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SUMMARY

Developmental biologists have always relied on imaging to shed light on dynamic cellular events. 

However, processes such as mammalian fertilization and embryogenesis are generally inaccessible 

for direct imaging. In consequence, how the oviduct (fallopian tube) facilitates the transport of 

gametes and preimplantation embryos continues to be unanswered. Here we present a combination 

of intravital window and optical coherence tomography for dynamic, volumetric, in vivo imaging 

of oocytes and embryos as they are transported through the mouse oviduct. We observed location-

dependent circling, oscillating, and long-distance bi-directional movements of oocytes and 

embryos that suggest regulatory mechanisms driving transport and question established views in 

the field. This in vivo imaging approach can be combined with a variety of genetic and 

pharmacological manipulations for live functional analysis, bringing the potential to investigate 

reproductive physiology in its native state.
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In brief

Wang and Larina present in vivo volumetric imaging of oocytes and embryos as they are 

transported through the mouse oviduct with optical coherence tomography and an intravital 

microscopy. The study reveals complex dynamics of oocytes and embryos that suggest a 

regulatory role of cilia and oviductal contractions in driving the transport.

INTRODUCTION

The mammalian oviduct (fallopian tube) is a tubular organ connecting the ovary and the 

uterus. Largely because of the success of assisted reproductive technologies (ARTs), which 

bypass the oviduct to achieve pregnancy (Ménézo et al., 2015), research on the oviduct has 

been somewhat neglected, and its physiology is less understood as compared with other 

female reproductive organs. However, despite continuous advancements, ART still suffers 

from a low efficacy that is far from comparable with natural pregnancy (Avilés et al., 2015; 

Besenfelder et al., 2012). This issue has recently led to the consensus that a better 

understanding of the oviductal physiology and function is essential for further optimization 

of ART by in vitro simulation of the in vivo conditions during the oviductal transport (Li and 

Winuthayanon, 2017). In addition, oviductal dysfunction is thought to be associated with 

reproductive disorders, including tubal ectopic pregnancy, whose etiology remains largely 

unknown (Shaw et al., 2010). Elucidating the functional roles of the oviduct is therefore 

significant to unravel the mechanisms underlying such reproductive disorders, which could 

contribute to strategies of prevention and early diagnosis.
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The oviduct delivers gametes toward fertilization, transfers embryos to the uterus in a 

precise temporal manner, and provides the environment for successful fertilization and 

preimplantation development (Coy et al., 2012). The transport of gametes and embryos is 

believed to be facilitated by the oviductal motile cilia, smooth muscle, and secretory flows 

(Ezzati et al., 2014). Although little is known regarding the individual roles of these factors 

(Besenfelder et al., 2012; Coy et al., 2012; Li and Winuthayanon, 2017), it is generally 

accepted that the oviductal cilia are the primary driver of oocytes/embryos toward the uterus 

for implantation (Coy et al., 2012; Halbert et al., 1976a; Lyons et al., 2006; Spassky and 

Meunier, 2017). To determine the requirement of these activities for the oviductal transport, 

targeted inhibitions have been implemented, but analysis has mainly relied on evaluating the 

final outcome, such as whether oocytes reach the fertilization site or whether embryos are 

implanted (Halbert et al., 1976a, 1989; Horne et al., 2008). The detailed dynamics of the 

oocyte/embryo transport preceding fertilization and implantation remain unclear for both 

normal and disrupted conditions. This gap in knowledge is largely due to a lack of imaging 

techniques capable of visualizing mammalian intra-oviductal events in vivo. The oviduct 

exhibits a complex biochemical and biomechanical luminal environment that has 

spatiotemporal variations and responds to a number of internal and external stimulations, 

such as hormones and sperm (Buhi et al., 1997; Fauci and Dillon, 2006; Georgiou et al., 

2005, 2007; Menezo and Guerin, 1997). This complexity makes the oviduct difficult to fully 

model in vitro or ex vivo. Because much of our understanding of oocyte/embryo dynamics is 

largely derived from extrapolation of such systems, the reproductive community has called 

for in vivo verification of current models (Avilés et al., 2015; Coy et al., 2012; Ménézo et al., 

2015). This goal requires the development of new imaging technologies.

In vivo imaging of the oviduct has been pursued in a number of studies (Battalia and 

Yanagimachi, 1979; Bochner et al., 2015; Hino and Yanagimachi, 2019; Ishikawa et al., 

2016; Muro et al., 2016; Wang and Larina, 2018b; Wang et al., 2018), with a primary focus 

on understanding sperm transport and oviductal fluid flows. Recently, with the externalized 

ovary, oviduct, and upper uterus well kept under physiological conditions, Hino and 

Yanagimachi (2019) highlighted the role of directional oviductal fluid flows in sperm 

movement and fertilization. However, resolving and tracking oocytes and embryos in 3D 

through the oviductal wall, with sufficient volume rate and field of view, is technically 

challenging and cannot be accomplished by widely used high-resolution techniques, such as 

bright-field, epifluorescence, and confocal microscopy. To address this technical limitation, 

we have developed an approach for volumetric in vivo imaging of the mouse oviduct using 

optical coherence tomography (OCT). OCT is a label-free modality employing low-

coherence interferometry for depth-resolved imaging (Huang et al., 1991). A single unit of 

OCT data is an in-depth line, called an A-scan; lateral scanning of the imaging beam 

produces 2D images (B-scans), and 2D scanning produces volumetric imaging. Its micro-

scale resolution and millimeter-level imaging depth in scattering tissues provide an ideal 

imaging scale for the mouse oviduct (Burton et al., 2015). To bypass the skin and muscle 

layers, we implemented an intravital imaging approach, which involves implantation of a 

3D-printed imaging window on the dorsal side of a mouse for access to the oviduct. We 

previously showed that OCT can reveal structural details of the oviduct in vivo at a ~5-µm 

resolution (Burton et al., 2015; Wang et al., 2018) and also established functional OCT 
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methods for mapping the cilia beat frequency and tracking spermatozoa in vivo (Wang et al., 

2015a; Wang and Larina, 2018b). However, 3D imaging of the dynamics of oocytes and 

embryos during their journey through the oviduct has not been demonstrated before.

Here, we report in vivo volumetric OCT imaging and tracking of oocytes and 

preimplantation embryos within the native environment of the mouse oviduct. We present 

4D (3D + time) visualizations through different sections of the oviduct, revealing a variety 

of unexpected movement patterns as oocytes and embryos transit from the upper ampulla to 

the lower isthmus. The spatially dependent dynamics of oocytes and embryos in the oviduct 

indicate movements that were not known before, suggesting that the mechanisms of the 

oviductal transport are more complex than previously thought. This in vivo imaging 

approach sets a platform for future studies investigating the mammalian reproduction from a 

dynamic perspective, providing insights into the process of oviductal transport in its native 

state, and leading to a more complete understanding of reproductive pathologies.

Design

In vivo dynamic visualization of oocytes and embryos in the mouse oviduct requires a 

combination of animal manipulation approach providing in vivo access to the reproductive 

organs and an imaging modality with sufficient resolution and imaging depth to capture 

these dynamics. In our early attempts to access the mouse oviduct, we directly exposed 

reproductive organs for imaging through a body wall incision (Wang and Larina, 2018a); 

this method of exposure is routinely used for zygotes injection during transgenic mouse 

production. Although this approach allowed for short-term imaging of the oviduct and 

gametes (Burton et al., 2015; Wang et al., 2015a; Wang and Larina, 2018b), it is not suitable 

for prolonged observations. Implantable optical windows are widely used in mice to bypass 

top tissue layers and gain imaging access to organs of interest (Alieva et al., 2014). Very 

recently, a similar window design was used for mid-gestation embryonic imaging with 

fluorescence microscopy (Huang et al., 2020). Inspired by intravital imaging of the mouse 

ovary (Bochner et al., 2015), we optimized a dorsal intravital window for in vivo prolonged 

and longitudinal imaging access to the mouse oviduct (Wang et al., 2018). These single-use 

windows are inexpensive and can be easily produced in bulk with a bench-top 3D printer. 

They can be autoclaved to ensure sterility.

The intravital windows are implanted through a single surgical procedure, while the imaging 

can be performed repeatedly under isoflurane anesthesia. As described in our previous work, 

the female mice with the window implanted can mate and get pregnant with embryos 

successfully implanted in the uterus on the window side (Moore et al., 2019), indicating that 

the window implantation does not have major effect on the oviductal transport of oocytes 

and embryos. The window with a circular aperture of 10 mm in diameter is sutured to the 

skin, and the ovary and oviduct are stabilized onto the tissue holders by securing the fat pad 

associated with the ovary with a tiny droplet of surgical glue (Figure 1A). The window is 

closed by a circular cover glass and secured with a C-clip or O-ring (Figure 1B). As shown 

in Figure 1C, the oviduct can be easily observed through the window. The window is 

stabilized with clamps using the frame extensions to avoid movement artifacts during 
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imaging. The cover glass closing the window is easily removable, which potentially allows 

for quick and minimally invasive access to reproductive organs for manipulations.

We implemented house-built OCT to capture oocyte/embryo dynamics through the intravital 

window, which is well suited for this application. The size of oocytes and embryos is ~70 

µm, and the maximal luminal diameter of the oviduct ampulla with cumulus-oocyte 

complexes is less than 1 mm. The field of view from OCT can cover a major portion of the 

curled oviduct together with the ovary (Figure 1D), while the millimeter-level imaging depth 

covers the full oviductal lumen (Figures 1E and 1F). The micro-scale spatial resolution of 

OCT allows to resolve individual oocyte, embryo, cumulus cell, and detailed oviductal 

structures (Figures 1E and 1F). The hertz-level volumetric data acquisition rate is able to 

capture the cell movement with a sufficient temporal sampling. The OCT working distance 

of ~25 mm is convenient for positioning the animal for imaging.

We implemented this approach to image and capture unfertilized oocytes and 

preimplantation embryos as they are transported through the oviduct. The dynamics of 

unfertilized oocytes was assessed in virgin female mice, and the dynamics of 

preimplantation embryos was investigated in female mice after natural timed matings 

without exogenous hormonal stimulation. The results are grouped for specific regions within 

the oviduct and presented in the order of their natural transit direction, from the ovary to the 

uterus. The regions include the upper ampulla, the lower ampulla where oocytes/embryos 

are about to pass through the isthmic-ampullary junction, the isthmus, and the lower isthmus 

at the entry to the utero-tubal junction.

RESULTS

Fast circular movements of cumulus-oocyte complexes in the upper ampulla

Oocytes start their journey through the oviduct as a dense, viscous mass called the cumulus-

oocyte complex. In OCT cross-sectional images, oocytes are distinguishable as bright white 

circles outlined by dark rings of zona pellucidae and surrounded by cumulus cells seen as 

white dots. Figure 2A shows an overall 3D OCT visualization of the oviduct with oocytes 

segmented out (red balls); oocytes were located close to each other and positioned in the 

upper ampulla. Surprisingly, time-lapse volumetric imaging revealed that cumulus-oocyte 

complexes in the upper ampulla were highly mobile (Figure 2B; Figure S1A; Video S1). The 

continuous movement of cumulus-oocyte complexes exhibited well-defined circular 

trajectories, completing a circle within a few minutes, and the complexes remained intact 

during the movement. Notably, the 3D path formed by each cumulus-oocyte complex was 

highly consistent over time and was spatially distinguished from the paths formed by the 

other complexes (Figure 2C; Video S2). Figure 2D shows an interesting example of oocyte 

movement pattern formed by the oocyte tracks; the oocyte movements were synchronized, 

and their trajectories formed circles of different diameter depending on their locations within 

the spinning cloud of cumulus-oocyte complexes. The average speed of oocytes ranged from 

7.0 to 18.4 µm/s (Figure 2E). The quantification of the circling path perimeter demonstrates 

that the movements along the circles of different perimeters had different average speeds 

(two examples shown in Figure S2). A linear regression (Figure 2F) quantitatively confirms 
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that the oocyte speed is affected by the path perimeter. The longer the perimeter, the higher 

the speed, contributing to observed large variation of the oocyte speed.

Because the reproductive system is secured on the petals of the window, one can easily 

locate the same region of the oviduct over multiple imaging sessions. An example of 

repeated imaging in the upper ampulla over 6 h is shown in Figure 2G and Video S3, which 

revealed 3D dynamics of the oviductal lumen. Although the cumulus-oocyte complexes 

were highly dynamic, their directional progression through the upper ampulla appeared to be 

relatively slow. It was observed that the directional progression of oocytes was restricted by 

a luminal constriction throughout the downstream section of the ampulla, which formed a 

‘‘gate’’ constraining the region of oocyte circling within an open section of the ampulla. The 

lumen of the constricted area was open to allow oviductal fluid to go through, as seen at the 

time point of 0 h, but the opening was too small for cumulus-oocyte complexes to pass 

through. Remarkably, over hours, the ‘‘gate’’ gradually opened, and the circling cloud of 

cumulus-oocyte complexes slowly progressed toward the lower ampulla. The panels in 

Figure 2G show the constricted lumen and its opening over time through different cross-

sections of the volumetric data. The progression of the luminal opening was quantified by 

cross-sectional area measurements at two locations along the tube (Figure S3). This example 

clearly shows that the method can be used for quantitative imaging and assessment of oocyte 

movements in the context of overall luminal changes over hours, which is currently not 

accessible through other approaches.

Pulsatile oscillations of cumulus-oocyte complexes in the lower ampulla

After arriving in the lower ampulla, the cumulus-oocyte complexes exhibited different 

movement patterns. The oocytes still stayed relatively close to each other, as in the upper 

ampulla (Figure 3A); however, the amount of cumulus cells surrounding each oocyte was 

visibly reduced (Figure 3B). Time-lapse volumetric imaging revealed that the cumulus-

oocyte complexes featured short-distance pulsatile oscillations with a periodicity of about 30 

s (Figure 3B; Figure S1B; Video S4), while slowly progressing toward the isthmic-

ampullary junction (Figures 3C and 3D). Interestingly, we observed a correlation between 

the isthmus luminal area change and the pulsatile oocyte movements in the lower ampulla. 

As shown in Figures 3E and 3F and Video S5, when the upper-isthmus luminal area 

increased (magenta arrows, Figure 3E), oocytes made a forward movement toward the 

isthmic-ampullary junction (cyan arrows, Figure 3E), and when the upper-isthmus luminal 

area decreased (magenta arrows, Figure 3F), oocytes moved backward in the lower ampulla 

(cyan arrows, Figure 3F). An overlay of the upper-isthmus luminal area (blue line) and the 

oocyte velocity in the lower ampulla (brown line) over time shows that these two dynamics 

share periodicity, with the upper-isthmus expansions consistently coinciding with the 

forward movements of oocytes (Figures 3G and 3H). This relationship was also confirmed 

by the match of frequency spectra from the two activities (Figure 3I), as well as a 

statistically significant slope from the linear regression of the two activities (Figure 3J). This 

example demonstrates the feasibility of quantitative correlative analysis of oocyte 

movements and luminal contractions, which are believed to be involved in the transport.
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Grouping and separation of preimplantation embryos in the lower ampulla

Our imaging settings did not allow us to visualize the fertilization process or directly 

distinguish between unfertilized oocytes and zygotes; however, after fertilization (in mated 

female mice), preimplantation embryos lost cumulus cells (0.5 dpc). In Figure 4, we show 

the dynamics captured after fertilization, where grouping and separation of embryos are 

revealed in the lower ampulla. In contrast with unfertilized oocytes, preimplantation 

embryos were observed in cohesive groups that, despite active luminal dynamics of the 

oviduct, stayed relatively intact and stable at a fixed location over time (Figure 4A; Video 

S6). Individual embryos can separate from the group and freely move within the lower 

ampulla (Figure 4B; Video S7). As shown in Figure S4, the embryo separation from the 

group coincided with a switch of the luminal area change from negative (contraction) to 

positive (relaxation). Individual embryos and a group can also come together to form a 

larger group (Figure 4C; Video S8). As the individual embryo joined a group and continued 

moving together (Figure 4D), its speed markedly reduced (Figure 4E). Notably, in the lower 

ampulla, both the average and the maximum moving speed of the embryo group are 

dependent on its size (the number of embryos), as revealed by statistically significant linear-

regression slopes for the speed versus the number of embryos within the group (Figure 4F). 

Specifically, the smaller the group, the faster the movement (Figure 4F).

Fast, long-distance forward and backward movements of preimplantation embryos in the 
isthmus and peristaltic waves of the isthmus luminal contraction

In the isthmus, preimplantation embryos (1.5 dpc) were relatively spread (Figure 5A) in 

comparison with the cohesive groups in the lower ampulla. Embryos in the isthmus 

exhibited fast, bi-directional movements, traveling relatively long distances over each cycle 

(Figure 5B; Figure S1C; Video S9). A speed map for the forward and backward movements 

of two embryos is shown in Figure 5C. Ultrafast volumetric imaging revealed peristaltic 

waves of the isthmus luminal contraction (Figure 5D; Video S10) with a wave propagation 

speed ranging from 0.6 to 1.2 mm/s and a contraction frequency between 0.02 and 0.06 Hz 

(Figure 5E).

Short-distance movements of preimplantation embryos in the lower isthmus at the 
entrance to the utero-tubal junction

As embryos progressed closer to the utero-tubal junction (late 1.5–2.0 dpc), their movement 

pattern changed significantly (Figure 6). Specifically, embryos grouped back together 

(Figure 6A), similar to how they were grouped in the lower ampulla. Their activities were 

restricted to a small region within the lower isthmus (Figure 6B). The movements featured 

pulsatile oscillations with small amplitudes (Video S11). The moving speed of embryos in 

this region, ranging from 14.7 to 60.0 µm/s (Figure 6C), was much slower in comparison 

with the freely moving embryos in the upper and mid-isthmus as described above.

DISCUSSION

Understanding the dynamics of oocytes/embryos and the functional roles of the oviduct in 
vivo is essential to determine the mechanisms underlying oviduct-related reproductive 

disorders, such as tubal ectopic pregnancy and infertility, and to achieve a further 
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optimization of ART. Although ex vivo studies provided insights into the oocyte/embryo 

transport in the oviduct, in vivo analysis has been largely absent. This imaging study 

revealed a number of previously unknown activities of oocytes/embryos within the oviduct 

in vivo (summarized in Figure 7), raising new hypotheses and suggesting a complex 

regulatory process of the oviductal transport. The presented imaging approach provides the 

potential to elucidate how the oviduct transports oocytes and embryos through an integration 

with a variety of genetic approaches, pharmacological manipulations, and mouse models.

The observed circular movements of cumulus-oocyte complexes in the upper ampulla raise 

multiple questions and hypotheses. As the luminal epithelium of the upper ampulla is 

covered by motile cilia that create micro-flows, the beat of cilia is likely a contributor of the 

observed circular movements of cumulus-oocyte complexes. The temporally consistent but 

spatially distinct oocyte trajectories in the upper ampulla reveal highly complex 3D flow 

fields, suggesting a possibly spatial variation of ciliary behaviors, in spite of a known 

coordinative nature of motile cilia (Elgeti and Gompper, 2013). It is potentially feasible to 

investigate the spatially resolved ciliary activities in vivo by a combination of the presented 

method with a spatial mapping of the cilia beat frequency (Wang et al., 2015a). Also, genetic 

or pharmacological inhibitions of the oviductal ciliary activity could be employed to 

determine the specific roles of cilia in producing the circular oocyte movements. Such 

studies will generate in vivo insights into the functional role of cilia in oviductal transport 

and uncover how large groups of cilia produce complex yet organized flow fields. To our 

knowledge, the circular movement of cumulus-oocyte complexes in the upper ampulla has 

not been previously reported in vivo, and its role is unclear. With the ‘‘gate’’ formed by the 

luminal constriction likely controlling the timing of the oocyte transport, the beat of cilia 

possibly generates the required force to move the cumulus-oocyte complex in the upper 

ampulla. This type of movement could be important for a disruption of the cumulus mass, or 

this might be a component of unexplored biomechanical signaling. One could also speculate 

that the continuous circular movement helps to prevent cells from attaching to the 

epithelium. Tubal pregnancies were not reported in mice; however, in humans, the beat of 

motile cilia might act to prevent tubal implantations by inducing continuous movements of 

cells, because ciliopathies are linked to a higher incidence of ectopic pregnancies (Knowles 

et al., 2013).

Another interesting question regarding the observed circulatory flows in the upper ampulla 

is related to the fact that oocytes at this location move at a speed of around 13.8 µm/s. 

Considering that the length of the entire mouse oviduct is about 18 mm (Agduhr, 1927), at 

such a high speed, the oocytes would quickly pass through the ampulla unless their forward 

progression is restricted by the ‘‘gate’’ of luminal constriction. Such a ‘‘gate’’ is presumably 

formed by a tonic oviductal smooth muscle contraction, and the opening of the ‘‘gate’’ by 

the slow, progressive smooth muscle relaxation, which could release oocytes toward the 

lower ampulla. This type of tonic contraction of smooth muscle in the mammalian oviduct 

was reported in some early work (Ezzati et al., 2014), which was detected by in vitro 
electrical recording (Gonzalez de Vargas et al., 1976; Talo and Brundin, 1971). Given that 

timing is critical for a successful fertilization, the formation of this ‘‘gate’’ may allow 

sufficient time for the sperm to travel through the uterus and the oviductal isthmus, thus 

providing an overlapping time window for the meeting of oocytes and sperm at the 
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fertilization site. It is reasonable to speculate that, if such a ‘‘gate’’ does not form or fails to 

open because of muscular disfunction, the oocytes could miss the time window of sperm 

arrival. Previous studies showed that blocking oviductal muscle contraction does not prevent 

oocyte transport to the lower ampulla (Halbert et al., 1976a, 1976b, 1989). Our in vivo 
observations agree with those findings because the observations suggest that the ampulla 

smooth muscle contraction functions as a ‘‘gate’’ to restrict rather than to drive the 

directional transfer; thus, inhibition of muscle contraction would not be expected to prevent 

the delivery of oocytes through the ampulla. This hypothesis could potentially be tested 

through combination of the presented imaging approach with targeted inhibition of smooth 

muscle activities.

We detected different movement patterns of oocytes in the upper and lower ampulla, 

suggesting different control mechanisms between these regions. It is known that the density 

of cilia is less in the lower ampulla compared with the upper ampulla (Wang et al., 2015a). 

We observed short-distance pulsatile oscillations of cumulus-oocyte complexes in the lower 

ampulla, which is in agreement with the previous finding of rapid to-and-fro movements of 

oocytes in the lower ampulla portion of the rabbit oviduct (Halbert et al., 1976b). 

Unexpectedly, quantitative analysis of the upper isthmus contractions and the oocyte 

velocity in the lower ampulla suggests their temporal correspondence. This suggests that the 

oscillatory movement of oocytes in the lower ampulla might be driven by upper isthmus 

luminal contractions. To our knowledge, such a remote pumping mechanism driving 

oviductal transport has not been previously proposed. This observation does not exclude the 

possibility that the ciliary beat in the lower ampulla contributes to the slow progression of 

oocytes toward the isthmic-ampullary junction, and the oscillations by themselves do not 

produce net forward movement. This process could be further explored by genetic or 

pharmacological manipulation of cilia and smooth muscle dynamics in the oviduct and the 

presented imaging method.

Preimplantation embryos in the lower ampulla have been detected in groups, which remain 

stable despite the oviduct contractions. For embryo separation from the group, assessment of 

the embryo dynamics in relation to the luminal area change suggests that the oviductal 

contraction and relaxation could be a factor affecting the embryo movement and the group 

separation activity. Previous in vitro studies demonstrated that the grouping of 

preimplantation embryos has a positive effect on their development, particularly in 

transitioning to the blastocysts stage (Buemo et al., 2016; Lee et al., 2007), and the 

mechanism of forming such groups was investigated (Lehtonen et al., 1984). Although 

embryo grouping might not be relevant to humans, this study reveals in vivo observation of 

this phenomenon in mice, setting a platform for investigation of embryo grouping in the 

native environment.

Unlike the lower ampulla where preimplantation embryos are in cohesive groups, in the 

upper and mid-isthmus, embryos appear to be separated and moving individually. From the 

lower ampulla to the isthmus, embryos need to pass through the isthmic-ampullary junction 

that has a relatively small luminal opening. The cross-sectional luminal area at the isthmic-

ampullary junction under the relaxed condition (most expanded state) is ~0.018 mm2 (mean 

value from three mice). By counting only the central region above the tips of mucosa folds 
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and approximating this region as circular, the diameter of the luminal opening can be 

estimated as ~92 µm (mean value from three mice), which is not large enough to allow for 

more than one embryo to simultaneously pass through. Specifically, we observed that groups 

of embryos did not directly pass through the isthmic-ampullary junction as a whole (Videos 

S12 and S13; Figures S5 and S6), although they were continuously driven to the junction by 

oviductal activities. During this dynamic, an individual embryo separated from the group 

was observed being transported within the isthmic-ampullary junction, featuring both 

forward and backward movements (Video S13; Figure S6). Observations of unfertilized 

oocytes surrounded by cumulus cells show repeated forward and backward movements 

inside the narrow lumen of the isthmic-ampullary junction, which is similar to the transport 

of embryos observed at this region. These suggest that there likely exists another ‘‘gate’’ at 

the isthmic-ampullary junction limiting the size of the passage to the individual oocytes/

embryos. The ‘‘gate,’’ as well as oviductal contractions driving oocytes and embryos 

through the junction, could contribute to separation of groups. Enabled by the in vivo 
imaging approach, these observations of the mammalian oocyte/embryo transport at the 

isthmic-ampullary junction set the stage to study the underlying mechanisms, which could 

potentially contribute to understanding the causes of embryo retention in the oviduct. Future 

investigations with targeted control of the oviductal muscular activity at the anatomical 

boundaries could elucidate the functional role of the oviduct in transporting oocytes and 

embryos through the boundary regions under normal and disordered conditions.

We detected fast, long-distance forward and backward movements of embryos in the isthmus 

under peristaltic luminal contraction waves. Because this region of the oviduct has little to 

no motile cilia (Wang et al., 2015a), this is likely a result of the myoelectric activity of 

smooth muscle cells, which propagate in both directions (Ezzati et al., 2014). The bi-

directional movement of cells in the isthmus was previously reported with bright-field and 

epi-fluorescence microscopy (Bochner et al., 2015; Ishikawa et al., 2016), although not 

volumetrically. Implementation of 3D in vivo imaging of embryos in the isthmus enables 

measurements of the cell velocity volumetrically through direct tracking. Although 

preimplantation embryos appear relatively spread out as they move through the upper and 

mid-isthmus, they group back together and dramatically reduce the amplitude of movements 

as they reach the lower isthmus. This is likely because the utero-tubal junction is gated by a 

luminal constriction, restricting the embryos within a small region, which might improve the 

timing of embryo transport to the uterus once the junction opens. How embryos are 

transported through the utero-tubal junction and how the timing of this process is regulated 

can potentially be investigated using the presented method.

Our imaging observations suggest that the preimplantation embryos in the lower ampulla 

and the isthmus experience significant mechanical stress from shear force and movement, 

which could be instructive for further optimizing ART success. Current ART optimization 

has mainly focused on the chemical components of oviductal secretions (Avilés et al., 2010; 

Chronopoulou and Harper, 2015), while the role of physical factors received much less 

attention (Smith et al., 2012). It was shown that vibrations could be beneficial for 

enhancement of embryonic development and can improve implantation rate (Isachenko et 

al., 2010, 2011; Mizobe et al., 2010), suggesting that implementation of mechanical 

stimulations into ART is also a promising approach. Detailed quantitative assessment of 
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mechanical stresses that embryos are exposed to throughout preimplantation stages will 

allow for replication of the natural biomechanical settings in vitro. Although there are a 

number of objective differences between reproductive processes in mice and humans, 

including the number of embryos, this approach could still be potentially beneficial for ART 

success.

The presented imaging study was performed in female mice anesthetized through isoflurane 

inhalation, which might potentially have an influence on observed oviductal dynamics. This 

anesthesia method is widely used for in vivo mouse imaging (Alieva et al., 2014; Bochner et 

al., 2015; Huang et al., 2020), including the recent functional live studies on the oviductal 

fluid flow and sperm dynamics (Hino and Yanagimachi, 2019; Muro et al., 2016). The effect 

of isoflurane inhalation on the mouse oviductal function is currently unclear. In fact, because 

the anesthesia is required for in vivo high-resolution imaging of the mouse oviduct, a study 

to determine such an effect could be very challenging, where the proper control with no 

anesthesia is unavailable. To partially address this issue, we performed an in vivo assessment 

of the mouse oviductal cilia activity by measuring the ciliary beat frequency at the same 

locations of the oviduct in vivo at different levels of isoflurane delivered by inhalation 

(maintained in steps at the levels from 1% to 5% and back), which revealed constant ciliary 

beat frequency regardless of the level of isoflurane. Nevertheless, when interpreting the in 
vivo imaging data, the unknown potential effect from the isoflurane anesthesia should not be 

disregarded.

This study used one of the common mouse strains, CD-1, to demonstrate the in vivo imaging 

approach and present the previously unknown cell activities in the oviduct. For both wild-

type and mutant mice, genetic background could influence reproductive phenotypes (Silver, 

1995; Wang et al., 2004b). Thus, strain-related differences in the dynamics of oocytes/

embryos within the oviduct are possible, which might be because of potential differences in 

any physiological characteristics regulating the female reproductive system, such as 

hormonal levels. Future assessments of strain-related variations in the oviductal transport 

process using the described in vivo imaging approach could potentially address this 

question.

Imaging capabilities is a major limiting factor determining what can be studied in 

mammalian reproduction (Burton et al., 2015; Daloglu and Ozcan, 2017; Kölle et al., 2009; 

Trottmann et al., 2016). The presented approach for in vivo volumetric imaging of oocyte/

embryo dynamics inside the oviduct opens an avenue to answer critical questions that were 

previously impossible or very difficult to approach, for example, determining the dynamic 

role of oviduct in the oocyte/embryo transport and the mechanism underlying tubal embryo 

retentions. Ovulation and oocyte transport to the ampulla is another important aspect of the 

reproductive process to investigate. Also, the communications or interactions between 

gametes/embryos and the oviduct is an emerging research area that attracts increasing 

interest and attention (Almiñana, 2015; Avilés et al., 2015; Coy et al., 2012; Lee and Yeung, 

2006). In particular, the presence of sperm or semen in the oviduct was shown to be a 

modulator influencing the oviductal environment, including molecular and biochemical 

changes (Georgiou et al., 2007; Steinberger et al., 2017). These could potentially influence 

the described dynamic behaviors and the overall transport process of the oviduct. 
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Determining this possible effect is a focus of our future studies using the in vivo imaging 

approach, which will provide a further understanding on the role of gamete-oviduct 

interaction in regulating the oviductal function. Complementing the existing molecular-level 

investigations (Buhi et al., 1997; Coy et al., 2008; Georgiou et al., 2005; Ghersevich et al., 

2015) and combined with genetic or pharmacological manipulations (Ishikawa et al., 2016; 

Wang et al., 2004a), the presented imaging approach creates opportunities to understand the 

interplay between molecular and mechanical factors in oviductal physiology and early 

embryonic development (Ferraz et al., 2017; Suarez, 2016). Moreover, in combination with 

the previously reported in vivo OCT-based sperm tracking and ciliary beat mapping 

techniques (Wang et al., 2015a; Wang and Larina, 2018b), a powerful imaging tool set is 

now available for a complete in vivo assessment of the mouse oviduct. In addition, this 

imaging platform can be utilized as an in vivo screening assay to assess the effects of 

clinically relevant treatments (such as hormonal stimulations) and newly developed 

contraceptives on the oviductal behaviors and its transporting function, providing insights 

into the potential influence on fertility and pregnancy.

The OCT technology is under a rapid development, and future technical advances can 

greatly benefit the reproductive biology research. The imaging depth of our current OCT 

system covers the entire lumen of the oviduct, and the spatial resolution clearly distinguishes 

individual oocytes, embryos, and cumulus cells. However, it requires a careful orientation of 

the sample and does not capture the whole length of the oviduct because of its complex 

spatial organization. An extended imaging depth can be achieved by implementation of a 

light source centered at a longer wavelength, such as at ~1,000 or ~1,300 nm, which reduces 

optical absorption from blood and optical scattering from tissue (Ishida and Nishizawa, 

2012). Further improvement of the spatial resolution is possible by broadening the 

wavelength range of the light source and employing a higher magnification objective for 

microscopic imaging (Aguirre et al., 2015; Liu et al., 2011). Recently, with OCT, visualizing 

the intracellular structure of oocytes and preimplantation embryos has been demonstrated 

(Karnowski et al., 2017; Moore et al., 2019), leading to the capability of staging 

preimplantation development in vivo inside the mouse oviduct (Moore et al., 2019). Thus, it 

may be possible to identify the developmental stage of preimplantation embryos 

simultaneously with the dynamic imaging of their transport. The A-scan rate of the OCT 

system in this study was the major limitation to achieve a faster acquisition and a larger field 

of view. Through recent advancements in OCT technology, the A-line imaging speed can 

reach MHz level (Wang et al., 2015b) in comparison with the ~68 kHz in this study. This 

ultrahigh imaging speed could potentially reveal more temporal characteristics of the oocyte/

embryo dynamics, for example, further details of cell oscillations in the lower ampulla, 

isthmic-ampullary junction, and isthmus. Implementation of all these advancements brings 

the potential to image the entire mouse oviduct, both the ampulla and the isthmus, with a 

high volumetric acquisition rate, while maintaining high pixel density and resolution. Such 

an improvement could further elucidate the coordinative activities between the ampulla and 

the isthmus in a successful oocyte/embryo transport, which could not be addressed in this 

study.

To summarize, we present in vivo dynamic volumetric imaging of the oviductal transport in 

the mouse model at a micro-scale spatial resolution. The imaging data revealed previously 
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unknown movements of oocytes and preimplantation embryos in their native oviductal 

environment. These observations suggest a complex, spatially dependent regulatory process 

controlling the oviductal transport of oocytes and embryos. The presented in vivo imaging 

approach creates a platform for a variety of studies investigating underlying mechanisms in 

normal and pathological oviductal functions, as well as preimplantation development, 

contributing to a better management of infertilities and other reproductive disorders.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Irina V. Larina (larina@bcm.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—All data in this study are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental Animals—All animal procedures have been approved by the Institutional 

Animal Care and Use Committee at Baylor College of Medicine, and all experiments 

followed the approved guidelines and regulations. Experiments were performed on wild-type 

CD-1 female mice (age > 6 weeks, Strain Code 022, Charles River).

METHOD DETAILS

Surgical implantation of dorsal intravital window—The imaging window was 

implanted on the right dorsal side of the female mouse through sterile surgery. The windows 

were produced on a high-resolution 3D printer with gray resin (Formlabs). These windows 

are disposable and autoclavable. The window design featured a clear aperture of 10 mm in 

diameter for the optical imaging access; detailed information on the window dimension can 

be found in our previous work (Wang et al., 2018). The mouse was anesthetized by 

isoflurane inhalation and placed on a 37°C platform. The site for window implantation was 

processed for hair removal and skin disinfection. A circular part of skin tissue with ~1 cm 

diameter was removed, and the window was sutured to the edge of the skin through 14 

eyelets along the rim using 4–0 Nylon suture. Once the window frame was implanted, the 

muscle layer underneath the window aperture was cut for a ~2 mm incision to expose the 

reproductive organs. The ovary, the oviduct, and part of the uterus were gently pulled out of 

the body cavity and were stabilized by securing the fat pad associated with the ovary onto 

the window tissue holders using a tiny droplet of surgical glue. The window aperture was 

closed by a 12-mm-diameter circular cover glass and secured with a C-clip or O-ring. A 

thin, light metal cover was used to protect the window from potential chewing by the female 

mouse. Further details of the surgical procedure can be found in our previous work (Moore 

et al., 2019; Wang et al., 2018).

In vivo imaging with OCT—Imaging was performed with the mouse under isoflurane 

anesthesia placed on a heating platform to maintain the body temperature at 37°C. A house-

Wang and Larina Page 13

Cell Rep. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



built spectral domain OCT system was used in this study. Details of the system can be found 

in our previous work (Burton et al., 2015). Briefly, the system employs a broadband laser 

centered at ~810 nm with a spectral bandwidth of ~100 um. It utilizes a fiber-based 

Michelson interferometer for low-coherence interferometry, providing an axial resolution of 

~5 µm in tissue, a transverse resolution of ~4 µm, and an imaging depth covering the entire 

oviductal lumen. OCT imaging was conducted through the circular cover glass on the dorsal 

window that was stabilized by clamping the frame extensions. For all experiments, the A-

scan (in-depth line) rate of the OCT system was set at ~68 kHz. Different combinations of 

the volume dimensions (the number of A-lines per B-scan image and the number of B-scans 

per volume) were used to achieve a desired volume rate, which was up to 4 Hz. Different 

types of data acquisition were performed, including a single 3D imaging that covers a large 

transverse field of view, a time-lapse continuous 3D acquisition for a 4D imaging, and a 

repeated 4D acquisition over certain time intervals for a 5D imaging.

Image volumetric rendering and visualization—The Imaris software (Oxford 

Instruments) was utilized for reconstruction and rendering of 3D, 4D, and 5D datasets. 

Clipping plane function was used to present the cross-sectional views through the volume. 

The spot function was used to highlight oocytes/embryos in red color inside the oviductal 

lumen, and the spot tracking function was utilized to produce trajectories of oocytes and 

embryos.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of oocyte/embryo movement and oviductal dynamics—From the 

4D datasets, the measurements of oocyte/embryo velocity and speed were obtained based on 

cell tracking performed in Imaris. The time-resolved speed profile, average speed, and 

maximum speed were directly obtained. The direction of cell movement with respect to the 

lumen was identified through analyzing the x, y, and z velocity vectors provided by the 

software. For measuring the perimeter of the oocyte circling path in the upper ampulla, 3D 

positions of the oocyte over one circle were exported from Imaris, which were smoothed in 

3D, as shown in Figure S2. The length of the smoothed 3D trajectory was then measured as 

the perimeter of the oocyte circling path. For quantification of the oviductal dynamics, the 

luminal area was measured by segmentation in ImageJ. The contraction and relaxation of the 

oviduct lumen were examined by the luminal area change as the first derivative of the 

luminal area over time. The luminal contraction wave speed was determined by a 

spatiotemporal assessment of the luminal area change along the tube as detailed in our 

previous work (Wang et al., 2018).

Statistical Analysis—All statistical details are indicated in the figure panels and figure 

legends. The statistics of linear regression was performed in OriginPro (OriginLab) with an 

α value of 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Dynamic 3D imaging of oocyte/embryo transport in the mouse oviduct in 
vivo

• Quantitative assessment of oocyte/embryo movement and oviductal activities

• Circling movement of cumulus-oocyte complexes in the upper ampulla

• Grouping and separation of preimplantation embryos in the lower ampulla
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Figure 1. High-resolution 3D imaging of the mouse oviduct with OCT through a dorsal intravital 
window
(A) Illustration for dorsal implantation of the window.

(B) Image of the window setup and the reproductive organs in vivo.

(C) Bright-field visualization of the oviduct through the dorsal window in vivo.

(D) 3D OCT imaging of the mouse oviduct and ovary through the dorsal window in vivo.

(E) Cross-section of in vivo 3D OCT image at the ampulla shows oocytes surrounded by 

cumulus cells.

(F) Cross-section of in vivo 3D OCT image at the isthmus shows the preimplantation 

embryo. Scale bars: 200 µm (D and E); 300 µm (F).
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Figure 2. Circular movement of cumulus-oocyte complexes in the upper ampulla
(A) Volumetric view shows the location of oocytes in the upper ampulla.

(B and C) Corresponding cross-sectional 3D image shows (B) cumulus-oocyte complexes 

and a trajectory of oocyte movement (Video S1), as well as (C) relative positions of three 

representative oocyte trajectories in the upper ampulla (Video S2).

(D) Two oocyte trajectories in the upper ampulla show synchronized outer and inner circular 

movements.

(E) Average speed of oocyte movements in the upper ampulla. Red line: mean; whiskers: 

range.

(F) Linear regression of the average speed versus the perimeter of oocyte circling movement 

in the upper ampulla shows a statistically significant dependence.

(G) Cross-sections through volumetric time lapses at 2-h intervals show constriction of the 

oviductal lumen, forming a ‘‘gate’’ (cyan double dashed lines) and restricting the region of 
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circling cumulus-oocyte complexes (green dashed circles), as well as the gradual opening of 

the ‘‘gate’’ over the period of 6h (Video S3). Blue dashed lines in the top panels indicate the 

locations of cross-sections in the bottom panel. Scale bars: 500 µm (A); 300 µm (B, C, and 

G, top panels); 200 µm (D and G, bottom panels).
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Figure 3. Pulsatile oscillations and slow forward progression of oocytes in the lower ampulla
(A) Volumetric OCT view shows the location of oocytes in the lumen of the lower ampulla, 

close to the isthmic-ampullary junction.

(B) Cross-section of the 3D volumetric time lapse with labeled oocyte trajectories. The 

trajectories are color coded according to time. The oocytes with the remaining cumulus cells 

exhibited pulsatile oscillations with a slow forward progression over time (Video S4). Such 

pulsatile oscillations of oocytes were observed in two mice.

(C and D) Zoom-in views of a representative oocyte trajectory color-coded for (C) time and 

(D) oocyte speed.

(E and F) Cross-sectional 3D views along the lumen of the lower ampulla and also covering 

the upper isthmus. Directions of the oocyte movement are labeled with long cyan arrows. (E) 

Opening of the lumen in the upper isthmus (short magenta arrow) corresponded to a forward 

movement of oocytes (short cyan arrows) toward the isthmic-ampullary junction, while (F) 
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closing of the lumen in the upper isthmus showed correspondence to a backward movement 

of oocytes in the lower ampulla. Dynamics of such movements can be visualized in Video 

S5.

(G) Overlay of the upper-isthmus luminal area change (blue line) and the oocyte velocity in 

the lower ampulla (brown line) over time shows that the isthmus expansions consistently 

corresponded to the forward movements of oocytes.

(H) Zoom-in views of the plot from two regions labeled in (G).

(I) Overlaid plots of frequency spectra of luminal area change and oocyte velocity (obtained 

by fast Fourier transform) show a good overlap between the peaks.

(J) Linear regression of the oocyte velocity in the lower ampulla versus the luminal area 

change in the upper isthmus shows the correlation of the two activities. Scale bars: 300 µm 

(A); 200 µm (B); 30 µm (C and D); 250 µm (E and F).
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Figure 4. Embryo grouping, separation, and movement of the embryo group in the lower 
ampulla
(A) Cross-sectional 3D image shows the widely open lower-ampulla lumen with a large 

group of preimplantation embryos. The large embryo group (red arrows) remained relatively 

intact and stable over 2 h (Video S6).

(B) Separation of an individual embryo from a large embryo group (Video S7).

(C) Grouping of an individual embryo with a three-embryo group (Video S8).

(D) Embryo trajectories over the grouping event.

(E) Speed of the individual embryo and embryo groups over the grouping event.

(F) Linear regressions of the speed of embryo groups versus the number of embryos within 

the group showing that both the average and maximum speed of the group are dependent on 

the number of embryos. The more embryos in the group, the lower the speed of the group. 

The speed data represent the mean value from all embryos in the corresponding size of 

groups. Observations were made in three mice. Scale bars: 200 µm.
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Figure 5. Bi-directional, fast, long-distance movements of preimplantation embryos with 
peristaltic luminal contraction waves in the isthmus
(A) Volumetric OCT view shows the location of preimplantation embryos in the isthmus.

(B) Cross-section through the volumetric time lapse with representative embryo trajectories 

demonstrates forward and backward movements of embryos (Video S9). The bi-directional 

movements of preimplantation embryos were observed in two mice.

(C) Trajectories color-coded with the movement speed from two embryos.

(D) Peristaltic luminal contraction wave propagation in the isthmus (Video S10).

(E) Average wave speed and contraction frequency in the isthmus. Red line: mean; whiskers: 

range. Scale bars: 500 µm (A); 200 µm (B and D); 100 µm (C).
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Figure 6. Localized oscillations of preimplantation embryos in the lower isthmus at the entrance 
to the utero-tubal junction
(A) Volumetric OCT view shows the location of preimplantation embryos in the lower 

isthmus close to the utero-tubal junction.

(B) Segmentation and tracking of embryos revealed localized oscillating movements (Video 

S11).

(C) The average speed of localized embryo oscillations. Red line: mean; whiskers: range. 

Scale bars: 500 µm (A); 100 µm (B).
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Figure 7. 
Summary of observed oocyte/embryo dynamics in different regions of the oviduct
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Mouse (wild-type, CD-1) Charles River Laboratories Strain code: 022

Software and algorithms

Imaris Oxford Instruments https://imaris.oxinst.com/

ImageJ NIH https://imagej.nih.gov/ij/

Other

Drawing of the dorsal intravital window with detailed dimensions Wang et al., 2018 jbio201700316-sup-0004-FigureS1.docx

3D printer Formlabs Form 2

Resin Formlabs Grey resin
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