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As the capacity for generating large-scale molecular profiling data continues to grow, the

ability to extract meaningful biological knowledge from it remains a limitation. Here, we

describe the development of a new fixed repertoire of transcriptional modules, BloodGen3,

that is designed to serve as a stable reusable framework for the analysis and interpretation of

blood transcriptome data. The construction of this repertoire is based on co-clustering pat-

terns observed across sixteen immunological and physiological states encompassing 985

blood transcriptome profiles. Interpretation is supported by customized resources, including

module-level analysis workflows, fingerprint grid plot visualizations, interactive web appli-

cations and an extensive annotation framework comprising functional profiling reports and

reference transcriptional profiles. Taken together, this well-characterized and well-supported

transcriptional module repertoire can be employed for the interpretation and benchmarking

of blood transcriptome profiles within and across patient cohorts. Blood transcriptome fin-

gerprints for the 16 reference cohorts can be accessed interactively via: https://drinchai.

shinyapps.io/BloodGen3Module/.
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Technological advances over the past two decades paired
with improvements in cost-effectiveness have enabled the
large-scale implementation of high throughput molecular

profiling approaches. In translational settings, these advances
now permit almost routine measurement of molecular pheno-
types at very high resolutions, via whole genome, proteome,
metabolome, microbiome, and transcriptome profiling1. Among
those approaches, blood transcriptome profiling has proven
especially well-suited for the unbiased assessment and monitoring
of immunological responses in patient studies2,3. It consists of
measuring abundance of transcripts in bulk blood samples or in
Peripheral Blood Mononuclear Cell (PBMC) fractions. It employs
robust sampling protocols, which are amenable to implementa-
tion on large scales, both inside and outside of clinical settings4,5.
Over the years the approach has gradually become more cost-
effective, with the price point for recently introduced 3′ biased
counting applications via RNA-seq currently standing at <$100
per sample6,7. Blood transcriptome profiling approaches have
been employed across virtually all fields of medicine2. One of the
most common uses has been for the definition of “disease sig-
natures” and investigation of mechanisms associated with, and
potentially implicated in, disease pathogenesis3,8,9. On larger
scales, blood transcriptomics profiling has also served as a basis
for the development of biomarkers, for instance in order to
improve management and diagnosis of sepsis10–12. It has
also proven valuable as an immunomonitoring tool in clinical
studies, to assess response to vaccines or immune modifying
therapies13–15.

Our group has previously developed fixed repertoires of tran-
scriptional modules which have been employed to support the
analysis and interpretation of blood transcriptome data16–18.
Notably, we have developed such repertoires as reusable analytic
frameworks—i.e. with the intent of employing these pre-
established and well-characterized module sets for the analysis
of newly generated transcriptome datasets. Consequently, our
team has released only two different module repertoires over a
12-year period, which we, and others, have used to analyze
numerous blood transcriptome datasets [e.g.19–22]. With the
construction of a new repertoire (“BloodGen3”), we aimed first to
increase the range of immunological states upon which the defi-
nition of modules would be based, which was limited to seven in
our earlier attempt, and second, to improve the resources that
would support downstream data analysis and interpretation.
Specifically, 16 input datasets were employed for the construction
of the BloodGen3 repertoire, comprising 985 unique blood

transcriptome profiles from: patients with autoimmune, infec-
tious, or inflammatory diseases; cancer patients; liver transplant
recipients; and pregnant women. Secondly, we developed a
comprehensive bioinformatics ecosystem specifically adapted to
the BloodGen3 repertoire, to support downstream analysis,
visualization, and interpretation of blood transcriptome profiling
data. The custom resources that have been developed include an
R package which permit to run analysis workflows for group
comparison and individual molecular fingerprinting and to
visualize module-level data as custom module fingerprint grids
and heatmaps. In addition, extensive functional annotations and
reference transcriptome profiles for each of the 382 modules
comprising the repertoire have been made available via inter-
active circle packing plots. Finally, web applications have been
deployed that give users the ability to dynamically generate fin-
gerprint plots for different collections of reference datasets.

Results
Generation of a collection of datasets covering a wide range of
immune states. The development of transcriptional module
repertoires relies on identifying gene co-expression events using
transcriptome profiling data as a starting point. For this new
blood transcriptome module repertoire, we used 16 datasets
(GEO ID: GSE100150) that encompassed 985 individual whole
blood transcriptome profiles. Each dataset corresponds to a dif-
ferent pathological or physiological state (Table 1). These datasets
were generated from whole blood samples processed in the same
facility using Illumina HT12 BeadArrays (details are provided in
the Methods section). Similar to our first two repertoires (Sup-
plementary Table 1), we included data from patients (adult and
pediatric) with: systemic lupus erythematosus (SLE), systemic
onset juvenile idiopathic arthritis (SoJIA), liver transplants, and
receiving maintenance immunosuppressive therapy, metastatic
melanoma, and infectious diseases [with an expanded range that
now includes infections caused by influenza, respiratory syncytial
virus (RSV), human immunodeficiency virus (HIV) infections,
Mycobacterium tuberculosis, Staphylococcus aureus, and Bur-
kholderia pseudomallei (which causes melioidosis) and sepsis
caused by other bacteria (Streptococcus pneumoniae, Salmonella
spp., and Pseudomonas aeruginosa)]. We also added six new
conditions to our framework: inflammatory conditions of the skin
(juvenile dermatomyositis), lung [chronic obstructive pulmonary
disease (COPD)] and circulation (Kawasaki disease); multiple
sclerosis (MS); primary immune (B-cell) deficiency; and

Table 1 Datasets used for module construction.

Dataset Category Population # Samples (Cases) # Samples (Control) # Samples (Total)

1 Staphylococcus aureus infection Bacterial Infection Pediatric 99 44 143
2 Sepsis Bacterial Infection Adult 35 12 47
3 Tuberculosis Bacterial Infection Adult 23 11 34
4 Influenza Viral Infection Pediatric 25 14 39
5 RSV Viral Infection Pediatric 70 14 84
6 HIV Viral Infection Adult 28 35 63
7 Systemic lupus erythematosus Autoimmune Pediatric 55 14 69
8 Multiple sclerosis Autoimmune Adult 34 22 56
9 Juvenile dermatomyositis Autoimmune Pediatric 40 9 49
10 Kawasaki disease Autoinflammatory Pediatric 21 23 44
11 Systemic onset juvenile idiopathic arthritis Autoinflammatory Pediatric 62 23 85
12 COPD Inflammatory Adult 19 24 43
13 Melanoma Malignancy Adult 22 5 27
14 Pregnancy Physiologic variant Adult 25 20 45
15 Liver transplant recipients Immunosuppressed Adult 94 30 124
16 B-cell deficiency Immunodeficiency Adult 20 13 33

Sixteen distinct datasets were used as the input for module repertoire construction. Each dataset corresponds to a different condition or physiological state and comprises both cases and matched
controls. Each dataset was processed as a single batch at the same facility with the data generated using Illumina HumanHT-12 v3.0 Gene Expression BeadChips. The collection comprises a total of 985
individual transcriptome profiles.
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pregnancy (serving as a physiological variant). Patients with type
1 diabetes or with an Escherichia coli infection included in pre-
vious repertoires were not included this time.

In summary, the sixteen datasets that were assembled capture a
wide range of immunological responses. This should permit the
construction of a transcriptional module repertoire that will prove
useful as a generic framework for blood transcriptome data
analyses.

Implementation of a stepwise approach to blood transcrip-
tional module repertoire construction. After collating the 16
input datasets, we next followed a stepwise process to construct
the BloodGen3 module repertoire and identify co-expression
networks (Fig. 1). We used the module construction algorithm we
implemented for the selection of the previous repertoire (the
second generation; the code is provided in the Supplementary
Material). This approach comprised four main steps: (1) clus-
tering of each individual dataset; (2) recording the number of
instances where two genes are included in the same cluster, with
the values ranging from 0 to 16 (i.e. reflecting the range of co-
clustering in none or all 16 of the datasets); (3) construction of a
weighted co-expression network, where the edges between the
genes represent at least one co-clustering event in one of the input
datasets and the weight is assigned based on the total number of
co-clustering events; (Supplementary Fig. 1); and (4) mining the
resulting network to identify highly inter-connected sub-networks
that form the modules.

The construction of a module repertoire in this manner is thus
entirely data-driven and does not rely on any a priori information
about gene interactions or functions. In total, we identified 382
modules comprising 14,168 transcripts (95.8% of the transcripts
detected in this dataset collection).

Development of module-level analysis workflows and visuali-
zations. A key characteristic of the gene sets collected via the
process described above is that, by construction, changes in
abundance of the corresponding transcripts within a given
module will tend to be coordinated. As such, it should be possible
to use these modules as a “framework” to: (1) identify functional
convergences among the genes that comprise each set, and (2)
summarize changes in overall transcript abundance related to
pathological processes or therapeutic interventions.

We determined the gene composition of each of the 382
modules comprising the BloodGen3 repertoire (Supplementary
Data 1). The average number of genes per module was 37.1, the
median was 26.5 and the range was 12–169. Functional profiling
and enrichment results were generated using multiple tools
(GSAn, Literature Lab, IPA, DAVID, KEGG, BioCarta, OMIM,
and GOTERM). We also determined the extent of overlap
between the BloodGen3 repertoire and those we obtained earlier
(Gen1, Gen2) as well as those constructed by our colleagues at
Emory University (BTMs)23. For module-level analyses, we
determined the proportion of the constitutive transcripts that
differ in abundance levels between study groups (e.g. cases vs.
controls; pre-treatment vs. post-treatment). Using this approach,
we derived two values corresponding to the percent of transcripts
that are (i) increased and (ii) decreased. The cut-off points can be
chosen based on user preferences. For example, cut-offs can be
based on statistics, fold changes and/or differences with or
without multiple-testing correction for group comparisons.

Subsequently, the extent of differential expression at the
module level can be displayed as a “fingerprint”, assigning each
module to a fixed position on a grid plot with color-coding
according to the level of increased or decreased abundance of the
constituent transcripts (Fig. 2). For this, we then performed a

second tier of clustering to group the 382 modules into 38
“aggregates”, with each row on the grid displaying the modules
corresponding to one such aggregate. Segregation into distinct
aggregates was based on similarities in abundance levels observed
across the collection of 16 datasets. Using this approach, we
derived two levels of granularity (i.e. module level vs. module
aggregate level) with the number of variables for interpretation at
the least granular module aggregate level constrained to a more
manageable number. As a result of this process, the changes in
expression levels for each row in the fingerprint grid tend to be
coordinated, which was not the case for prior iterations of such
fingerprint grids (Fig. 3). Some degree of functional convergence
can thus be observed within a given row of modules. As an
example, in our fingerprint we found that row A1 comprised
several modules associated with lymphocytes, while row A28
comprised six distinct “interferon modules” and rows A33 and
A35 comprised a number of modules functionally associated with
inflammation.

Overall, fingerprint grid plots can complement traditional
heatmap representations. Fixing the positions of modules on the
grid allows, with some practice, to identify at a glance
immunological/functional characteristics associated with a given
blood transcriptome profile.

Illustrative case of fingerprint grid plot representation. We
next demonstrate the analysis and visualization approach
described above with an illustrative case, focusing primarily on
SLE, a disease for which the blood transcriptome signature has
been well-characterized. Fingerprints of other reference disease
cohorts employed for module construction are included to pro-
vide additional context.

Data interpretation is facilitated by tiered dimension reduction.
The first vertical reading of the fingerprint grid permits
visualization of changes across the aggregates, while the
horizontal reading permits visualization of changes within an
aggregate and across modules. In this illustrative case, we
compared the transcriptome profiles among 55 pediatric patients
with SLE and 14 healthy control subjects (Fig. 3). We identified
an interferon-dominated signature (A28) accompanied by
modules associated with cell cycle (A27 and A29, including
antibody production). We observed an increase in the abundance
of modules associated with inflammation and neutrophils (A35),
which is a hallmark of the SLE transcriptome signature. These
changes were accompanied by a decrease in transcript abundance,
which was more apparent for some modules belonging to
aggregates A1, A2, and A3, which are arrayed across the first
three rows of the fingerprint grid. More specifically, for the
module aggregate A1, the most marked decreases were observed
for modules associated with protein synthesis (dark purple color
at positions 1, 5, 11, and 19 on row A1).

It is also possible to “aggregate” the changes observed by row,
thereby reducing the dimensions for a given dataset even further. In
this illustrative case, we reduced the dataset from 382 modules to 27
“aggregates” (Fig. 3a). The decision to take this extra step depends
on the desired level of resolution. Mapping changes at the aggregate
level will produce the most reducted and simplest fingerprint
possible. However, our earlier work also showed that distinct
interferon modules are biologically and clinically meaningful24. Also
when focusing on a given signature or pathway it would be indicated
to work at the module level rather than at the aggregate level.

Fingerprint grid plots can be generated for each of the 16
diseases or physiological states via the BloodGen3 web application
(https://drinchai.shinyapps.io/dc_gen3_module_analysis/#); seven
of them are shown in Fig. 3 as an illustration. In brief, among
these fingerprint grid plots, we found that blood transcriptome
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perturbations were most widespread in patients with MS and
patients with a Staphylococcus aureus infection (Fig. 3b), with
opposing patterns of change. Changes associated with COPD or
stage IV melanoma (Fig. 3c) were very subtle but nonetheless
distinct, with differences in transcript abundance compared to
control subjects most visible for aggregates concerning oxidative
phosphorylation, monocytes, inflammation (A24–A26), erythro-
cytes and neutrophil activation (A36–A38). We also found

differences in the intensities of sets of modules associated with
inflammation between these two diseases (A33–A35). Interferon
signatures (A28) were a salient trait in patients with SLE (Fig. 3a)
and were present in patients infected with viral pathogens (e.g. HIV,
in Fig. 3), as well as patients with active tuberculosis (consistently
with one of our previous reports20).

Taken together, this illustrative case demonstrates the use of
“fingerprint” representations. Notably, such fingerprint grid
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representations are specific to a given module repertoire (i.e.
BloodGen3 in this case). Fixing positions on the grid permits the
overlay of functional annotations associated with each modular
signature. This makes it possible for experienced users to “read”
and interpret such fingerprints at a glance. It also permits the use
of reference collections of BloodGen3 fingerprints for compara-
tive interpretation. However, while this representation can be

used as a complement, it does not replace the more traditional
heatmap representations.

In-depth functional annotation of fixed transcriptional module
repertoires. Based on usage of earlier iterations (Gen1 & Gen2),
the expectation is for this repertoire to be of use over a period
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spanning several years. We therefore focused on comprehensive
functional annotation of the BloodGen3 repertoire, and for this
used two main approaches:1 concurrent ontology, pathway or
literature-term profiling analyses; and2 determination for the
constitutive genes for each module of expression patterns in select
reference transcriptome datasets. We compiled the resulting
information for BloodGen3 modules and made it accessible via

interactive circle packing plots. These interactive plots make it
possible to zoom in and out, determine spatial relationships and
interactively browse the very large compendium of analysis
reports and heatmaps generated as part of our annotation efforts.
(Fig. 4; links are listed in Supplementary Table 2 and are also
accessible via the BloodGen3 web application: https://drinchai.
shinyapps.io/BloodGen3Module/, and a demonstration video is
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available at: https://youtu.be/db58FBUua-g). Below, we describe
briefly how we conducted our annotations (see also Experimental
Procedures):

Step 1—Functional profiling: We conducted gene ontology
profiling for each of the 382 modules using DAVID25, GOTERM,
and GSAn26. GSAn interactive reports were uploaded to a custom
web portal (https://ayllonbe.github.io/modulesV3/index.html).
We also performed pathway enrichment analyses using the
KEGG, BioCarta and the Ingenuity Pathway Analysis application,
as well as literature-term enrichment with Literature Lab. Finally,
we also used the RcisTarget tool in the R package to identify
transcription factor binding motifs over-represented among the
transcript constituents of each module27. We synthesized and
compiled the results of the analyses (Supplementary Data 1) to
identify convergences and attribute functional titles to the
different modules. Functional titles could not be attributed in
all cases due to a lack of convergence or poor enrichment in one
or more of the analyses.

Step 2—Expression patterns in reference transcriptome datasets:
We used transcriptome datasets as a reference to improve
characterization and biological interpretation of the BloodGen3
module repertoire. Three different datasets were used. The first
was contributed by Novershtern et al. and comprised the
transcriptome profiles of 38 human hematopoietic cell
populations28. The second was contributed by Speake et al. and
comprised the RNA-seq profiles of six circulating leukocyte
populations from patients with various immune-associated
diseases29. The third was contributed by Monaco et al. and
comprised RNA-seq profiles of 29 leukocyte populations isolated
from healthy donors30. We generated heatmaps for each module
to visualize the abundance patterns of the constituent transcripts
for each dataset.

Overall, this resource serves two purposes. First, it provides
access to information required to interpret the transcriptome
fingerprints generated via module-level analyses. Second, it helps
us to improve the accuracy with which functional titles and roles
are attributed to the different modules and aggregates. Indeed,
although the transcriptional module repertoire is fixed over time,
we anticipate that the functional annotations will continue to
evolve over its lifespan.

Measuring inter-individual variability for the molecular stra-
tification of patient cohorts. The analysis and visualization steps
presented so far focus on characterizing differences between
groups of subjects (e.g. cases and controls). However, it is also
important to characterize heterogeneity among groups of patients
since inter-individual variability can serve as a basis for the
definition of molecular phenotypes and patient stratification.

Within each module, and for each individual subject, we used
fixed cut-offs to count the number of transcripts that increase,
decrease or do not change in abundance compared to a baseline
value (e.g. absolute fold change in expression and absolute
difference in expression vs. average of control samples). The
percentage of differentially expressed genes for each module is

then computed. These percentages are equivalent to values
derived from group comparisons, except that they are derived for
each individual sample.

The sepsis cohort included in the reference dataset collection
was used to illustrate how this approach can be employed to
assess inter-individual variability for a given pathology (Fig. 5).
Changes in transcript abundance were found to be highly
consistent across patients for some module aggregates. For
instance, this was the case for aggregate A1 (broadly associated
with lymphocytic cells/responses), with consistent decreases in
transcript abundance observed across patients. Conversely,
consistent increases were observed for modules comprising
aggregate A35 (broadly associated with inflammatory neutrophil
responses). In this case, differences were observed in the intensity
of the response. However, other module aggregates, such as A37
(erythroid cells), A33 (functional association to be defined) and
A28 (interferon response), showed more mixed responses.

A web application was developed as a resource to explore the
inter-individual differences for a given disease, module aggregate
or a combination of aggregates (BloodGen3Module App: https://
drinchai.shinyapps.io/BloodGen3Module/; video: https://youtu.
be/IXJDGeVH1bs). This application permits the generation of
fingerprint grid plots and heatmaps representing module
aggregate activity across the 16 reference datasets (Fig. 6).

This illustrative case focusing on sepsis shows that individual
modular fingerprints can provide a means to achieve molecular
stratification of patient cohorts. However, the biological and
clinical relevance of such distinct molecular phenotypes would
still remain to be determined in follow-on analyses.

Profiling the abundance of A28 interferon-inducible genes at
the aggregate level across reference patient cohorts. Having
explained the approach implemented for the construction and
characterization of the fixed BloodGen3 transcriptional module
repertoire, we now present the analysis and visualization strate-
gies for both group- and individual-level comparisons using an
illustrative case focusing on the changes in abundance for module
aggregate A28 (interferon responses). We start from the highest
possible perspective, examining changes in abundance for the
A28 aggregate across reference disease cohorts.

A heatmap was derived showing patterns of abundance of a
subset of 27 module aggregates comprising two or more modules
across 16 health states (Fig. 7a). In the first order of separation,
patients with acute HIV infection were grouped in one cluster,
while the remaining 14 states were grouped into a second cluster.
The main trend driving this dichotomy was an overall
suppression of modules associated with inflammation and/or
myeloid cell responses (A34–A38), accompanied by an increase in
modules corresponding to aggregates associated, in part, with
lymphocytic responses (A1–A8). The factors underlying these
two distinct, “overarching” signatures are likely related to overall
changes in myeloid versus lymphoid cell composition. Notably,
diseases belonging to either group can exhibit marked interferon
signatures (e.g. acute HIV infection in one cluster, and SLE or

Fig. 3 Fingerprint grid plots. a Prototypical fingerprint grid plot. Changes in blood transcript abundance for patients with Systemic Lupus Erythematosus
(SLE) compared to healthy controls are represented on a fingerprint grid plot for this illustrative case. The modules occupy a fixed position on the
fingerprint grid plots (see Fig. 2). An increase in transcript abundance for a given module is represented by a red spot; a decrease in abundance is
represented by a blue spot. Modules arranged on a given row belong to a module aggregate (here denoted as A1 to A38). Changes measured at the
“aggregate level” are represented by spots to the left of the grid next to the denomination for the corresponding aggregate. The colors and intensities of the
spots are based on the average across each given row of modules. A module annotation grid is provided where a color key indicates the functional
associations attributed to some of the modules on the grid (top right). Positions on the annotation grid occupied by modules for which no consensus
annotation was attributed are colored white. Positions on the grid for which no modules have been assigned are colored gray. b–d Fingerprint grid plots for
additional reference datasets (COPD: chronic obstructive pulmonary disease, HIV: human immunodeficiency virus).
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influenza infection in the other cluster). The circle plots shown in
Fig. 7b–d provide a more granular illustration at the module and
gene levels of the changes represented by spots on the heatmap.
The gene composition for each of the six A28 modules is shown
in circle plots in Fig. 7b. The circle plots shown in Fig. 7c
highlight the genes changed in A28 modules when comparing
patients with infection to their respective control groups (Fig. 7c).
Finally, reference circle plots showing patterns of in vivo
responses of A28 genes to administration of IFNα in patients
with hepatitis C infection or of IFNβ in patients with MS
[transcriptome profiling data were made publicly available by the
authors31,32] are presented in Fig. 7d. The plots on this figure

show that changes observed at the aggregate level are not always
distributed evenly across the six modules constituting aggregate
A28, and in turn, of genes constituting each of the modules. The
response to type I interferons was dominated by a dispropor-
tionate increase in abundance of transcripts constituting M8.3
and M10.1. In contrast, transcripts forming M15.86, which
showed very little change in response to those treatments, were
markedly increased during acute HIV and influenza infection
(Fig. 7c). It is therefore possible that this gene set is more
specifically induced by IFNγ. Interferon responses were weaker
among RSV patients compared to these of patients with the two
other viral infections. Similarly, in the context of bacterial

Fig. 4 Functional annotation of the transcriptional module repertoire. An interactive application is available to explore the 382 modules comprising the
blood transcriptome repertoire. A gene list, along with the ontology, pathway, literature-term enrichment, and transcriptional profiling data for reference
transcriptome datasets (circulating leukocyte populations, hematopoiesis) is provided for each module. Zoom in and zoom out functionalities for close-up
examination of the text and figures embedded in the presentation are available. Web links providing access to modules within a given aggregate are listed
in Supplementary Table 2. For a demonstration video, please visit: https://youtu.be/db58FBUua-g.
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infection, the interferon response was most marked in response to
TB infection, which is consistent with previous reports20. A large
proportion of adult patients comprising the sepsis cohorts were
infected with Burkholderia pseudomallei, the intracellular bacteria
responsible for melioidosis, which also tends to induce stronger
interferon responses22. Changes in abundance of the transcripts
constituting A28 in the context of autoimmune or inflammatory
diseases are shown in Supplementary Fig. 2.

The visualization schemes employed here offer some new
perspectives on the contribution of different modules and genes
to the overall aggregate-level interferon responses. However,
other variations in the selection of variables and granularity levels
are possible and will be explored next.

Profiling the abundance of A28 interferon-inducible genes at
the module level across reference patient cohorts. Plotting
changes in the A28 genes across the same reference cohorts at the

module level, rather than at the aggregate level, provided a more
granular perspective on the data. We also chose to compare lit-
erature keyword enrichment profiles for each of the A28 module
at this level.

Functional enrichment analyses showed that all six modules in
this aggregate were associated with the interferon response (see
https://prezi.com/view/E34MhxE5uKoZLWZ3KXjG/). The heat-
map (Fig. 8a) showing literature enrichment profiles highlighted
keywords associated with viral pathogens (“hepatitis”, “herpes” or
“influenza”), as well as host-derived and pathogen-derived
molecules (“RIG-I”, “interferon”, “interferon, “double-stranded
RNA”). Among the six modules, four seemed to be “core”
interferon modules (M15.86, M10.1, M8.3, M15.127), while the
remaining two (M13.17, M15.64) were associated with the
interferon literature to a lesser degree. These latter two modules
were more strongly associated with the herpes simplex virus than
the other four modules, while the four core modules were
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preferentially associated with hepatitis. The heatmaps available
via the Prezi interface, which depicted the gene expression
profiles for the A28 modules, provided additional perspectives.
For example, the dataset from Speake et al. comprised samples of

patients with MS collected immediately before and 24 h after the
administration of their first dose of IFNβ (Supplementary Fig. 3
[GEO ID GSE60424);29]. Despite the small number of subjects in
this category, we observed a clear pattern of response to

Fig. 6 Web application to visualize multi-tiered module fingerprinting. An application was developed to explore the changes in transcript abundance at
the module level across the 16 reference datasets used to construct the repertoire. Three types of plot can be displayed and exported: (1) fingerprint grids;
(2) module heatmaps displaying changes in abundance in modules comprising a given aggregate across the 16 reference datasets; and (3) module
heatmaps displaying changes in abundance in modules comprising a given aggregate across individuals constituting a given dataset. To access the
application, please visit: https://drinchai.shinyapps.io/BloodGen3Module/. For a demonstration video, please visit: https://youtu.be/IXJDGeVH1bs.
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Fig. 7 Module aggregate abundance patterns across the 16 disease or physiological states. a Patterns of changes in transcript abundance at the
aggregate and cohort levels. Each column on the heatmap corresponds to a “module aggregate”, numbered A1 to A38. Modules A9–A14 and A19–A24
were excluded as they each comprised only one module. Each row on the heatmap corresponds to one of the 16 datasets used to construct the module
repertoire. A red spot on the heatmap indicates an increase in abundance of transcripts comprising a given module cluster for a given disease or
physiologic state. A blue spot indicates a decrease in abundance of transcripts. No color indicates no change. Disease or physiological states were arranged
based on the level of similarity in the patterns of aggregate activity, determined via hierarchical clustering. b Representation of the modules and genes
constituting aggregate A28. The circle plot represents the six modules constituting aggregate 28, and the transcripts constituting each of the modules.
Some genes on the Illumina BeadArrays can map to multiple probes, which explains the few instances where the same gene can be found in different
modules. c Patterns of changes in transcript abundance at the module level and gene level for aggregate A28. The circle plots illustrate the changes at the
gene level for this aggregate for 6/16 datasets. The position of the genes on each of these plots is the same as shown in panel B. Genes for which transcript
abundance is changed are shown in red (increase) or in blue (decrease). d Patterns of changes in transcript abundance at the module and gene levels for
aggregate A28 in subjects treated with IFN-α or IFN-β. The circle plots show changes in abundance of A28 transcripts in patients with hepatitis C infection
treated with IFN-α [GSE1134231] or patients with MS treated with IFN-β [GSE2610432] (HIV: human immunodeficiency virus, RSV: respiratory syncytial
virus, TB: Tuberculosis, Staph: Staphylococcus aureus infection, SLE: systemic lupus erythematosus, MS: multiple sclerosis, JDM: juvenile dermatomyositis,
COPD: chronic obstructive pulmonary disease, SoJIA: systemic onset juvenile idiopathic arthritis, IFNα: interferon alpha, IFNβ: interferon beta).
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interferon in vivo across all six modules. This observation
confirmed the functional associations identified in the enrich-
ment analyses.

Next, we examined the degree of changes for the six interferon
modules across the 16 input datasets (Fig. 8b). The first cluster

showing the highest induction levels comprised SLE, influenza
infection, HIV infection and active M. tuberculosis infection
(labeled C1 on the figure). Interferon has antiviral properties;
therefore, it was no surprise to see viral infections included in this
set. Blood transcriptome profiling studies conducted nearly 20
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years ago revealed interferon responses in the pathogenesis of
SLE33,34. More recent profiling also revealed the prominence of
this signature in patients with tuberculosis, which contrasts with
findings made in other bacterial infections20. The second cluster
(labeled C2) comprised diseases with an “intermediate” level of
interferon responses, including RSV infection, sepsis caused by
Staphylococcus aureus in pediatric patients and a range of
bacterial pathogens in adults, SoJIA and liver transplant
recipients receiving maintenance immunosuppressive therapy.
The illness conferred by RSV infection has a clinical presentation
very similar to that of influenza in pediatric patients. However,
studies suggest that interferon responses may be partially
inhibited by RSV35,36.

The third and final cluster was formed by pathologic and
physiological states where an increase in abundance of interferon-
inducible genes was either modest or non-existent. This cluster
included patients with juvenile dermatomyositis and B-cell
deficiency (low levels), Kawasaki disease, melanoma, COPD,
pregnancy (no increase), and individuals with MS (apparent
decrease). The latter observation is interesting since IFNβ
administration is one form of treatment for MS, which should
compensate for the defect observed here in treatment-naïve
individuals.

Taken together, this closer examination of annotations for A28
modules and patterns of changes in abundance in different
reference datasets provided a clearer picture of its biological
significance.

Profiling the abundance of A28 interferon-inducible genes at
the module level across individual subjects. Analysis workflows
were developed to determine changes in transcript abundance at
the level of individual subjects. This approach, which offers an
even more granular perspective, was next applied for molecular
stratification of patient cohorts using the six A28 interferon
modules.

We showed, for instance, that in cohorts where no changes
were detectable via comparisons at the overall group level, the
signature was in fact presented by a minority of patients. Indeed,
this scenario applied for the cohort of melanoma patients with
three of 22 subjects showing some degree of increase in
abundance for the six A28 modules, while the majority showed
small changes or a decrease in abundance. At least four of the
patients showed a marked decrease in abundance (Fig. 9a). This
observation is of potential biological and clinical significance as
interferon activity in patients with melanoma has been associated
with disease outcomes previously37,38. Pathologies with an
intermediate A28 signature might induce responses in a higher
proportion of subjects. This was the case for the JDM patient
cohort comprising a cluster of 11 of 40 patients presenting with
modular interferon signatures (Fig. 9a). Of the 793 articles in
PubMed mentioning “juvenile dermatomyositis” in the title, eight
also mentioned “interferon”, indicating that while not widely
acknowledged, a role for interferon in this disease has nonetheless
been described39. In diseases for which the role of interferon is
well-described, such as influenza infection or SLE, increases in
A28 modules were widespread, although the interferon signature
was not detected in a few subjects in each cohort (Fig. 9a).
Notably in the case of SLE, the proportion of interferon-negative
subjects tended to be higher in adult patient cohorts in
comparison to pediatric patient cohorts such as that is being
used for illustrative purposes here. We next present stratification
of an adult SLE cohort based on patterns of abundance of A28
modules.

Using our second-generation repertoire, we have previously
shown that the interferon signature characterizing SLE comprises

distinct “sub-signatures” at the module level24. We also observed
a sequential increase in a set of three second generation interferon
modules (M1.2, M3.4, and M5.12). M1.2 showed a higher degree
of sensitivity, followed by M3.4 and then M5.12. Based on this
finding, we stratified SLE patients based on whether one, two, or
all three of those interferon modules were activated. By
combining functional profiling with a reference dataset, we
concluded that the modules responded differently to each
interferon type: IFN-α induced an increase in the abundance of
genes belonging to M1.2; IFN-β induced an increase in the
abundance of genes belonging to M1.2 and M3.4; and interferon-
γ induced an increase in the abundance of genes belonging to
M5.12. Next, we sought to determine the equivalence between
these three, second-generation interferon modules and the six
new, third-generation interferon modules regrouped in aggregate
A28. Based on gene composition, M8.3 and M15.127 mapped to
M1.2 (inducible by both IFN-α and -β), M10.1 and M15.86
mapped to M3.4 (inducible by IFN-β), and M13.17 and M15.64
mapped to M5.12 (inducible by IFN-γ). Notably, the latter two
modules did indeed segregate from the other four based on the
literature enrichment profiling heatmap shown in Fig. 8a. We also
used the six interferon modules to re-classify the adult SLE
dataset profiled in our earlier study [GEO ID GSE4945424]. The
resulting clustering and stratification mirrored our earlier
findings made using the three interferon modules (Supplemen-
tary Fig. 4). Overall, these observations confirmed that interferon
“sub-signatures” can be employed for patient stratification. This
may be relevant in the tailoring of biologics targeting interferon in
development for the treatment of SLE. However, the potential of
utilizing the six modules from the new repertoire to improve on
the three from the second-generation repertoire employed
previously remains to be determined.

Next, we aimed to illustrate how further insights can be
obtained by examining changes in A28 modules abundance at the
individual level concurrently with those of other module
aggregates. As an example, we present the changes for both
A28 (interferon) and A35 (inflammation) modules (Fig. 9b). By
combining the two modular signatures, we assessed their relative
contributions in a given cohort and identified distinct pheno-
types: i.e. interferon or inflammation “positive”, “double-
positive”, or “double-negative”. We found the most contrasting
patterns of changes in transcript abundance in the sepsis and
melanoma cohorts. Here, the abundance of interferon (A28) and
inflammation (A35) modules almost uniformly increased in
patients with sepsis. In contrast, we observed increases in these
modules in only a minority of melanoma patients, with increases
in inflammation modules being more widespread than those in
interferon modules (approximately 50% compared to approxi-
mately 10% of subjects, respectively). Parallel findings were
obtained in pregnancy, which represents another immunosup-
pressive state, although increases in abundance of a subset of A35
modules appeared to be more prevalent in this group than in
melanoma patients. The pattern of changes in influenza infection
was more similar to that in sepsis, but with higher levels of
interferon induction and a lower level of inflammation.

Overall, the illustrative case presented here demonstrates the
preliminary stepwise dissection of a given module aggregate and
investigation of the underlying biological relevance. This process
could be repeated for other module aggregates and while this is
beyond the scope of the present study, it is a process that will
support the scalable annotation infrastructure that has been
developed here. Indeed, we expect the range of reference datasets
and functional profiling approaches available for interpretation to
continue to expand and the processes described here should also
help determine to what extent subdivision of signatures in distinct
modules is warranted.
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Development and availability of ancillary resources. BloodGen3
modules can be reused as a framework for the analysis of blood
transcriptome datasets which were not originally included for the
constitution of the repertoire. We have developed custom
bioinformatic resources to support downstream analyses visuali-
zation and interpretation carried out specifically using the
BloodGen3 repertoire. These resources have been employed in
several published use cases, all of which involving the analysis of
multiple public datasets which were not employed for the con-
struction of the BloodGen3 repertoire: (1) In one instance,
BloodGen3 modules served as a framework for the development
of targeted blood transcript panels (in the context of COVID-
1940); (2) Another illustrative case involved the use of the
repertoire and associated interpretation resources described here
to identify and characterize a systemic signature of psoriasis
disease, and screen for constitutive genes targeted by existing

drugs41. (3) In the final published illustrative case, the BloodGen3
module repertoire was employed as a framework for an inte-
grative meta-analysis encompassing six independent RSV
datasets42.

An R package that we have developed to support BloodGen3-
based data analysis and visualization (BloodGen3Module), was
employed to carry out the analyses presented in these illustrative
use cases and the current work. This tool has been described in
detail in a separate publication43 and scripts are openly available
via GitHub (https://rdrr.io/github/Drinchai/BloodGen3Module/).
Briefly, this resource includes functions that can be used to
perform differential expression analyses and visualize datasets
generated by the end users as fingerprint grid plots or heatmaps.

Other project-specific bioinformatics resources that were
developed include a web application that provides users with
the ability to generate custom fingerprints plots (grids or
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six modules (rows) across individuals (columns) in four reference cohorts. The rows and columns on the heatmap are arranged based on similarities in
abundance patterns. b Changes in abundance for A28 and A35 modules. The heatmaps display the changes in abundance of six modules constituting
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heatmaps), presently for the 16 reference cohorts employed for
the construction of the repertoire (BloodGen3 app: https://
drinchai.shinyapps.io/BloodGen3Module/). Different configura-
tions can be selected for the heatmap, for instance to display
fingerprints for modules within a given aggregate across the 16
reference datasets, or across all the individuals within a given
dataset. For the latter application, it is also possible to select and
combine multiple aggregates on the same heatmap. The resulting
plots and corresponding tables can be exported and employed to
prepare figures or generate plots using other tools. The Blood-
Gen3 web application also integrates links to Prezi circle packing
plots generated for each of the aggregates, thus presenting users
with more unified access to supporting resources. Two additional
project-specific web applications with similar functionalities have
been developed. One was dedicated to the published COVID-19
use case mentioned above (https://drinchai.shinyapps.io/
COVID_19_project/40) and the second to the respiratory
syncytial virus infections use case (https://drinchai.shinyapps.io/
RSV_Meta_Module_analysis/42).

Altogether these resources complement the extensive annota-
tion framework presented earlier (interactive Prezi circle packing
plots), to provide potential users means to leverage the Blood-
Gen3 repertoire for the analysis of their own blood transcriptome
datasets.

Discussion
The BloodGen3 module repertoire is meant to be employed as a
fixed and reusable framework for the analysis of blood tran-
scriptome data. It has been constructed through co-expression
analyses carried out across a wide range of diseases and physio-
logical states. It constitutes the third iteration released by our
group since 2008. Another blood transcriptome repertoire has
been developed and made available by our collaborators from
Emory University23. Several differences in the approach
employed for the construction of this latter 334-module reper-
toire should be noted. First, the development of the repertoire
reported by Li et al. relied on public transcriptome datasets (N >
500), and second, selection of constitutive genes for the modules
relied partly on co-expression and partly on functional con-
vergences (ontology category, cell type-specific expression,
interactome or bibliome). More recently, Zhou and Altman
described the development of another fixed transcriptional
module repertoire based on the assembly of a collection of 2753
public datasets that were deposited in the NCBI GEO and
encompassed 97,049 unique transcriptome profiles44. Indepen-
dent component analysis was then used to resolve co-expression
relationships, which led to the identification of a set of 139
transcriptional modules. Subsequently, the biological relevance of
these sets and advantages of their use for improving the robust-
ness of analyses, especially for smaller datasets, were presented.
Overall, this provided additional arguments in favor of the reuse
of fixed transcriptional module repertoires, a practice that, to
date, has not been widespread. However, Zhou and Altman chose
datasets generated from a wide range of sample types as input
data and the resulting framework may not capture some of the
specificities that exist within more narrowly defined biological
systems (for example a tissue or cell type such as the blood
transcriptome in the case of the BloodGen3 repertoire). It is also
worth noting here that large collections of gene sets are com-
monly used for the interpretation of transcriptome profiling data
[e.g., gene set enrichment analyses (GSEA):45,46]. Such reference
collections are very large, typically numbering tens of thousands
of signatures. While these datasets have proven useful as a
reference for functional interpretation, they have not been

developed with a focus on a specific biological system or appli-
cation, or to perform reductive analyses.

Transcriptional module repertoires are also commonly con-
structed for “single use”, using popular approaches such as whole-
genome co-expression network analysis (WGCNA)47. Such
repertoires are based on and used for the analysis of a given
dataset and are not designed to be reused, as is the case for the
“fixed” module repertoires described above. Notably, the con-
tinual reuse of fixed module repertoires over time periods usually
spanning several years means that greater effort and resources can
be dedicated to the development of tailored repertoire-specific
analytic resources, as exemplified here in the case of BloodGen3.
We previously attempted to develop such a support infrastructure
for our second-generation of modules, albeit on a smaller scale.
However, we learned that maintaining such resources over long
periods of time proved a challenge as these now have gone offline
through a combination of hardware failures, hacking or dis-
continued institutional support. Here we attempted to address
these issues through adoption of zero cost infrastructure (e.g.
depositing of R scripts in GitHub, deploying R Shiny apps,
uploading videos to YouTube, or employing the Prezi platform
that makes presentations freely accessible as long as public access
is maintained).

These resources include a R package, “BloodGen3module”, that
can be used to generate fingerprint grid plots and heatmaps43.
These custom visualizations have been developed to support the
interpretation of blood transcriptome data expressed at the
module level. Notably, the two-tiered grouping, first at the
module level and at the module aggregate level, is new for this
third-generation module repertoire. This in turn led to adopting a
different strategy for fingerprint grid plots visualization. Indeed,
for earlier repertoires (Gen1 & Gen2), the order in which modules
were selected determined their order on a given row of the grid
(first to last, from left to right). For the BloodGen3 repertoire,
modules within a given aggregate (=row) are grouped first
according to functional annotations and then among the different
annotations, from left to right according to alphabetical order.
The modules without annotations are added last and ordered in
ascending order according to their module ID (i.e. based on the
selection process).

It may also be worth noting that changes in relative cell
composition will in part be driving fluctuations in transcript
abundance in whole blood. As such, co-expression analyses and
the construction of module repertoires will permit the identifi-
cation of gene sets associated with specific leukocyte populations.
Indeed, functional annotations and reference leukocyte profiling
datasets unequivocally associated a number of BloodGen3 mod-
ules with cell types (e.g. B-cells, T-Cells, cytotoxic cells, neu-
trophils or erythroid precursors). A selection of the 382 modules
comprising this repertoire could therefore be employed specifi-
cally for bulk blood transcriptome data deconvolution and esti-
mation of changes in abundance of those cell populations. This is
along the lines with what tools such ABIS30, or CIBERSORT are
offering. A notable difference being that relying on module
repertoires does not require making a priori choices regarding
which leukocyte populations should be deconvoluted from bulk
transcriptome profiling data. One of our recently published
illustrative cases highlights this aspect in that it describes a
dominant circulating erythroid cell signature (A36, A37, A38)
with putative immunosuppressive function that was found to be
associated disease severity in patients with respiratory syncytial
virus infection42, but that is not otherwise included in the panels
of cell populations commonly used for deconvolution of blood
transcriptome profiling data.

Finally, limitations inherent to the BloodGen3 repertoire and
associated resources shared here are also worth noting: First, the
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BloodGen3 repertoire is specifically designed to analyze and
interpret human blood transcriptome profiling data. Analyses of
other tissues or in the context of other species would require the
development and use of separate frameworks. Indeed, we have
also been involved in the development of fixed module repertoires
for various mouse tissues48 and in vitro culture systems, including
human whole blood49 and human dendritic cells50.

Second, it should be also noted that the BloodGen3 repertoire
could be altered by the addition or removal of datasets used for its
construction. However, we do not expect many changes at the
least granular “module aggregate level”. Indeed, the dominant
functional themes found in BloodGen3 aggregates (plasma cells,
interferon, inflammation, cytotoxic/T-cell responses, erythrocytes
etc.) were already present in both Gen1 and Gen2. More varia-
tions would be expected at the more granular module level. We
have previously found these inter-module differences to be bio-
logically meaningful24, and conserved from Gen2 to Gen3 in the
case of interferon.

Third, we generated our transcriptome datasets for module
construction using Illumina BeadArrays, a technology that pre-
dates RNA sequencing. Our choice to use this technology was
based on availability at our institute for the construction of the
BloodGen3 repertoire of a collection of well-characterized blood
transcriptome datasets generated at the same facility and obtained
across different projects using harmonized protocols. An alter-
native approach would be to compile publicly available blood
transcriptome for which appropriately matched control data are
available. The coverage afforded by RNA-seq data would likely
result in somewhat larger modular gene sets; however, we con-
sider it unlikely that entire co-expressed gene sets would be
missed by microarrays to the extent that it would lead to the
production of a repertoire that is fundamentally different to that
produced using RNA-seq data. It is also worth noting that the
BloodGen3 repertoire is currently routinely used in our labora-
tory to perform analyses using RNA-seq data (some illustrative
cases are already available40,41). In addition, the “Gen2” reper-
toire, also based on whole blood and Illumina BeadArrays17, has
been used to analyze profiles generated from peripheral blood
mononuclear cells using a targeted 700-transcript Nanostring
panel51. It is worth drawing the attention of investigators who
wish to employ the framework for the analysis of RNA-seq data
that the BloodGen3 repertoire was constructed at the probe level
(those present on the Illumina HT12 v3 Beadarrays). This was to
account for the possibility that changes in abundance for tran-
script variants measured by distinct probes may differ. And
indeed, in some cases different probes mapping to the same genes
were distributed across several modules (often within the same
aggregate). Thus, for those analyzing data generated at the gene
level via RNA-seq the choice would be to assign the same value to
duplicate genes found in different modules. Another possibility
would be to disregard genes with duplicates altogether, which in
our hands shows to have very little impact on the results since
they concern only a small minority of genes (388 out of 14,168
probes). Both options can be implemented using functions pro-
vided within the BloodGen3Module R package43.

Fourth, our module repertoire is not meant to constitute a
ground truth. Indeed, some aggregates are clearly not homo-
geneous in terms of functionality, and heterogeneity also exists
within modules. The attribution of functional annotation titles to
modules also confers some degree of subjectivity. However, the
repertoire does structure the data so that insights about the
biological significance of such a modular signature can be
determined. As a result, while the framework presented here will
remain fixed for at least the next few years, it is likely that the
functional annotation map will continue to evolve for the fore-
seeable future.

In conclusion, the approach to the development of module
repertoires and associated interpretation resources described here
should be generalizable to other biological systems (different
sample types, species or data types). For instance, possible
applications would be the development of reusable repertoires
based on transcriptome profiles generated from other tissues or
cell types. In addition, more narrowly defined blood tran-
scriptome repertoires may also be derived (e.g., based on blood
transcriptomes for a given disease or set of diseases). Notably, one
of the main bottlenecks in the development of such resources
would likely be the development of the companion analysis and
interpretation frameworks, rather than the construction of the
repertoire per se. It should be possible to partly automate and
streamline the annotation process, and the construction of
interactive circle packing plots for instance, although a manual
component will likely remain when drawing functional inferences
(i.e. “connecting the dots”). Nevertheless, as is expected of the
BloodGen3 module repertoire, once initially established, such
interpretation frameworks may also be developed over time as
more analyses are being carried using such repertoires.

Methods
Study subjects. Gene expression datasets from 985 de-identified subjects from
distinct cohorts were used for this research. Written informed consent was
obtained from all participants. Studies were approved by Institutional Review
Boards of the Baylor College of Medicine (COPD dataset: H-18029), the University
of Texas Southwestern Medical Center and Baylor Health Care System (Influenza,
RSV, S. aureus and Kawasaki disease datasets: UTSW #0802-447/BIIR #002-141),
Saint Jude’s Research Hospital (B-cell deficiency), the Baylor Health Care System
(Liver transplant: 002-197, Pregnancy: 009-257, Multiple sclerosis: 009-240, Mel-
anoma: 006-025 & 097-027), Khon Kaen University (Sepsis), the University of
Texas Southwestern Medical Center (SoJIA, Dermatomyositis, SLE), Duke Uni-
versity and the Baylor Health Care System (HIV: Duke 8485-06-4R0/Baylor 006-
177), St. Mary’s Hospital London, UK and University of Cape Town, Cape Town,
Republic of South Africa (Tuberculosis: St Mary’s REC 06/Q0403/128, University
of Cape Town REC 012/2007). The gene expression datasets selected to cover
major classes of immune states (Table 1) were required to have at least 25 samples
in total, and at least 20% of the total samples were required to be controls matched
for gender, age and ethnicity.

General descriptions of the study cohorts are as follows: S. aureus cohort:
Children with community-acquired S. aureus infection were enrolled. The clinical
syndromes of these patients included skin and soft tissue infection, bacteremia,
osteomyelitis, suppurative arthritis, pyomyositis, pneumonia, and disseminated
disease. Patients diagnosed with toxic shock syndrome, polymicrobial infections, or
treated with corticosteroids in the preceding four weeks were excluded; Adult sepsis
cohort: Diagnosis of sepsis was based on accepted international guidelines and
defined as presentation with two or more of the following criteria for the systemic
inflammatory response syndrome: fever (temperature > 38 °C or <36 °C),
tachycardia (heart rate >90 beats/minute), leukocytosis or leukocytopenia (white
blood cell count ≥12 × 109/l or ≤4 × 109/l). Blood was collected within 24 h
following the diagnosis of sepsis. Samples were selected for microarray analysis
from subjects with a diagnosis of bacteremic sepsis retrospectively confirmed by the
isolation of a causative organism on blood culture; factors accounted for in the
selection of subjects in the control group included gender, age and type 2 diabetes
diagnosis, the latter being a risk factor for septicemic melioidosis. TB cohort:
Patients were prospectively recruited and sampled, before any anti-mycobacterial
treatment was initiated. Active TB disease was confirmed by laboratory isolation of
M. tuberculosis on mycobacterial culture of a respiratory specimen (either sputum
or bronchoalveolar lavage fluid); Influenza cohort: Children with confirmed
influenza infection were recruited. Those with documented bacterial co-infections
or chronic conditions and systemic steroid treatment within 2 weeks before
enrollment were excluded; RSV cohort: Children with confirmed RSV infection
were recruited. Children with documented bacterial co-infections, congenital heart
disease, chronic lung disease, immunodeficiency, prematurity (<36 wk), systemic
steroid treatment within 2 weeks before presentation or additional chronic
comorbidities were excluded; HIV cohort: Blood samples were obtained from adult
patients diagnosed with HIV infection. At enrollment patients were verified as
acute Fiebig stages 4–6 (plasma RNA+ , third-generation EIA+, Western blot
indeterminant or+ ); SLE cohort: Blood samples were obtained from pediatric
patients diagnosed with systemic lupus erythematosus and healthy controls
matched for demographic characteristics; MS cohort: Subjects enrolled in the MS
cohort had an established diagnosis of relapsing-remitting MS, separately
confirmed by an experienced MS neurologist (JTP), exhibited no other health
conditions, and had received no treatment(s) for MS, including corticosteroids, for
at least 3 months prior to blood collection; Juvenile dermatomyositis cohort: Blood
samples were obtained from pediatric patients diagnosed with juvenile
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dermatomyositis and healthy controls matched for demographic characteristics.
Kawasaki disease cohort: Subjects <18 years of age who met the definition of
Kawasaki disease based on the American Heart Association (AHA) criteria52 were
enrolled alongside age- and gender-matched healthy controls; Systemic onset
juvenile arthritis cohort: Blood samples were obtained from SoJIA patients
displaying systemic symptoms only (fever, rash, and/or pericarditis) or displaying
systemic symptoms accompanied by arthritis; COPD cohort: Enrollment criteria
included age over 40 years, no history of concurrent lung cancer, chest surgery, or
chronic lung diseases other than COPD (e.g., sarcoidosis, fibrosis, etc.). Participants
had no history of allergies or asthma and at the time of initial recruitment had not
received oral or systemic corticosteroids during the previous 6 weeks; volunteers
were enrolled from three clinics within the Texas Medical Center in Houston (TX,
USA); B-cell deficiency cohort: This cohort comprised adults with diagnosis of
XLA as documented by markedly reduced numbers of peripheral blood B-cells;
Pregnancy cohort: Pregnant women were recruited at the Baylor Institute for
Immunology Research (Dallas, TX, USA) for a study of immunological signatures
of pregnancy; Melanoma cohort: Enrollment criteria included age 21–75 years,
stage M1a, M1b, M1c biopsy proven metastatic melanoma patients with
measurable metastatic lesions by physical examination or scans, acceptable CBC
and blood chemistry results, adequate hepatic and renal function, and no active
CNS metastatic disease; Liver transplant cohort: Enrollment criteria included age
17–65 years, having received a liver transplant under maintenance
immunosuppression therapy. Subjects in this cohort had not received an acute or
chronic rejection diagnosis at the time of sampling.

RNA extraction and processing. Whole blood for all sample sets was collected
into Tempus Blood RNA Tubes (Thermo Fisher Scientific, Waltham, MA, United
States). Total RNA was isolated from whole blood lysate using a MagMAX for
Stabilized Blood Tubes RNA Isolation Kit for Tempus Blood RNA Tubes (Thermo
Fisher Scientific). RNA quality and quantity were assessed using an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, United States) and a Nano-
Drop 1000 (NanoDrop Products, Thermo Fisher Scientific). Samples with RNA
integrity number values >6 were retained for further processing.

Microarray analysis and data preprocessing. Gene expression profiles from
whole blood samples generated using Illumina HumanHT-12 v3.0 expression
BeadChips were obtained from 16 groups of patients and controls selected as
above. Thus, 16 datasets were used as the input data (Table 1). The expression data
for each dataset were preprocessed and independently clustered. First, the probes
were discarded if they were not detected (detection P < 0.01) in at least 10 samples
or in at least 10% of the samples, whichever was greater. Then, the sample data for
each dataset were normalized using the BeadStudio average normalization algo-
rithm. Once normalized, the signal was transformed such that all signals <10 were
set to 10. Then, the fold change was calculated relative to the median signal for that
probe across all samples. If the difference between a signal and the probe’s median
signal was <30, or the calculated absolute magnitude of the fold change was <1.2,
the fold change was set to 1 to reduce the noise from low-level responses. At this
stage, the probes were filtered again. Probes were only retained if they had a
calculated absolute fold change >1 in at least 10 samples or in at least 10% of the
samples, whichever was greater. Finally, the data were transformed to the log2 of
the calculated fold changes.

Module construction algorithm. Sets of coordinately regulated genes, or tran-
scriptional modules, were extracted from the patient’s whole blood microarray data-
sets. Full details and an example of the code are included in the supplemental methods
(Supplementary Material). Briefly: each of the preprocessed microarray datasets was
clustered in parallel using Euclidean distance and Hartigan’s k-means clustering
algorithm. The ‘ideal’ number of clusters (k) for each dataset was determined within a
range of k= 1–100 using the jump statistic53. Taking the 16 sets of clusters as the input
data (Table 1), a weighted co-cluster graph was constructed16,18. To select modules, an
iterative algorithm was used to extract the sets of probes that are most frequently
clustered together in the same datasets, proceeding from the most stringent require-
ments to the least, as previously described18. This iterative process differed from the
previous implementation of this algorithm in that the k value was calculated inde-
pendently for each dataset cluster and the size of the core sub-networks was smaller
(10 probes). The algorithm also differed from previous implementations to ensure that
the core sub-networks co-clustered in the same datasets. The resulting 382 module set
constitutes the third generation of the modular blood transcriptome repertoire con-
structed since the development of the first generation published in 200818, and the
second generation published in 201317. Module identifiers (Mxx.xx) were attributed,
with the first number indicating the round of selection (the smaller the number the
higher the number of datasets in which co-clustering was observed; for M1 it would be
16/16; for M2 it would be 15/16 etc.); the next number represents the order in which it
was selected (the smaller the number, the larger the size of the initial seed).

Module annotation
Gene ontology/pathway enrichment. Module gene lists were investigated using
“Database for Annotation Visualization and Integrated Discovery” (DAVID) ver-
sion 6.725. This database uses a modified Fisher exact test to identify specific

biological/functional categories that are over-represented in gene sets in compar-
ison with a reference set. The top matched DAVID annotation cluster (using
default settings), the top matched canonical pathway from the Kyoto Encyclopedia
of Genes and Genomes (KEGG), the top matched pathway from BioCarta, and the
top matched gene ontology biologic process (GO_BP) and molecular function
(GO_MF) terms were identified for each module. Each module was also investi-
gated for significant overlap with two other established blood transcriptome
module repertoires17,23. The findings are summarized in a module annotation
spreadsheet (Supplementary Data 1).

Gene set annotation (GSAn). To further annotate the modules, a new alternative to
statistical enrichment analysis tool called GSAn was applied26. Statistical enrich-
ment methods may have limitations36–38, as these methods tend to focus on the
subpart of the most studied genes and to provide gene set annotation results that
cover a limited number of the well-annotated genes. To address these issues, GSAn
offers: (i) an original method that combines semantic similarity measures and data
mining approaches to achieve a unified and synthetic annotation of a gene set of
interest, and (ii) a visualization approach that facilitates interactive exploration of
the gene set annotation results according to the hierarchical structure of gene
ontology13. The tool is available online: https://gsan.labri.fr/. A page listing analysis
results for all 382 generation 3 blood transcriptome modules can be accessed at:
https://ayllonbe.github.io/modulesV3/index.html.

Pathway enrichment analyses. Ingenuity Pathway Analysis was applied to deter-
mine pathway enrichment for each module (Qiagen, Valencia, CA,USA).

Literature profiling. Literature Lab™ (LitLab; from Acumenta Biotech, Boston, MA)
was used to associate genes within a particular module to terms used in PubMed
abstracts54. Association scores reflecting the strength of the associations were used
to calculate the “Product Scores”. The top three terms that showed the strongest
association and highest “Product Scores” were used to create the functional
annotation. A similar approach using LitLab has been previously reported49. The
steps taken to annotate all 382 modules are summarized here. All statistical ana-
lyses were performed using Microsoft Excel (2010) with Visual Basic for Appli-
cations (VBA), Linux-based command line in Mac OS, and R statistical software.

To construct a Product Scores Table, all the terms available in LitLab (>80,000)
were listed. Then, the genes in each module were submitted as a list to LitLab
Editor and validated manually using LitLab’s built-in validation tool and/or NCBI
Gene (https://www.ncbi.nlm.nih.gov/gene) prior to submission for analysis using
all domains available. After completing the analysis, the summary result page was
exported to an xls file. Using the UNIX command line, the exported files were then
converted to csv files with the filename appended in the last column of each row
and vertically appended. The “merged” file was used to populate the table that
included all the available LitLab terms. The top three terms with the highest
Product Scores were selected to represent the module functional annotation and
are tabulated in column I of the module annotation table (Supplementary Data 1).

Identification of transcription factor binding motif over-representation. The Rcis-
Target tool in the R package was used to screen modules for enrichment in
transcription factor binding motifs27. The analysis results have been uploaded to
GitHub (https://motoufiq.github.io/DC_Gen3_Module_Analysis/) and are avail-
able as interactive circle packing plots (Prezi: Supplementary Table 2).

Fingerprint grid plot visualization. Modules were arranged on a grid based on
their similarities in patterns of activity across the 16 input datasets, each of them
corresponding to a different pathological or physiological state. First, the modules
were partitioned using k-means clustering, which generated 38 clusters. Given the
possibility of collapsing values of the modules constituting each cluster in a single
“aggregate” value, the term “module aggregate” was used to designate each cluster
(A1 to A38). Of these 38 k-means clusters, 27 comprised >1 module. The modules
were then arranged on a grid with each row corresponding to modules belonging to
the same aggregate (Fig. 4). The total number of rows on the grid equaled 27 and
the number of columns equaled the largest number of modules for a given
aggregate (42 for aggregate A2). For each module, the highest of the two values
indicating an increase or a decrease was selected for visualization (e.g. if % increase
> % decrease, then a red sport representing % increase is shown). In addition to the
Mxx.xx identifiers described above the modules are assigned an identifier that
corresponds to their position on the grid: Axx.xx identifiers, with Axx indicating
the aggregate (row) number and.xx the order (column). These identifiers are
provided in Supplementary Data 1 and in the plots generated via the BloodGen3 R
Shiny applications.

Module fingerprint analysis and visualization. Downstream analyses and
visualizations are supported by the BloodGen3Module R package that we have
developed and described in a separate publication43. Briefly, the modular analysis
was performed using 14,168 probes comprised in the BloodGen3 repertoire. Fold
change in expression was computed using gene expression data prior to log2
transformation. For group comparisons, paired t-tests were performed on log2-
transformed data (fold change (FC) cut-off = 1.5; FDR cut-off = 0.1). For
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individual-patient analysis, each sample was compared to the mean of control
samples in each dataset. Cut-offs were defined by an absolute FC > 1.5 and a
difference in gene expression level >10. A module was considered to be “respon-
sive” when the proportion of differentially expressed transcripts (as defined above)
was greater than 15%. Data visualization was performed using
“ComplexHeatmap”55.

Generation of circular plots. Circular plots were generated to represent module
expression at the gene level (Fig. 7). These plots show the fold changes in
expression in the case versus control groups in each dataset. Probes that confirmed
to the FDR < 0.1 and FC > 1.5 criteria were presented in graded intensity red
reflecting the fold change in abundance and those with FC <−1.5 were presented
in graded intensity blue. The position of the genes on each of the circular plots
is fixed.

Statistical analyses. Numerical data were processed and analyzed using R sta-
tistical software (version1.1.463-©2009-2018 RStudio, Inc). Student’s t test was
used to evaluate the significance of differences between groups. P < 0.05 was
considered to indicate statistical significance, with adjustment by multiple-testing
correction when needed (FDR, Benjamini–Hochberg procedure).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Transcriptome profiling data that support the findings of this study have been deposited
in the NCBI Gene Expression Omnibus (GEO) with the accession code GSE100150.

Code availability
A R package was developed that supports module repertoire analyses and fingerprint
visualizations described in the manuscript. The package is available on GitHub and
Bioconductor56 and described in detail in a separate publication43 https://github.com/
Drinchai/BloodGen3Module https://bioconductor.org/packages/release/bioc/html/
BloodGen3Module.html.
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