distribution so non-parametric tests were employed. A Mann-
Whitney (U) test with Bonferroni correction was applied to assess
the differences in texture features between tumors greater than or
less than 4.19 cm3 on T2-W imaging (volume threshold of eligibility
for trachelectomy, designated as high-volume and low-volume tu-
mors). A p-value <0.05 was taken to be significant. Stepwise logistic
regression was used to determine which combination of features
from each category (ADC-radiomics, T2-W-radiomics and clinico-
pathological metrics) were indicative of recurrence. This was done
in 2 scenarios i) in all patients with low-volume tumors using
adjuvant therapy as a feature in the model; ii) in only those patients
who did not receive adjuvant therapy. The logistic regression co-
efficients were used to combine the features identified from each
scenario to generate Receiver operating characteristic (ROC) curves
for ADC-radiomic features and for T2-W radiomic features predicting
recurrence in low-volume tumors. These were compared with the
ROC curve of the clinico-pathological features identified in both
scenarios using the Akaike information criteria (AIC). Further im-
provements in predicting recurrencewere investigated by combining
the features identified in the ADC-radiomic and T2-W radiomic
models with the clinico-pathological features and evaluated with a
Chi-square test. A bootstrap resampling (n ¼ 1000) procedure was
performed to obtain estimates of optimism in the regression models
to provide a bias-corrected AUC value through a Somers’ D rank
correlation metric whereby AUC ¼ (1 þ Somers D)/2. The rms:
Regression Modelling Strategies R package, version 5.1e0 was used.
3. Results

3.1. Patient demographics and clinical characteristics

Eligible patients were aged between 24-89 years (mean 38.4
years) at primary treatment. Initial diagnosis wasmadewith biopsy
in 77 patients and large loop excision of the transformation zone
(LLETZ) in 48 patients. Biopsies confirming the presence of cancer
were not large or deep enough to confirm tumor grade in 1 case or
LVSI in 7.

http://www.r-project.org/


Table 1
Patient characteristics for all tumors and for low- and high-volume tumor sub-
groups (*1 treated with chemoradiotherapy).

All tumors High volume
>4.19 cm3

Low volume
<4.19 cm3

Age, mean (range) 38.4 (65.0) 43.0 (64.0) 35.6 (38.0)
BMI, mean (range) 25.7 (36.3) 26.2 (36.3) 25.4 (32.9)
FIGO stage, n
1 74 69 5
2 51 10 41
Histological subtype, % patients (n)
Squamous 61.6 (77) 78.3 (36) 51.9 (41)
Adenocarcinoma 38.4 (48) 21.7 (10) 48.1 (38)
Grade % patients (n)
1 or 2 55.2 (69) 52.2 (24) 57.0 (45)
3 43.2 (54) 43.5 (20) 43.0 (34)
Unknown 1.6 (2) 4.3 (2) 0
LVSI, % patients (n)
Positive 27.2 (34) 15.2 (7) 34.2 (27)
Negative 65.6 (82) 67.4 (31) 64.6 (51)
Unknown 7.2 (9) 17.4 (8) 1.2 (1)
Depth of Invasion,

mean (range)
7.1 (20.4) 6.0 (19.0) 7.4 (20.4)

Parametrial invasion % patients (n)
Positive 32.8 (41) 76.1 (35) 7.6 (6)
Negative 67.2 (84) 23.9 (11) 92.4 (73)
Lymph node metastasis, % patients (n)
Positive 31.2 (39) 58.7 (27) 15.2 (12)
Negative 68.8 (86) 41.3 (19) 84.8 (67)
Treatment, % patients (n)
Surgery 61.6 (77) 15.2 (7) 88.6 (70)
Chemoradiation 38.4 (48) 84.8 (39) 11.4 (9)
Surgery, % patients (n)
Cold Knife Cone CKC 0 0 0
Trachelectomy 48.1 (37) 14.3 (1) 51.4 (36)
Hysterectomy 51.9 (40) 85.7 (6) 48.6 (34)
Adjuvant treatment after surgery % patients (n)
Yes 23.4 (18) 28.6 (2) 22.9 (16)
Recurrence, % patients (n)
Yes 16.0 (20) 26.1 (12) 10.1 (8)*
No 78.4 (98) 65.2 (30) 86.1 (68)
Unknown 5.6 (7) 8.7 (4) 3.8 (3)
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Of 125 patients, 79 were low-volume (range 0.26 e 4.17 cm3,
mean 1.3 ± 1.2 cm3); 70 were treated surgically and 9 with che-
moradiation. Forty-six were high-volume (range 4.2e56.1 cm3,
mean 15.3 ± 11.7 cm3); 7 were treated surgically and 39 with
chemoradiation. Of the 70 patients with low-volume tumors
treated surgically, 2 patients did not have follow-up data, so that
prediction of recurrence was modelled on 68 patients (Fig. S1).
Table 2
Texture features derived from ADC maps and T2-W images showing differences between

Texture Feature Median low volume
N ¼ 79

IQR low volum
N ¼ 79

Dissimilarity ADC 0.64 0.28
T2W 0.49 0.32

Energy ADC 0.15 0.11
T2W 0.20 0.13

InverseVariance ADC 0.41 0.08
T2W 0.38 0.12

ClusterProminence ADC 29.33 40.77
T2W 22.66 24.14

ClusterShade ADC 2.82 3.62
T2W 2.29 2.28

Autocorrelation ADC 11.41 5.68
T2W 11.65 8.69

InformationalMeasure
Correlation2

ADC 0.63 0.21
T2W 0.67 0.16

Correlation ADC 0.44 0.18
T2W 0.55 0.23
Patient and tumor characteristics in those with high- and low-
volume tumors are detailed in Table 1.

Fifty-four of 68 patients in the low-volume group did not receive
adjuvant therapy. Fourteen patients in the low-volume group
received adjuvant therapy following surgery because of adverse
features: 5 had unexpected lymph node metastases, 3 had unex-
pected extension of tumor to the parametrium, 1 had a 0.5 mm
margin to the parametrium at surgical histology, 1 had spread to the
vaginal cuff and 4met 2 of the Sedlis criteria (LVSI) and deep stromal
invasion). Therewere 7 recurrences overall: 5 in 54 patientswho had
not and 2 in14 in patients who had received adjuvant therapy.

3.2. Differences in texture features based on tumor volume and
clinico-pathological metrics

Number of voxels in the T2-W images ranged from 17441-
209892 in the high-volume tumors (median 38597) to 107-17324
in the low-volume tumors (median 2750). Number of voxels in the
ADC maps ranged from 10497-140650 in the high-volume tumors
(median 26812) to 75-13294 in the low-volume tumors (median
1927).

From heat-maps of correlated texture features (Supplementary
data, Fig. S2), ten texture feature clusters were identified (Supple-
mentary data, Table S1). After Bonferroni correction, 6 texture
features on both ADC maps and T2-W images (Table 2) remained
significantly different between the high- and low-volume tumors,
namely Dissimilarity, Energy, ClusterProminence, InverseVariance
and Autocorrelation. An additional feature on T2-W imaging (Cor-
relation) differed between groups (Table 2).

In low-volume tumors, Dissimilarity and Energy differed in
patients without and with LVSI. (Supplementary data, Table S2).
However, none of the Haralick features from ADC maps or T2-W
images differed between adeno- and squamous cancers, low and
high-grade tumors, or those with negative vs. positive lymph node
status.

3.3. Clinico-pathological features as predictors of recurrence

AUCs and 95% CI for individual clinico-pathological features for
predicting recurrence in all low-volume tumors (n ¼ 68) regardless
of adjuvant therapy were: (tumor type (0.548 [0.340e0.756]),
grade (0.501 [0.294e0.709]), LVSI (0.537 [0.347e0.728]), Depth of
Invasion (0.553 [0.291e0.814]), lymph node metastasis (0.530
[0.386e0.675]) and T2-W tumor volume (0.691 [0.448e0.934]).
Adjuvant treatment had an AUC of 0.544 [0.357e0.732]. When
patients receiving adjuvant therapy were excluded (n ¼ 54), the
low- and high-volume tumors.

e Median high volume
N ¼ 46

IQR high volume
N ¼ 46

Adjusted p-value

0.35 0.17 1.22E-11
0.25 0.12 4.31E-14
0.30 0.21 3.76E-09
0.34 0.2 7.55E-10
0.29 0.13 2.84E-11
0.23 0.10 9.61E-13
10.52 10.11 5.95E-08
8.03 6.50 1.49E-09
1.26 1.42 3.84E-03
1.18 1.30 0.02
9.13 4.64 0.02
6.08 3.64 8.22E-09
0.54 0.07 0.08
0.68 0.22 1
0.47 0.07 0.89
0.62 0.26 0.03



Fig. 2. Receiver Operating Curves showing sensitivity and specificity for prediction of recurrence by texture and clinic-pathological features (a) in 68 patients with low-volume
tumors where use of adjuvant therapy is included in the model; (b) in 54 patients who did not receive adjuvant therapy; and (c) in all 68 patients using features identified in
both a and b (Dissimilarity, Energy for ADC-radiomics; Dissimilarity, ClusterProminence, InverseVariance for T2-W-radiomics; and Volume, Depth of Invasion, LymphoVascular
Space Invasion for clinico-pathological features). In a, no combination of T2-W features was significantly superior to individual features. In b, of the clinico-pathological features,
LVSI alone was predictive of recurrence, In c, the optimal prediction of recurrence is shown by a combination of ADC-radiomic and clinico-pathological features.
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AUCs were: tumor type (0.555 [0.305e0.805]), grade (0.504
[0.254e0.754]), LVSI (0.633 [0.570e0.695]), Depth of Invasion
(0.510 [0.214e0.807]), lymph node metastasis (0.510
[0.490e0.530]) and T2-W tumor volume (0.629 [0.327e0.931]).
Regression modelling which included adjuvant therapy as a con-
founding feature indicated that volume and Depth of Invasionwere
indicative of recurrence (AUC ¼ 0.766 CI 0.562e0.970), but that
when patients who received adjuvant therapy were excluded, LVSI
alone was predictive of recurrence (AUC ¼ 0.633 95% CI
0.570e0.695).

Combining T2-W volume, Depth of Invasion and LVSI predicted
recurrence in all 68 low-volume tumors with an AUC 0.794 (95% CI
0.617- 0.971) and AIC of 45.684.

3.4. Texture features from ADC maps as predictors of recurrence

When considering all 68 patients with low-volume disease, the
texture features Dissimilarity, Energy, InverseVariance,
Table 3
Texture features derived from ADC maps and T2-W images in 68 low-volume tumors fo

Texture feature From Auc (ci)
Dissimilarity ADC map 0.775 (0.646

T2-W image 0.609 (0.334
Energy ADC map 0.635 (0.432

T2-W image 0.604 (0.373
ClusterProminence ADC map 0.646 (0.425

T2-W image 0.607 (0.364

InverseVariance
ADC map 0.674 (0.496
T2-W image 0.665 (0.444

Autocorrelation ADC map 0.665 (0.497
T2-W image 0.628 (0.463

Correlation ADC map -
T2-W image 0.536 (0.326

ClusterShade ADC map 0.508 (0.292
T2-W image 0.511 (0.274

InformationMeasureCorrelation2 ADC map -
T2-W image -

Volume ADC map 0.672 (0.426
T2-W image 0.691 (0.448
ClusterProminence, ClusterShade, Autocorrelation and volume
derived from ADC maps had an AUC of 0.775, 0.635, 0.674, 0.646,
0.508, 0.665 and 0.672, respectively for predicting recurrence.
(Fig. 2, Table 3). A regression model indicated that when combined,
Dissimilarity and Energy were contributory to prediction of recur-
rence (AUC ¼ 0.864, 95% CI ¼ 0.772e0.956, AIC 41.044). However,
when patients who had adjuvant therapy were excluded, only
Dissimilarity was predictive of recurrence (AUC ¼ 0.853, 95%
CI ¼ 0.725e0.981).

Combining metrics predictive of recurrence from ADC-radiomic
and clinico-pathological models (Dissimilarity and Energy with T2-
W volume þ Depth of Invasion þ LVSI) significantly improved
prediction of recurrence in all 68 low-volume tumors (AUC¼ 0.916,
95% CI 0.837e0.994, with 100% sensitivity, 77% specificity,
p ¼ 0.006, AIC ¼ 39.638, Table 4) compared to the combined
clinico-pathological model of T2-W volume þ Depth of
Invasion þ LVSI.
r prediction of recurrence.

Threshold Sensitivity Specificity
e0.904) 0.635 100 61
e0.883) 0.318 43 89
e0.838) 0.178 71 61
e0.835) 0.235 71 67
e0.868) 53.789 100 33
e0.849) 12.113 43 85
e0.853) 0.443 100 38
e0.886) 0.349 71 66
e0.833) 11.978 100 41
e0.793) 8.921 100 38

- - -
e0.746) 0.524 71 57
e0.724) 5.75 100 23
e0.747) 3.474 86 26

- - -
- - -

e0.919) 1292.136 71 64
e0.936) 1248.191 71 64



Table 4
Regression models in prediction of recurrence with bootstrap corrected AUC and Chi-Square test of model differences. The reduction in AIC when ADC-radiomic and clinico-
pathological features are combined compared to clinico-pathological features alone is indicative of the improvement of the combined model.

AUC CI Corrected AUC AIC Resid. Df Resid. Dev Df Deviance p Value*

Clinico-pathological 0.794 0.617e0.971 0.708 45.684 64 37.684 - - -
ADC-Radiomic 0.864 0.772e0.956 0.824 41.044 65 - - - -
T2W-Radiomic 0.808 0.690e0.926 0.716 49.193 65 - - - -
ADC-Radiomic þ Clinico-pathological 0.916 0.837e0.994 0.840 39.638 63 27.638 2 10.046 0.006
T2W-Radiomic þ Clinico-pathological 0.906 0.822e0.991 0.822 45.128 61 31.128 3 6.556 0.086

*p-value of nested model compared to clinico-pathological model.
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Examples of tumors with high Dissimilarity, and low Energy vs.
low Dissimilarity and high Energy respectively are illustrated in
Fig. 1.

3.5. Texture features from T2-W imaging as prognostic biomarkers

When considering patients with low-volume disease, the
texture features Dissimilarity, Energy, InverseVariance, Cluster-
Prominence, ClusterShade, Autocorrelation, Correlation and Vol-
ume derived from T2-W images individually had an area under the
curve (AUC) of 0.609, 0.604,0.671, 0.607, 0.628, 0.536, 0.511 and
0.691 respectively for predicting recurrence (Table 3). When all
low-volume tumors were considered, a regression model indicated
that no combination of features improved prediction of recurrence.
When patients who had adjuvant therapy were excluded, Dissim-
ilarity, Clusterprominence and InverseVariance together were
predictive of recurrence (AUC ¼ 0.837, 95% CI ¼ 0.698e0.976).
These features applied to all 68 patients gave an AUC of 0.808 (95%
CI ¼ 0.690e0.926, AIC ¼ 49.193).

Combining metrics predictive of recurrence from T2-W-radio-
mic and clinico-pathological models (Dissimilarity, ClusterPromi-
nence and InverseVariance with LVSI þ Depth of Invasion þ T2-W
volume) did not significantly improve prediction of recurrence in
low-volume tumors (AUC ¼ 0.906, 95% CI 0.822e0.991, p ¼ 0.09,
AIC ¼ 45.128, Table 4) compared to the combined clinico-
pathological model of T2-W volume þ Depth of Invasion þ LVSI.

3.6. Validation of logistic regression models

Bias-corrected AUCs generated through a bootstrap resampling
process showed reductions in AUC from 0.864 to 0.824 for the ADC-
radiomic model (Dissimilarity and Energy), from 0.808 to 0.716 for
the T2-W radiomic model (Dissimilarity, InverseVariance and
ClusterProminence) and from 0.794 to 0.718 for clinico-
pathological model (T2-W volume, Depth of Invasion and LVSI).
The combined radiomic and clinico-pathological models were
corrected from 0.916 to 0.84 (ADC-radiomic and clinico-
pathological features) and from 0.906 to 0.822 (T2-W-radiomic
and clinico-pathological features).

4. Discussion

Our data has identified the radiomic features from ADC maps
and T2-W images that differ between high- and low-volume cer-
vical tumors and shown that these features individually and in
combination are useful for predicting recurrence in low-volume
tumors. Patients in the high- and low–volume tumor groups
were well matched by age, and although the low-volume tumors
were by definition lower stage, there were more adenocarcinomas
and LVSI in this group, both of which adversely affect outcome.
Radiomic differences between high and low-volume tumors were
largely similar for both the ADC and T2-W data although regression
models identified different combinations of features as being
contributory to prediction of recurrence in each case. Moreover,
although radiomic features differed between tumors with and
without LVSI, they did not differ between other histological pa-
rameters of poor prognosis (type, grade, Depth of Invasion, LN
metastasis), indicating that they are likely to be independent.

This data highlights the potential of texture feature analysis for
predicting recurrence with capability to influence the surgical
management of patients with early stage, low-volume cervical
cancer. It means that surgical management can be altered, or
appropriate patient counselling provided at the outset because the
use of adjuvant therapy can be anticipated. The utility of such in-
formation would be particularly valuable in a young patient pop-
ulation seeking to retain fertility and minimize therapy. For
instance, to avoid the toxicity of lymphadenectomy followed by
adjuvant chemoradiation, patients with “good” radiomic features
may elect to have sentinel node biopsy prior to curative treatment
(surgery or chemoradiation). Additionally, patients could be
counselled as to the need for adjuvant therapy at the outset. In
larger tumors, where volume is a strong predictive factor of
recurrence [31] and survival [32], the utility of additional radiomic
analyses in altering management remains to be established.

The greater tendency to decreased Dissimilarity in larger tu-
mors, indicates that grey levels in adjacent pixels were similar in
larger tumors. Energy, which is a measure of textural uniformity,
and is highest when grey level distribution has either a constant or
a periodic form, also was higher in larger tumors. A previous pro-
spective study has confirmed the reproducibility of these features
and their lack of dependence on regional ROI selection within the
tumor [33], nevertheless we used whole tumor analysis in our
study. A study by Hao et al. has shown that radiomic analysis of the
tumor periphery is informative in differentiating those likely to
recur from those that do not [34], but the tumor volume in their
cohort was high and patients were treated with chemoradiation.
Our data interrogates the differences in features between high-vs.
low-volume tumors across the entire tumor volume and uses
these features to recognize low-volume tumors with potentially
poor prognosis. It confirms for the first time using radiomic anal-
ysis, that as small cervical tumors grow, they tend to become
texturally less dissimilar and more homogenous. This may well
reflect the transition from amorphology where tumor elements are
interspersed with normal cervical glandular elements and stroma
in smaller tumors tomore homogenous sheets of malignant cells as
tumors increase in size and de-differentiate. The T2W-radiomic
features, however, were less good than the ADC-radiomic features
for predicting recurrence. They did not offer significant improve-
ments for prediction of recurrence when combined with clinico-
pathological features as the model over-fitted the data. T2-W data
also was affected by signal-intensity variations across the image,
particularly in the presence of an endovaginal coil, which was not
an issue with the quantified ADC from diffusion-weighted images.

Other retrospective studies have reported radiomic features
derived from MRI and 18FDG-positron emission tomography (PET)
scans of locally advanced cervical cancer treated with chemo-
radiotherapy. Radiomics features such as entropy from ADC maps
and grey level non-uniformity from PET, respectively, have been
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shown to be independent predictors of recurrence and loco-
regional control in these larger volume tumors with significantly
higher prognostic power than usual clinical parameters [35].This
supports our findings where these features are shown to differ
between high- and low-volume tumors and to be predictive of
recurrence in the low-volume tumor group.

A strength of this study was the derivation of the data using an
endovaginal receiver coil, particularly in small volume tumors
where it was possible to obtain a minimum of 100 voxels. This
provided a substantial boost in SNR [24] and was invaluable for the
assessment of the ADC data where external array imaging in the
low-volume tumors would have limited the voxel numbers and
precluded meaningful ADC feature analysis.

The application of adjuvant therapy as a confounding factor
represented an analysis dilemma: removal of patients with low-
volume tumors on MRI who went on to receive adjuvant chemo-
therapy would have biased the sample and made it unrepresenta-
tive of the final application. On the other hand, retaining these
patients in the analysis, potentially weakened the model because
patients with MRI radiomics features indicative of a recurrence
after surgery will have that recurrence prevented by the adjuvant
treatment. Our solution here was to perform both sets of analyses.
As predicted, when the patients who received adjuvant therapy
were removed, the AUC of the model increased, but at the cost of a
smaller sample size.

Like many current studies in tumor radiomics, our work has
several limitations. First it is a single site study with a relatively
small sample size, albeit from a quaternary referral gynaecological
oncology centre which sees and treats a high volume of patients.
Second, the recurrence rate was low (~10%) but is in keeping with
expectations in this early stage, potentially curable disease. Even
with a larger sample size, it would not have been possible to avoid
such an imbalance between the recurrence and no-recurrence
classes. Taken together, these factors lead to a model based on a
small number of recurrences and the consequent risk of overfitting
from the combinedmodel, with a possibly over-optimistic value for
the combined-model AUC. However, we show that for single-feature
models any one of the ADC radiomic features Dissimilarity, Energy,
InverseVariance, ClusterProminence, Autocorrelation or ADC vol-
ume performed better than the highest-scoring “clinico-patholog-
ical” features (T2-W volume and LVSI). Furthermore, when
considering models based on just two features, the radiomic model
(ADC Dissimilarity and Energy, AUC ¼ 0.864) compared well with
the clinical model (T2-W volume and Depth of invasion,
AUC ¼ 0.766). Third, patients were often diagnosed following a
LLETZ biopsy which may remove a significant volume of disease,
thus affecting the assessment at their staging MRI and confounding
our results; this was the case in 1 patient in our study group.
Nevertheless, in a clinical setting a LLETZ or cone biopsy is per-
formed as part of the normal clinical pathway prior to MRI and
imaging prior to a diagnostic LLETZ or cone biopsy is unlikely,
making our results more applicable in a clinical workflow. In future,
when determining the utility of radiomic features combined with
other clinical and histologic assessments, use of MRI plus LLETZ
volume is desirable. Finally, the current poor availability of endo-
vaginal MRI limits radiomic assessments of low-volume tumors
more widely. However, if further accumulation of cases confirms
the predictive power of this model and that high SNR enables its
implementation, this will provide a justification for more wide-
spread use of this MRI technique at specialist centres offering tra-
chelectomy. Alternatively, improvements of SNR in non-
endovaginal MRI may be required.

In conclusion, in patients with low-volume tumors, ADC-
radiomic texture analysis is potentially a useful predictor of tu-
mor recurrence. This can substantially impact the treatment plan-
ning and counselling of patients with low-volume tumors seeking
fertility preservation. The regression model derived from this data
requires validation in a test set. It should then be possible to set
thresholds for the relevant radiomic and clinical factors and to use
these in a nomogram to predict the likelihood of recurrence in a
clinical setting.
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