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Lymphatic vessels are necessary for maintaining tissue fluid balance, trafficking

of immune cells, and transport of dietary lipids. Growing evidence suggest that

lymphatic functions are limited under hypercholesterolemic conditions, which is

closely related to atherosclerotic development involving the coronary and other

large arteries. Indeed, ablation of lymphatic systems by Chy-mutation as well as

depletion of lymphangiogenic factors, including vascular endothelial growth factor-C

and -D, in mice perturbs lipoprotein composition to augment hypercholesterolemia.

Several investigations have reported that periarterial microlymphatics were attracted

by atheroma-derived lymphangiogenic factors, which facilitated lymphatic invasion

into the intima of atherosclerotic lesions, thereby modifying immune cell trafficking.

In contrast to the lipomodulatory and immunomodulatory roles of the lymphatic

systems, the critical drivers of lymphangiogenesis and the details of lymphatic insults

under hypercholesterolemic conditions have not been fully elucidated. Interestingly,

cholesterol-lowering trials enable hypercholesterolemic prevention of lymphatic drainage

in mice; however, a causal relationship between hypercholesterolemia and lymphatic

defects remains elusive. In this review, the contribution of aberrant lymphangiogenesis

and lymphatic cholesterol transport to hypercholesterolemic atherosclerosis was

highlighted. The causal relationship between hypercholesterolemia and lymphatic insults

as well as the current achievements in the field were discussed.
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INTRODUCTION

It is widely known that plasma dyslipidemia, which refers to elevation of plasma cholesterol
and/or triglyceride levels, impacts chronic inflammatory diseases, such as type 2 diabetes mellitus
and obesity. In particular, hypercholesterolemia can be responsible for lethal ischemic diseases,
including acute coronary syndrome and stroke, which is the leading cause of death globally
(1), as it is responsible for atherosclerotic vascular disease. Accordingly, controlling lipoprotein
cholesterol is necessary for the primary and secondary prevention of ischemic diseases (2). The
typical dyslipidemia pattern in type 2 diabetes comprises decreased high-density lipoprotein (HDL)
cholesterol and, occasionally, elevated low-density lipoprotein (LDL) cholesterol levels (3). As a
result, these metabolic diseases influence each other and worsen overall disease status. Oxidatively-
and enzymatically-modified LDL can directly induce cytotoxic responses in blood vessels as well as
metabolic organs. Much research has focused on such insults under the dyslipidemic conditions.

The lymphatic vessel network, which is spread throughout the body, is necessary for sustaining
systemic fluid balance, intestinal absorption of fats, and draining waste products from the
peripheral tissues. Lymphatic vessels, which are comprised of lymphatic endothelial cells (LECs),
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enable the production of chemokines to attract immune
cells to the interstitial regions within the tissues (4), and
interact with innate and adaptive immune cells. Among the
LEC-derived chemokines, CCL21 has a pivotal role in the
recruitment of dendritic cells (DCs) (5, 6). LECs can impact
the adaptive immune system to regulate peripheral tolerance
and immunomodulation (7). Microlymphatics around large
blood vessels were discovered more than a 100 years ago (8).
Notably, lymphatic dysfunction caused by Chy mutation or the
deficiency of lymphangiogenesis factors reportedly potentiates
atherosclerotic lesion progression (9, 10). This appears to be
due to the limitation of reverse cholesterol transport. Recently,
it was documented that hypercholesterolemia potentiates
lymphangiogenesis around the atherosclerotic arteries, thereby
modifying immune cell trafficking in lymphatic systems and
atherosclerotic lesions (11). In contrast, the exact mechanisms
underlying lymphatic insults as well as the causal relationship
between hypercholesterolemia-driven lymphangiogenesis and
atherosclerotic diseases are largely obscure. In this review, we
focused on the relationship between hypercholesterolemia-
driven lymphatic defects and atherosclerosis. The dysfunctional
regulation of LECs under hypercholesterolemic conditions is
also discussed.

LYMPHANGIOGENIC REGULATIONS
UNDER THE HYPERCHOLESTEROLEMIC
CONDITIONS

In the late 18th century, Hoggan et al. discovered
microlymphatics adjacent to the arterial wall (8). About a
century later, it was reported that dysfunctional lymphatic
drainage in allogenic transplanted hearts could be responsible
for the progression of coronary atherosclerosis (12). More
recently, it was reported that microlymphatics are enriched
in the adventitial regions of human atherosclerotic plaques
(13, 14). Notably, the density of the lymphatics is positively
correlated with the severity of atherosclerosis; thus, it is thought
that inflammatory elements, such as cytokines, chemokines,
and growth factors, may induce lymphangiogenesis within
atherosclerotic plaques (13). In addition to the adventitial
regions, lymphatics appear to be detectable within the
intraplaque regions of human carotid arteries (15). While
some studies documented the enrichment of the lymphatics
in atherosclerotic lesions, several other studies challenged this.
Eliska et al. could detect microlymphatics in the periadventitial
regions in human coronary arteries, whereas the vessels did not
penetrate into the vascular walls even in normal and atheroprone
arteries (16). Nakano et al. noted that microlymphatics in
human coronary atheromas, which are mainly detectable in
adventitial regions, were not correlated with the severity of
atherosclerosis as well as the expression of lymphatic driver
vascular endothelial growth factor-C (VEGF-C) and VEGF-
D (17). Apoe-deficient hypercholesterolemic mice showed
abundant adventitial lymphatics in comparison with age-
matched wild-type mice, while these were reduced during the
progression of the lesions (18). They interpreted that soluble

VEGFR-2, which is upregulated in advanced atherosclerotic
lesions, interrupts VEGF-C-induced lymphangiogenesis.
Collectively, the drivers as well as mechanisms underlying the
hypercholesterolemic regulation of periarterial microlymphatics,
are currently unclear. Whereas the lymphatic regulation within
other organs in hypercholesterolemic mice is mostly unclear,
sinus lymphatic vessels within lymph nodes are shown to
have hyperplastic appearance under hypercholesterolemic
conditions (19).

LYMPHATIC SYSTEMS AND
ATHEROGENESIS

Atherosclerosis is a vascular disease in which cholesterol-
enriched atherosclerotic lesions develop within the arterial
intima, resulting in narrowing of the luminal vascular walls
(20). Structural changes involving the arterial lumen lead to
thrombus formation due to perturbation of laminar blood
flow (21), resulting in arterial occlusion. In addition to
blood clotting, arterial occlusion is induced via rupture of
unstable atherosclerotic plaques (22). Vascular endothelial cell
dysfunction is associated with the initiation of atherosclerosis
(23). In the early stage of atherosclerosis, endothelial barrier
functions are disrupted by environmental stressors, such
as oxidative stress and inflammatory substances (24). This
reduced barrier function is responsible for the infiltration of
leukocytes and extravasation of plasma ingredients, including
oxidative LDL. In particular, monocyte-derived macrophages
tend to accumulate within the vascular walls. Monocytes
normally patrol the circulatory system and are attracted by
endothelial cell-derived chemoattractants, such as monocyte
chemoattractant protein-1. After recruitment into the intimal
space, monocytes differentiate into macrophages, which are
further converted to cholesterol-enriched foamy macrophages
(25). Since excessive accumulation of intracellular cholesterol
induces cytotoxicity, deposition of LDL cholesterol in the
vascular wall accelerates the necrosis of macrophages to form
cholesterol-enriched unstable plaques, which contain large
necrotic cores. During atherogenesis, lymphangiogenic drivers,
including VEGF-C, appear to be enriched within atherosclerotic
lesions (17, 18).

Recently, several studies have highlighted lymphatic
defects under hypercholesterolemic conditions as well as the
contribution of lymphatic systems to hypercholesterolemia
(Table 1). Martel et al. documented the role of aortic
microlymphatics in cholesterol drainage from atheromas
(9). They transplanted atheroprone aortae derived from
D6-cholesterol-loaded Apoe-deficient mice into Apoe-
deficient recipient mice. The leakage of D6-cholesterol from
the transplanted tissue was then monitored. As a result,
lymphangiogenesis was detected within the connecting region
between the recipient and implanted vessels, and D6-cholesterol
was transferred to recipient mice. Both lymphangiogenesis
and cholesterol drainage from the transplanted tissues
were prevented via the administration of anti-VEGFR3
blocking antibody, suggesting that cholesterol drainage
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TABLE 1 | Lymphatic function-related assessment and atherosclerosis-related phenotypes in normocholesterolemic and hypercholesterolemic animal models.

Animal or surgical procedure Lesion

size

Plasma cholesterol

levels

Other phenotype References

Wildtype mice with surgical dissection

of tail lymphatics

N/A N/A Cholesterol transport from tail to plasma↓ (9)

Chy mice N/A ↑ Reverse cholesterol transport↓ (9)

Transplantation of

D6-cholesterol-loaded atheromas to

Apoe−/− mice

N/A N/A Cholesterol transport from transplanted

atheromas to plasma↓

(9)

Chy/Ldlr−/−/ApoB100/100 mice with

Western diet

→ ↑ Intraplaque lymphatics↓ (10)

sVEGFR3×Ldlr−/−/ApoB100/100 mice

with Western diet

↑ ↑ Intraplaque lymphatics↓ (10)

Apoe−/− mice with VEGF-C treatment N/A → Reverse cholesterol transport↑ (26)

Wildtype mice with surgical disruption

of afferent lymphatic vessels

N/A → Reverse cholesterol transport↓ (26)

Pcsk9−/−/Ldlr−/− mice N/A ↓ Lymphatic drainage (collecting vessels)↑

Intimal microlymphatics in atheromas→

Plasma and lymph HDL cholesterol↓

(27)

Ldlr−/−/hApoB100/100 mice with

VEGF-C152S treatment

N/A ↑ Lymphatic drainage (collecting vessels)↑

Intimal microlymphatics in atheromas→

(27)

Apoe−/− mice (Chow vs Western diet) N/A N/A Intraplaque lymphatics↓

VEGF-C in aortic wall↑

sVEGFR-2 in aortic wall↑

(18)

Ldlr−/− mice with apoA-I treatment

and Western diet

↓ ↓ Lymphatic transport↑

Periaortic and dermis microlymphatics↑

Lymphatic fluid leakage↓

(28)

Apoe−/− mice with surgical

dissection of plaque-associated

lymphatic vessels

↑ N/A Intraplaque CD3+ T cells↑ (11)

Apoe−/− mice with transfection of

soluble hVEGFR3

→ N/A Intraplaque CD3+ T cells↑ (11)

LDLR−/− regression model with

VEGF-C152S treatment

↓ ↓ Lymphatic transport↑

Periaoritic microlymphatics→

Intraplaque CD68+ macrophages↓

Contraction of collecting lymphatic vessels↑

FOXC2 in collecting lymphatic vessels↑

(29)

→Unchanged, ↑Increased, ↓Decreased.

under hypercholesterolemic conditions is mediated through
angiogenic microlymphatics. Vuorio et al. documented that
insufficiency of lymphatic vessels by transgenic induction of
sVEGFR3 or Chy mutant augments hypercholesterolemia in
atherogenic mice (10). They crossed low-density lipoprotein
receptor/apolipoprotein B48-double knockout mice with
sVEGFR3- transgenic mice or Chy-mutant mice to induce
lymphatic insufficiency in hypercholesterolemic mice. As a
result, sVEGFR3-induced lymphatic insufficiency facilitated
the progression of atherosclerotic lesions. Rademakers
et al. reported that dissection of microlymphatics, which
connect the carotid artery and regional lymph nodes,
resulted in the expansion of carotid atherosclerotic lesions
(11). Since surgical lymphatic dissection appears to induce
accumulation of CD3+ T cells, but not macrophages,
adventitial microlymphatics may be a route for emigrating
CD3+ T cells from the lesions. Collectively, lymphatic
insufficiency exacerbates atherosclerotic lesion progression
within arteries.

LYMPHATIC VESSELS AND REVERSE
CHOLESTEROL TRANSPORT

Reverse cholesterol transport is indispensable for the
clearance of excessive cholesterol from peripheral tissues (30).
Mechanistically, ATP-binding cassette transporter A1 and ATP-
binding cassette transporter G1 in peripheral tissues integrate
intracellular cholesterol into apolipoprotein A-I (ApoA-I), a
constitutive apolipoprotein of HDL, thereby generating HDL
cholesterol. Subsequently, plasma and lymph HDL cholesterol
is incorporated into hepatocytes through scavenger receptor B1
(SR-B1), and HDL receptors (31). Accordingly, defective reverse
cholesterol transport induces elevation of plasma cholesterol
levels, leading to severe hypercholesterolemia. Some studies have
documented that lymphatic dysfunction leads to defective reverse
cholesterol transport. Hypercholesterolemia in Apoe-deficient
mice reportedly abrogates lymphatic drainage of intravenously
injected HDL as well as its transport to the liver (26). SR-B1
in LECs plays a central role in lymphatic reverse cholesterol
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transport, since this molecule can mediate transcytosis of
HDL in the cells (26). Furthermore, administration of ApoA-
I in hypercholesterolemic mice suppressed atherosclerosis
development, accompanied by resolution of lymphatic
hyperpermeability involving collecting lymphatic vessels
(28). While ApoA-I upregulates VEGFR3 in cultured LECs, the
exact mechanisms by which ApoA-I retains lymphatic function
remain elusive. Since the VEGF-C/VEGFR3 signaling pathway
reportedly increase permeability in LECs (32), causal relationship
between VEGFR3 and the ApoA-I-induced lymphatic protection
is unknown. In addition to VEGFR3 induction, ApoA-I appears
to potentiate platelet adhesion to LECs. Platelets are necessary
for blood/lymphatic vessel separation during embryogenesis
(33) and maintenance of the lymphvenous junction throughout
life (34). Since platelets reportedly confer stability to LECs
through physical interaction between C-type lectin-like receptor
2 in platelets and podoplanin in LECs, it is speculated that
ApoA-I-induces platelet adhesion to LECs, stabilizing lymphatic
vessels. Similar to ApoA-I, deficiency of proprotein convertase
subtilisin/kexin type 9 (PCSK9), a negative regulator of LDL
receptor, recovered lymphatic drainage in hypercholesterolemic
mice concomitantly with the suppression of atherosclerotic
lesions (27). Indeed, the LDL receptor, which is expressed
in LECs in mice, is downregulated in hypercholesterolemic
mice concomitantly with elevation of plasma PCSK9 levels.
Consistently, downregulated LDL receptors in LECs are
recovered via the targeted deficiency of PCSK9 (27). Retaining
LDL receptors in LECs was not associated with the density
of lymphatic vessels. Thus, LDL receptors may contribute
to lymphatic integrity rather than lymphangiogenic functions.
Furthermore, administration of ezetimibe, a cholesterol-lowering
drug, in hypercholesterolemic mice retained lymphatic drainage
(26). These observations suggest that hypercholesterolemia,
accompanying with declining plasma HDL-associated ApoA-I,
may disrupt the integrity of LECs and their barrier functions,
particularly in large lymphatic vessels, concomitantly with
dysfunction of SR-B1 in microlymphatics.

Since lymphatic insufficiency induced by transgenic
overexpression of sVEGFR3 reportedly elevated plasma
cholesterol levels in hypercholesterolemic mice, particularly
regarding VLDL and LDL fractions (10), it is likely that
endogenous VEGF-C and/or VEGF-D signaling pathways
may contribute to the clearance of these lipoproteins even
under hypercholesterolemic conditions. Lymphatic vessels are
reportedly associated with endogenous lipoprotein metabolism
through VLDL and LDL, as well as intestinal absorption of
chylomicrons (35). Therefore, VEGFR3-mediated lymphatic
modulation may be attributed to cholesterol transport toward
peripheral tissues through VLDL and LDL. Since VLDL
and LDL modification by lymphatic insufficiency appear to
be independently of HDL (10), these actions are probably
independent of HDL-associated reverse cholesterol transport. In
addition to overexpressing soluble VEGFR3, targeted deficiency
of VEGF-D exacerbates hypercholesterolemia (36). Indeed,
VEGF-D deficiency substantially elevates plasma cholesterol,
particularly in chylomicron and chylomicron remnant fractions.
In this case, VEGF-D appears to contribute to the hepatic

transcriptional regulation of lipid handling elements as well
as the incorporation of chylomicron remnants into the liver,
independent of its lymphangiogenic effects. Accordingly, VEGF-
D deficiency did not accelerate atherosclerosis progression in
hypercholesterolemic mice. Hence, lymphangiogenic factors, at
least VEGF-D, may have pleiotropic lipomodulatory functions,
in addition to their lymph-modulatory functions. Collectively,
hypercholesterolemia appears to abrogate transcytosis of HDL
within microlymphatics as well as integrity in large lymphatic
vessels as note above, whereas the contribution of periarterial
microlymphatics to atherogenesis and the exact pathophysiologic
mechanisms underlying the hypercholesterolemic lymphatic
insults are largely unknown.

LYMPHANGIOGENESIS UNDER
HYPERCHOLESTEROLEMIA

VEGF-C is a robust lymphangiogenic factor, which is
indispensable for lymphatic development (37). Several lines
of evidence suggest that VEGF-C is associated with lymphatic
patterning under hypercholesterolemic conditions. In addition
to VEGF-C, several modulatory elements that can be involved
in lymphangiogenesis under hypercholesterolemia have been
reported to date.

VEGF-C/VEGF-D Signaling
VEGF-C is abundantly expressed in foamy macrophages and
smooth muscle cells in human coronary atherosclerotic lesions
(17). Furthermore, VEGF-C is reportedly elevated in moderate
to advanced atheromas involving hypercholesterolemic mice
(18). However, it is noteworthy that adventitial microlymphatics
regress during lesion progression. Targeted delivery of VEGF-
C to atherosclerotic lesions failed to induce adventitial
lymphangiogenesis (38). Accordingly, the association
between VEGF-C accumulation during atherogenesis and
periarterial lymphangiogenesis remains unclear. Pretreatment of
hypercholesterolemic mice with VEGF-C reportedly improved
the contraction rate of collecting lymphatic vessels and
lymphatic transfer of inflammatory cells, thereby suppressing
atherosclerotic lesions (29). This suggests that VEGF-C may
impact the trafficking of immune cells via the collecting vessels
under hypercholesterolemic conditions rather than through
prolymphangiogenic actions in periarterial regions.

VEGF-D has a close structural and functional similarity
to VEGF-C (39) and possesses robust angiogenic and
lymphangiogenic activity. Similar to VEGF-C, VEGF-D action
is mediated through VEGFR3 (40), though it does not play a
major role in lymphatic development in mice (41). As noted
above, targeted deficiency of VEGF-D in hypercholesterolemic
mice elevated plasma cholesterol and triglyceride levels without
altering lymphangiogenesis and atherosclerosis (36). Transgenic
induction of soluble VEGFR3, which can interrupt VEGF-
C/D-induced signaling, was unable to inhibit adventitial
lymphangiogenesis (11). Hence, the lymphangiogenic effects
of VEGFR3 signaling under hypercholesterolemic conditions
remain elusive.
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Sphingosin-1-Phosphate Signaling
Sphingosine-1-phosphate (S1P) is a bioactive lipid synthesized
from ceramide (42). In the initial step of its synthesis, ceramidase
converts ceramide into sphingosine. Subsequently, sphingosine
kinase (Sphk)1 and Sphk2 phosphorylate sphingosine to form
S1P (43). Five subtypes of S1P receptors, including S1PR1-
S1PR5, have been reported to be involved in various physiological
and pathophysiological events, such as cardiovascular regulation,
immune regulation, neurodevelopment, neuroprotection, and
fibrogenic responses (44). Among them, S1PR1 was originally
cloned from vascular endothelial cells (45). Notably, S1P is
abundantly carried on HDL (46) and is believed to contribute
to the antiatherogenic action of HDL (47). Lyve1-driven ablation
of Sphk1 and lacking Sphk2 interrupt the production of S1P
in LECs, thereby depleting S1P within the lymph, but not
in the plasma (48). Such lymphatic S1P depletion induces
aberrant lymphatic morphology involving the trachea and
diaphragm, and interrupts lymphocyte egress from peripheral
tissues, indicating that LEC-derived S1P plays a crucial role in
lymphatic patterning and lymphocyte trafficking. Consistently,
S1P is reportedly involved in the transmigration of lymphocytes
in LECs through S1PR2/ERK-mediated regulation of junctional
proteins, including VE-cadherin, occludin, zonulin-1, and
VCAM1 expression (49). Importantly, S1P has been shown to
decline in LNs of hypercholesterolemic mice (19). Moreover,
hypercholesterolemia appears to accelerate lymphangiogenesis
within LNs and impair lymphocyte egress from these LNs.
Although intervention of S1P signaling in hypercholesterolemic
mice has not been performed so far, S1P depletion in
hypercholesterolemic mice can impact lymphatic pattering and
lymphocyte trafficking.

Lysophosphatidic Acid Signaling
Lysophosphatidic acid (LPA), a multifunctional bioactive
lysophospholipid, is involved in the pathogenesis of
atherosclerosis (50–53). LPA can be generated via several
enzymatic pathways (54). For instance, LPA is synthesized
from lysophosphatidylcholine by the action of autotaxin
(lysophospholipase D). Alternatively, phospholipase A2
mediates the conversion of phosphatidic acid to LPA through
hydrolysis of its sn-2 acyl chain. In addition to the synthetic
pathways noted above, LPA can be derived from glycerol-3-
phosphate by glycerol-3-phosphate acyltransferase-induced
addition of fatty acids toward the sn-1 position. Currently, six
species of G-protein-coupled LPA receptors, LPA1-LPA6, have
been reported (51). Among these receptors, LPA4 is involved
in lymphatic vessel formation during embryogenesis (55).
Moreover, LPA contributes to NF-κB-mediated induction of IL-8
in human dermal LECs, thereby potentiating lymphangiogenesis
(56). Furthermore, it has been documented that LPA1 is coupled
with S1PR1 to induce S1PR1/β-arrestin coupling and inhibit
Gαi signaling (57). This potentiates the disorganization of
intercellular junctions in sinus-lining LECs within LNs, which
facilitates the lymphatic transfer of lymphocytes toward the
LNs. Of note, LPA reportedly accumulates within atherosclerotic
lesions in human and hypercholesterolemic mice (58, 59). While
the prolymphangiogenic roles of LPA in hypercholesterolemic

conditions have not been proved in human and animal
experimental models, it is speculated that LPA in atheromas
attracts adjacent LECs to induce lymphangiogenesis.

Nitric Oxide Signaling
Nitric oxide (NO) is primarily derived from vascular endothelial
cells through endothelial NO synthase (eNOS) and its substrate
L-arginine (60), and is associated with vasodilation when
adjusting regional pressure-flow balance (61–63). In addition to
its vasomotor functions, NO possesses robust angiogenic effects
on vascular endothelial cells (64, 65). Mechanistically, treatment
of vascular endothelial cells with NO leads to cGMP-dependent
activation of protein kinase G through guanylate cyclase to
upregulate target molecules (66). Furthermore, NO stabilizes
hypoxia-inducible factor-1α and the subsequent production
of VEGF-A (67). Importantly, VEGF-C activates eNOS to
generate NO in LECs. Indeed, treatment of human dermal
LECs with VEGF-C potentiates lymphangiogenesis through
the activation of eNOS (68). Targeted deficiency of eNOS or
pharmacological inhibition of eNOS suppresses peritumoral
lymphatic hyperplasia (68). Moreover, treatment of LECs
with NO donors potentiates lymphangiogenic tube formation
concomitantly with elevation of cGMP levels in affected cells
(69). Singla et al. identified matrix protein R-spondin 2 (RSPO2)
as a lymphangiogenesis inhibitor (70). RSPO2 expression was
noted in vascular endothelial cells and LECs, which counteracted
the VEGF-C-induced activation of AKT, resulting in the
depletion of NO and subsequent lymphangiogenesis. Since a
variety of vasoactive elements can potentiate NO production,
it is possible that perturbation of these elements under
hypercholesterolemic conditions disturbs lymphangiogenesis.

There is another possibility of NO-mediated pathogenic
lymphatic modifications. Liao et al. documented that NO derived
from iNOS-overexpressing CD11b+ myeloidal DCs, which
accumulated around the subcutaneous lymphatic vessels during
oxazolone-induced contact sensitization, could weaken rhythmic
lymphatic contraction (71). Intriguingly, lymphatic contraction
appears to be associated with T cell activation as well as the
pathogenesis of oligodendrocyte glycoprotein peptide 35–55-
induced autoimmune encephalomyelitis (71), suggesting that
lymphatic contraction has an immunomodulatory role during
inflammation. While VEGF-C reportedly improves contractile
functions in collecting lymphatic vessels, as noted above (29),
there is no evidence of perilymphatic accumulation of DCs
and aberrant contractile regulation of collecting lymphatic
vessels under hypercholesterolemic conditions. Hence, future
studies should investigate NO homeostasis and immune cell
composition around large lymphatic vessels.

Calpain Systems
Calpain, a superfamily of intracellular Ca2+-dependent
proteases, can be defined as molecules possessing a calpain-
like cysteine protease sequence (CysPc) motif. Currently, 15
species of calpain isozymes have been identified in mammals
(72, 73). Among the calpain subtypes, calpain-1 and calpain-
2 are classified into conventional calpains and comprise a
heterodimer of the small regulatory subunit CAPNS1 and their
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unique catalytic subunits CAPN1 and CAPN2, respectively
(74). Conventional calpains can be intracellularly activated in
response to various physiological and pathogenic stressors,
such as lysophospholipids, hypoxia, cytokines, and growth
factors, thereby proteolyzing functional cellular proteins
through limited proteolytic cleavage (74, 75). As a result
of proteolysis, calpain enables the modification of cellular
functions and phenotypes. Our previous study showed that
conventional calpains in vascular endothelial cells are involved
in pathological angiogenesis in oxygen-induced retinopathy
and cancer allograft models in mice (76). Mechanistically,
activation of the conventional calpains in vascular endothelial
cells elicits shedding of suppressor of cytokine signaling protein
3, resulting in the sensitization of Janus kinase/signal transducer
and activators of transcription systems. Importantly, these
inflammatory signaling pathways are associated with VEGF-C
production. Since VEGF-C accumulatively accelerates VEGF-
A-induced angiogenic responses in vascular endothelial cells
(77), the calpain-activated cytokine signaling can synergize
with VEGF-A-driven signaling cascades. As a result, calpain
overactivation accelerates the aforementioned proliferative
insults in mice. Of note, calpain-2 potentiates lymphangiogenesis
in human dermal LECs through NO production (78).
Importantly, conventional calpains can be upregulated by
lysophosphatidylcholine under hypercholesterolemic conditions
(79). Thus, it is speculated that these molecules are activated
even in LECs under hypercholesterolemic conditions. In
contrast to the conventional calpains, the contribution of

unconventional calpains to lymphangiogenesis has not been
reported so far, although they are reportedly involved in a variety
of physiological and pathophysiological events (80–82).

CAUSAL RELATIONSHIP BETWEEN
LYMPHATIC INSULTS AND
HYPERCHOLESTEROLEMIA

Growing evidence suggest that lymphatic defects under
hypercholesterolemic conditions are likely to interrupt
reverse cholesterol transport (Figure 1). This may be due
to dysfunctional HDL transcytosis in microlymphatics and
impaired lymphatic drainage involving collecting lymphatic
vessels. To the best of our knowledge, impaired cholesterol
transport is likely to be the primary cause of atherosclerosis
modification by lymphatic insults. Concomitantly with the
prevention of reverse cholesterol transport, lymphangiogenesis
is disrupted under hypercholesterolemic conditions. Such
lymphangiogenic insufficiency is unlikely to be dependent on
the depletion of VEGF-C and VEGF-D. Although impaired
lymphangiogenesis can be responsible for the limitation
of lymphocyte trafficking, further research is needed to
investigate the relationship between limited lymphocyte
trafficking and immune responses, such as regulatory T
cell-driven immunosuppression. It is noteworthy that LECs
reportedly exert antigen presentation to modulate DCs and
T cells, thereby modifying adaptive immunity (7), which

FIGURE 1 | Causal relationship between lymphatic insults and hypercholesterolemia. Lymphatic insults under hypercholesterolemic conditions are likely to interrupt

reverse cholesterol transport, which can be owed to the turbulence of lymphatic drainage within collecting lymphatic vessels and to impaired lymphangiogenesis

involving periaortic microlymphatics. Additionally, lymphangiogenesis is disrupted under hypercholesterolemic conditions independently of VEGF-C and VEGF-D

depletion. Such lymphangiogenic insufficiency can be responsible for limited lymphocyte trafficking. LECs enable exerting antigen presentation to modulate dendritic

cells and T cells, thereby modifying adaptive immunity. Therefore, hypercholesterolemic lymphatic insults presumably cause lymphocyte dysfunction that accelerates

atherosclerosis progression. In addition, several dyslipidemic lipid mediators, such as lysophospholipids, enable modification of lymphatic patterning and functions.

Since cholesterol-lowering trials reportedly recover hypercholesterolemic lymphatic insults, it is possible that hypercholesterolemia can precede lymphatic insults,

presumably owing to lipid mediators.
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presumably causes lymphocyte dysfunction to accelerate
atherosclerosis progression. In addition, several dyslipidemic
lipid mediators, such as lysophospholipids, modify the
lymphatic structure and function. Several lipid-lowering
drugs and apoA-I are reportedly effective in improving
lymphatic functions, including lymphatic drainage and
reverse cholesterol transport; accordingly, it is possible that
hypercholesterolemia can precede lymphatic insults, which is
presumably mediated through dyslipidemic lipid mediators.
Hence, future investigations are necessary to explore the causal
relationship between pathophysiologic lymphatic regulation and
hypercholesterolemia-driven atherogenesis.

FUTURE DIRECTIONS

A growing body of evidence suggests that lymphatic defects
are responsible for hypercholesterolemia. At the same time,
hypercholesterolemia itself appears to elicit lymphatic insults.
In addition, several investigations support the notion that
lymphangiogenesis around the atheroprone artery exerts
lymphocyte migration from atherosclerotic lesions, which can
be sustained by VEGF-C. Since the lymphangiogenic role of
VEGF-C in periarterial regions has been challenged by some
researchers, exploring alternative lymphatic drivers under
hypercholesterolemic conditions is necessary. While several
bioactive lipids enable the induction of lymphangiogenesis,
lipid composition in the lymphatic environment under

hypercholesterolemic conditions has not been fully elucidated.
Thus, defining lipid composition and its temporal changes in
the lymphatic environment during hypercholesterolemia is a
promising approach for understanding the causal relationship.
In addition to the research exploring environmental factors
that induce hypercholesterolemic lymphatic insults, pathogenic
intracellular mechanisms in LECs should be investigated
in future studies. Employing Cre-loxP systems enables the
elucidation of the effects of lymphatic defects on atherogenesis in
mice. Defining lipid compositions and intracellular mechanistic
insight will be helpful for developing a strategy for the
prevention of atherosclerotic diseases and for estimating the
personal susceptibility to atherosclerotic diseases.
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