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Predictive accuracy of risk factors and
markers: a simulation study of the effect
of novel markers on different
performance measures for logistic
regression models
Peter C. Austina,b,c*† and Ewout W. Steyerbergd

The change in c-statistic is frequently used to summarize the change in predictive accuracy when a novel risk
factor is added to an existing logistic regression model. We explored the relationship between the absolute
change in the c-statistic, Brier score, generalized R2, and the discrimination slope when a risk factor was added
to an existing model in an extensive set of Monte Carlo simulations. The increase in model accuracy due to
the inclusion of a novel marker was proportional to both the prevalence of the marker and to the odds ratio
relating the marker to the outcome but inversely proportional to the accuracy of the logistic regression model
with the marker omitted. We observed greater improvements in model accuracy when the novel risk factor or
marker was uncorrelated with the existing predictor variable compared with when the risk factor has a positive
correlation with the existing predictor variable. We illustrated these findings by using a study on mortality pre-
diction in patients hospitalized with heart failure. In conclusion, the increase in predictive accuracy by adding a
marker should be considered in the context of the accuracy of the initial model. Copyright © 2012 John Wiley &
Sons, Ltd.

Keywords: logistic regression; predictive model; predictive accuracy; Brier score; discrimination; c-statistic;
ROC curve

1. Introduction

Logistic regression models are frequently used for developing prediction models for dichotomous
outcomes. Examples include the Enhanced Feedback for Effective Cardiac Treatment-Heart Failure
(EFFECT-HF) mortality prediction model for predicting mortality in patients hospitalized with heart
failure [1] or the Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded
Coronary Arteries (GUSTO) trial (GUSTO-I) model for predicting short-term mortality in patients
hospitalized with an acute myocardial infarction [2]. Clinical prediction models can be developed for
several reasons: they permit effective risk stratification of patients, they can be used in the design and
analysis of randomized controlled trials [3], and they can be used for risk adjustment purposes when
comparing patient outcomes between healthcare providers [4].

Authors have proposed several different measures to describe the predictive accuracy of a logistic
regression model. These include the c-statistic (equivalent to the area under the receiver operating charac-
teristic curve, often denoted by AUC), Brier score, Nagelkerke’s generalized R2, and the discrimination
slope [5–7].
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The objective to the current paper was to explore changes in the c-statistic, Brier score, generalized
R2, and the discrimination slope in situations in which a risk factor or novel marker is added to an exist-
ing model. To address this objective, we performed an extensive set of simulations reflecting scenarios
that reflect current epidemiological research on new risk factors. We illustrated our findings using a
dataset in which we examined whether patient frailty provided prognostically important information
beyond that provided by simple mortality prediction models for patients hospitalized with heart failure.

2. Methods: measures of predictive accuracy considered

The c-statistic is the rank order statistic for predictions against true outcomes. It is calculated by taking
all possible pairs of subjects consisting of one subject who experienced the outcome of interest and one
subject who did not experience the outcome. The c-statistic is the proportion of such pairs in which the
subject who experienced the outcome had a higher predicted probability of experiencing the event than
the subject who did not experience the outcome [7]. Reporting the model c-statistic is an essential com-
ponent of assessing the predictive accuracy of a logistic regression model [5] but has been criticized as
being insensitive to adding information from forthcoming genetic markers and biomarkers [8].

Brier score, the mean squared prediction error, is defined as 1
N

NP
iD1

�
OPi � Yi

�2
, where N denotes the

sample size, OPi is the predicted probability of the outcome, and Yi is the observed outcome (1/0). We
also considered the scaled Brier score, in which Brier score is scaled by its maximum possible score:
Brierscaled D 1�Brier/Briermax, where Briermax Dmean.p/�.1�mean.p//2C.1�mean.p//�mean.p/2,
with mean(p) denoting the average probability of the outcome [4]. The generalized R2N index is defined

by R2N D
1�exp.�LR=n/
1�exp.�L0=n/

, where LR is the global log likelihood ratio statistic for testing the importance of

all p predictors in the regression model and L0 is the �2 log likelihood for the null model [7, 9, 10].
Finally, Pencina et al. have suggested that the improvement in prediction due to novel risk factors be

summarized using the Integrated Discrimination Improvement (IDI) [6]. Given a new regression model
that includes a novel risk factor and an older regression model in which this risk factor is omitted, the
IDI is estimated as follows:

IDID
�
NOpnew,events � NOpnew,nonevents

�
�
�
NOpold,events � NOpold,nonevents

�

where NOpnew,events is the mean of the new model-based predicted probabilities of an event for those who
develop events, whereas NOpnew,nonevents is the mean of the new model-based predicted probabilities of an
event for those who do not develop an event. NOpold,events and NOpold,nonevents are defined similarly for the old
regression model. The term in the first parenthesis is the discrimination slope for the new model, whereas
the term in the second parenthesis is the discrimination slope for the old model. It has been noted that the
IDI is related to the change in the proportion of variance explained between the model with and without
the novel marker or risk factor [11].

We note that (scaled) Brier and IDI consider the squared distances between predicted probabilities
and observed outcomes. Nagelkerke’s R2 is related to the LR statistic and considers these distances on
a logarithmic scale [4].

The c-statistic, Brier score, and the generalized R2 can be estimated using the val.prob function in the
Design package for R. The IDI can be estimated using the improveProb function in the Hmisc package
for R.

3. Methods: Monte Carlo simulations

In this section, we describe a series of Monte Carlo simulations that were conducted to examine the
incremental increase in model accuracy due to the inclusion of a risk factor or novel marker in a logistic
regression model. We considered settings in which the risk factor or marker was dichotomous and
settings in which it was continuous. We also allowed the correlation between the risk factor and a
continuous predictor variable to vary across the simulations.

We randomly simulated two predictor variables for each of 1000 subjects. We simulated the first
predictor variable from a normally distributed random variable with mean 0 and standard deviation
�c. When the second covariate (the risk factor) was dichotomous, it was simulated from a Bernoulli
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distribution with parameter pbinary; when it was continuous, it was simulated from a standard normal
distribution. We determined a linear predictor as follows: logit.pi /D�1Cˇcxc;i Cˇrf xrf;i , where pi
denotes the subject-specific probability of the binary outcome occurring and xrf denotes the dichoto-
mous or continuous risk factor. For each subject, we then randomly generated a binary outcome from a
Bernoulli distribution with subject-specific parameterpi . We then fit two logistic regression models in
the simulated dataset. The first was a univariate logistic regression model in which the binary outcome
was regressed on the continuous predictor variable Xc . The second was a logistic regression model that
included both the continuous variable Xc and the risk factor Xrf . We estimated each of the measures of
predictive accuracy discussed in Section 2 using each of the logistic regression models. We calculated
the difference in each measure of accuracy between the two logistic regression models. As noted
previously, the difference between the two discrimination slopes is the IDI. We repeated this process
1000 times.

This set of Monte Carlo simulations used a full factorial design. When the risk factor was dichoto-
mous, the following factors were varied: exp.ˇc/ (the odds ratio relating the independent continuous
predictor variable to the binary outcome), exp.ˇrf / (the odds ratio relating the dichotomous risk factor
to the binary outcome), �c (the standard deviation of the independent continuous predictor variable),
and pbinary (the prevalence of the binary predictor variable). We allowed exp.ˇc/ to vary from 1 to 4 in
increments of 0.25, �c to vary from 0.25 to 4 in increments of 0.25, exp.ˇrf / to take on the values 1.25,
1.5, 2, 3, and 5, and pbinary to take on the values 0.1, 0.25, and 0.5. We thus considered 3120 different
scenarios when the risk factor was dichotomous. When the risk factor was continuous, the follow-
ing factors were varied: exp.ˇc/ (the odds ratio relating the independent continuous predictor vari-
able to the binary outcome), exp.ˇrf / (the odds ratio relating the continuous risk factor to the
binary outcome), and �c (the standard deviation of the independent continuous predictor variable).
We allowed exp.ˇc/, �c, and exp.ˇrf / to vary as above. We thus considered 1040 different scenarios
when the risk factor was continuous. In each of these scenarios, we computed the mean improvement in
predictive accuracy due to the inclusion of the risk factor across the 1000 simulated datasets.

In the above two scenarios, it was assumed that the binary or continuous risk factor was indepen-
dent of the continuous covariate that was included in the logistic regression model. We modified the
above two scenarios by inducing a correlation between the continuous covariate and the risk factor.
When the risk factor was continuous, the continuous covariate and the risk factor was simulated from

the following multivariate normal distribution:

�
xc
xrf

�
� MVN

��
0

0

�
;

�
�2x 0:5�x
0:5�x 1

��
, where

the second matrix denotes the variance–covariance matrix of the bivariate normal distribution. Thus,
the correlation between the two continuous variables was 0.5. When the risk factor was dichotomous,
we simulated the continuous covariate and a second continuous covariate from the following multi-

variate normal distribution:

�
xc
x2

�
� MVN

��
0

0

�
;

�
�2x 0:5�2x
0:5�2x �2x

��
(the second continuous

covariate can be thought of as a latent variable underlying the dichotomous risk factor). The correla-
tion between the continuous covariate and the continuous latent variable will be 0.5. We dichotomized
the second continuous covariate, so that the risk factor was defined to be present if the second continuous
exceeded a specified threshold. We chose this threshold so that the risk factor was present for the desired
proportion of subjects (pbinary). We then modified the above scenario to examine a setting in which
the correlation between the continuous predictor variable and the risk factor was 0.8. We thus exam-
ined settings with a moderate and strong correlation between the continuous predictor variable and the
risk factor.

In the aforementioned six sets of scenarios, we examined the effect of adding a dichotomous or
continuous risk factor to a logistic regression model that contained a single continuous covariate. We
examined a seventh set of scenarios in which the existing logistic regression model consisted of two
independent covariates: a normally distributed covariate and a dichotomous covariate that followed a
Bernoulli distribution with parameter 0.5. We restricted our attention to settings in which the risk factor
was dichotomous. The following factors were varied: exp.ˇc/ (the odds ratio relating the independent
continuous predictor variable to the binary outcome), exp.ˇrf / (the odds ratio relating the dichotomous
risk factor to the binary outcome), �c (the standard deviation of the independent continuous predictor
variable), and pbinary (the prevalence of the dichotomous risk factor). We allowed exp.ˇc/ to vary from 1
to 4 in increments of 0.25, �c to vary from 0.25 to 4 in increments of 0.25, exp.ˇrf / to take on the values
1.25, 1.5, 2, 3, and 5, and pbinary to take on the values 0.1, 0.25, and 0.5. We assumed that the odds ratio
relating the binary covariate to the outcome was equal to half of the odds ratio relating the continuous
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covariate to the outcome. We thus examined 3120 scenarios in which the initial logistic regression model
had two covariates.

For all the simulations, we randomly generated data using the R statistical programming language [12].

4. Results: Monte Carlo simulations

4.1. Binary risk factor

We describe the relationship between the mean change in predictive accuracy due to the inclusion of a
dichotomous risk factor and the predictive accuracy of the univariate logistic regression model across the
3120 scenarios in Figures 1–5. Note that lower values of Brier score are indicative of greater predictive
accuracy, whereas for remaining measures of model accuracy, greater values are indicative of greater
predictive accuracy. Several observations warrant mention. First, for each combination of odds ratio and
prevalence of the binary risk factor, the improvement in predictive accuracy due to the inclusion of the
binary risk factor was inversely proportional to the predictive accuracy of the model that included only
the continuous predictor variable. Second, when the prevalence of the binary risk factor and the pre-
dictive accuracy of the univariate model were fixed, the change in predictive accuracy was proportional
to the odds ratio for the binary risk factor. Third, holding the other factors fixed, the improvement in
predictive accuracy was proportional to the prevalence of the binary risk factor: we observed greater
improvements in predictive accuracy as the prevalence of the binary risk factor increased. Finally, for a
given measure of model accuracy, the improvement in model accuracy due to the inclusion of the binary
risk factor tended to decrease as the correlation between the risk factor and the continuous predictor
variable increased. The greatest increase in model accuracy tended to be observed when the risk factor
and the predictor variable were uncorrelated with one another. The magnitude of the effect of correlation
tended to increase as the odds ratio for the binary risk factor increased.

4.2. Continuous risk factor

We describe the relationship between the mean change in predictive accuracy due to the inclusion of
a continuous risk factor and the predictive accuracy of the univariate logistic regression model across
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Figure 1. Relationship between change in c-statistic and c-statistic of univariate model (binary risk factor).
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Figure 2. Relationship between change in Brier score and Brier score of univariate model (binary risk factor).
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Figure 3. Relationship between change in scaled Brier score and scaled Brier score of univariate model
(binary risk factor).

the 1040 scenarios in Figure 6. As mentioned previously, several observations warrant mention. First,
for each odds ratio relating the continuous risk factor to the binary outcome, the improvement in
predictive accuracy due to the inclusion of the continuous risk factor was inversely proportional to the
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Figure 4. Relationship between change in R2 and R2 of univariate model (binary risk factor).
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Figure 5. Relationship between Integrated Discrimination Improvement (IDI) and discrimination slope of
univariate model (binary risk factor).

predictive accuracy of the model that included only the continuous predictor variable. Second, when the
predictive accuracy of the univariate model was fixed, the change in predictive accuracy was propor-
tional to the odds ratio for the continuous risk factor. Finally, for a given measure of model accuracy,
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Figure 6. Continuous risk factor.

the improvement in model accuracy due to the inclusion of the continuous risk factor decreased as the
correlation between the risk factor and the continuous predictor variable increased. We observed the
greatest increase in model accuracy when the risk factor and the predictor variable were uncorrelated
with one another.

4.3. Multivariable model

In the final set of scenarios, we examined the improvements in model accuracy due to the addition of a
binary risk factor to a logistic regression model that contained two predictor variables (a normally
distributed variable and a Bernoulli-distributed variable). We describe the results in Figure 7. We
observed findings similar to the settings in which a binary risk factor was added to a logistic regression
model containing a single continuous predictor variable.

4.4. Miscellaneous analyses

As noted previously, when the risk factor was dichotomous, improvements in model accuracy were pro-
portional to the prevalence of the risk factor and to the odds ratio relating the risk factor to the binary
outcome. We explored the nature of this relationship further in the setting in which the dichotomous risk
factor was independent of the continuous covariate. Using the results from the 3120 scenarios in this
setting, we used an analysis of variance model to regress the improvement in model accuracy on the
following three variables: the accuracy of the model with only the single continuous covariate (1 df), the
prevalence of the dichotomous risk factor (2 df), and the odds ratio of the dichotomous risk factor (4 df),
along with all two-way interactions. Using the fitted model, we then estimated the change in model
accuracy for each combination of prevalence and odds ratio when the accuracy of the univariable model
was set to the median value across the 3120 scenarios. We report the results in the dot charts in Figure 8.
The most striking observation is the interaction between the prevalence of the risk factor and the odds
ratio relating it to the outcome. When the odds ratio was low (OR D 1:25), increasing the prevalence
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Figure 7. Multivariable risk model.
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Figure 8. Effect of odds ratio and prevalence of risk factor on increase in model accuracy.
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of the risk factor had a negligible impact on model accuracy. However, as the odds ratio increased, the
effect of increasing prevalence was amplified. When the odds ratio was large (OR D 5), then the effect
of increasing prevalence on model accuracy was strong.

5. Case study

We briefly provide a case study to examine the change in measures of model performance when a novel
risk factor is added to an existing logistic regression models.

5.1. Data

The EFFECT Study is an initiative intended to improve the quality of care for patients with cardiovas-
cular disease in Ontario [13, 14]. During the first phase of the study, detailed clinical data on patients
hospitalized with heart failure between April 1, 1999 and March 31, 2001, at 103 hospitals in Ontario,
Canada, were obtained by retrospective chart review. Data on patient demographics, vital signs and
physical examination at presentation, medical history, and results of laboratory tests were collected for
this sample. Subjects with missing data on continuous baseline covariates necessary to estimate the
risk scores were excluded from the current case study. The case study used 8635 patients who were
hospitalized for acute heart failure.

5.2. Methods

We considered two models for predicting death within 30 days of hospital admission. The first model
used patient age as the only predictor of mortality. The second model used the EFFECT-HF mortal-
ity prediction model [1]. The EFFECT-HF mortality prediction model is a point-based scoring system
for predicting the risk of 30-day and 1-year mortality. It uses the following patient characteristics to
determine a score for predicting short-term mortality: age, respiratory rate, systolic blood pressure, urea
nitrogen, sodium concentration, cerebrovascular disease, dementia, chronic obstructive pulmonary dis-
ease, hepatic cirrhosis, and cancer. The novel risk factor that we considered was whether the patient had
documented evidence of frailty in the medical record, defined as occurring if the physician used the term
‘frail’ in the patient’s medical record.

We fit four separate logistic regression models to predict 30-day mortality. The regression model used
the following sets of predictor variables: (i) age as the sole predictor; (ii) age and frailty as two predictor
variables; (iii) the EFFECT-HF risk score as the sole predictor; and (iv) the EFFECT-HF risk score and
frailty as two predictor variables. For each logistic regression model, we computed the following per-
formance measures: c-statistic, generalized R2, discrimination slope, Brier score, and the scaled Brier
score. We determined the change in each measure of model performance when an indicator variable
denoting the presence of frailty was added to each of the univariate models.

5.3. Results

The c-statistics of the logistic regression models with either age or the EFFECT-HF score as the only
predictor variables were 0.636 and 0.753, respectively (Table I). Both the absolute and relative increase
in the c-statistic were greater when an indicator variable denoting the presence of frailty was added to
the model with age than when the same marker was added to the model with the EFFECT-HF score

Table I. Measures of performance for different logistic regression models in the EFFECT-HF
sample of patients hospitalized with acute heart failure.

Logistic regression model

Performance measure Age Age C frailty EFFECT-HF score EFFECT-HF scoreC frailty

c-statistic 0.636 0.641 0.753 0.754
R2 index 0.046 0.050 0.162 0.163
Brier score 0.0933 0.0931 0.0863 0.0862
Scaled Brier score 0.024 0.026 0.098 0.098
Discrimination slope 0.023 0.026 0.099 0.100

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 661–672
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(absolute change: 0.005 vs. 0.001). Similarly, there was a greater improvement in the other performance
measures (change in the model R2, (scaled) Brier score, and the change in discrimination slope (IDI)).

The relative change in model performance due to the addition of frailty to the model that contained
age as the sole predictor variable was, in order of increasing relative change: Brier score (0.2% increase),
c-statistic (0.8% increase), scaled Brier score (8.3% increase), R2 (8.7% increase), and the discrimina-
tion slope (13.0%).

In summary, we observed phenomena in the case study similar to the results of our series of Monte
Carlo simulations. In particular, greater improvements in model accuracy due to the inclusion of a binary
risk factor are possible when the initial model has lower performance compared with when the initial
model has higher performance.

6. Discussion

The improvement in model accuracy due to the addition of either a binary or a continuous risk factor to
an existing logistic regression model was inversely proportional to the accuracy of the initial model. For
each measure of model accuracy, the improvement in accuracy was proportional to the odds ratio relating
the risk factor to the outcome. Furthermore, when the risk factor was dichotomous, the improvement in
model accuracy was proportional to the prevalence of the dichotomous risk factor. For a given measure
of model accuracy, the improvement in model accuracy due to the inclusion of the risk factor tended to
decrease as the correlation between the risk factor and the continuous predictor variable increased. We
observed the greatest increase in model accuracy when the risk factor and the predictor variable were
uncorrelated with one another. Finally, when the risk factor was dichotomous, we observed a synergis-
tic effect of the odds ratio and the prevalence of the dichotomous risk factor on the increase in model
accuracy. There are important implications of these observations for researchers examining the ability of
novel risk factors to predict outcomes. First, only minor to modest improvements in predictive accuracy
are feasible when incorporating a new risk factor when the pre-existing regression model already has
high accuracy [15]. Conversely, greater improvements are possible when the pre-existing model has low
accuracy. Second, greater improvements in accuracy will be observed when a dichotomous risk factor
with higher prevalence is added to a regression model compared with when a dichotomous risk factor
with lower prevalence is added. Third, greater improvements in accuracy are possible when the odds
ratio relating the risk factor to the outcome is larger [16]. Finally, greater improvements in accuracy are
possible when the risk factor is uncorrelated with the existing predictor compared with when the risk
factor has a positive correlation with the existing predictor variable.

Tzoulaki et al. reviewed articles examining the improvements in predicting cardiovascular events
when an additional risk factor was added to the Framingham risk score (FRS) [17]. In studies that
reported the increase in c-statistic when an additional risk factor was added to the FRS, they observed
that the increase in c-statistic was inversely proportional to the c-statistic of the regression model that
only included the FRS. They write that ‘this may be due to chance (regression to the mean), genuine
differences in study characteristics, or a conglomerate of diverse biases that decrease the predictive per-
formance of the FRS’ (p. 2349) and that ‘studies without these methodological flaws did not show any
substantial improvements in AUC’ (p. 2450). Our simulations demonstrated that the inverse relationship
between the increase in the c-statistic and the c-statistic of the model with only the FRS was likely not
due to chance alone, to bias, or to regression to the mean. Instead, this observation appears to be an
underlying property of the c-statistic and other measures of model accuracy: given the same risk factor
or marker, greater improvements in predictive accuracy are possible in settings in which the underlying
regression model has lower discrimination compared with settings in which it has higher discrimination.

A limitation of the current study is that we did not consider recently proposed measures that consider
the ability of risk factors to improve classification accuracy, nor did we consider decision analytic mea-
sures that incorporate the relative costs of false-positive and false-negative decisions [6, 18–21]. In the
current study, we focused our attention on predicting the risk or probability of an event, rather than on
categorizing patients into different states. Examining the effects of adding risk factors on the accuracy
of classifications is beyond the scope of the current study. Another limitation is that we only considered
the situation in which a risk factor (either dichotomous or continuous) was added to a logistic regression
model that consisted of either a single continuous predictor variable or of a continuous predictor variable
and a dichotomous predictor variable. We consider it likely that our results generalize to situations of
a reference model with a mixture of more than two categorical and continuous predictors. Finally, we
focused on odds ratios in the range of 1.25 to 5, whereas many genetic markers may have smaller effects,
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for example, around 1.1 to 1.25. These genetic markers may then be summarized in gene scores or risk
profiles [22]. Again, on the basis of our results with an odds ratio of 1.25, we consider it likely that our
results regarding the behavior of these performance measures generalize to these situations of limited
predictive genetic effects.

In the current study, we restricted our attention to predicting the probability of the occurrence of a
binary outcome and did not consider settings with survival or time-to-event outcomes. Several authors
have proposed different extensions of the c-statistic or the AUC for use with time-to-event outcomes in
the presence of censoring [23–27]. Chambless et al. have proposed extensions of the R2 and the IDI
for use with survival outcomes in the presence of censoring [28]. A comprehensive examination of the
sensitivity of these different measures of predictive accuracy for survival outcomes to the inclusion of
novel risk factors or markers merits examination in a separate paper. However, we would expect similar
findings for these extensions of measures of model accuracy when applied to Cox regression models with
binary or continuous markers. In particular, we would expect that for a given measure of accuracy, the
improvement in model accuracy would be proportional to the hazard ratio relating the risk factor to the
outcome. Furthermore, when the risk factor is dichotomous, we would anticipate that the improvement
in model accuracy would be proportional to the prevalence of the dichotomous risk factor.

In conclusion, improvements in accuracy of a logistic regression model due to the inclusion of a novel
risk factor or marker need to be interpreted in their context, specifically the accuracy of the model with
the risk factor omitted.
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